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Simple Summary: Natural pearls of Diplodon chilensis, a freshwater clam native to southern South
America, are reported and characterized for the first time. The finding also constitutes the first record
of pearls in a species of the genus Diplodon. The pearls have different shapes and sizes, and were
found in both, male and female specimens. The microstructure and chemical composition of pearls is
consistent with those reported in other bivalve species.

Abstract: The capability to produce pearls is widespread in the phylum Mollusca, including bivalves
of the superfamily Unionoidea. Here, we identified and characterized natural pearls formed by
Diplodon chilensis, a freshwater clam native to southern South America, using samples obtained
from two lakes located in the Chilean Patagonia. Pearls were studied using light and scanning
electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared
spectroscopy (FTIR), and Raman spectroscopy. Naturally formed pearls were found in both male
and female D. chilensis specimens. Pearls are produced in different shapes, including spherical,
ellipsoidal, buttoned, and bumpy, ranging in size from 200 µm to 1.9 mm. The internal microstructure
is composed of irregular polygonal tablets, about 0.40 to 0.55 µm in thickness. EDX analysis showed
that pearls are composed of calcium carbonate. FTIR and Raman spectra recorded several peaks
attributable to the aragonite in pearls of this species, as has been shown in other mollusks. In addition
to these results, pearls of different colors are illustrated.

Keywords: bivalves; Chile; mollusks; natural pearls; Raman spectra

1. Introduction

Mollusks represent the second group with the largest number of species after the
arthropods, reaching a diversity of between 85,000 and 120,000 species [1,2]. In addition
to this high diversity, mollusks have a great variety of body plans [3], which has allowed
them to colonize different environments across all climatic zones. Since ancient times, these
animals have been used as food sources by humans [4,5], as demonstrated by the large
number of archaeological records around the world [6,7].

Traditionally, many species of mollusks have been useful for human societies in re-
ligious ceremonies, folk medicine, building tools, the production of buttons, fertilizers,
cattle feed, decoration, and ornamental purposes [8–13]. Moreover, shellfishing and cul-
tured pearl production have been and continue to be important sources of income for the
inhabitants of different countries, and in many parts of the world, some species have been
included in commercial aquaculture [14,15].

Several species within the classes Bivalvia, Gastropoda, and Cephalopoda can produce
pearls, mainly bivalves. The soft bodies of oysters, clams, mussels, and snails are covered by
the mantle, a thin epithelial tissue that covers the body organs and secretes the molluscan
shell, which is comprised of calcium carbonate and made up of two to five different layers
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of calcite and/or aragonite [3,16]. In a similar way, molluscan pearls are produced by the
mantle when a foreign body is introduced, either accidentally or deliberately, between this
tissue and the shell. When this occurs, the outer mantle epithelium envelops the invading
object and secretes calcium carbonate to cover it, forming the pearl [3]. In bivalves, pearl
microstructure may consist of calcite, aragonite, or vaterite, three polymorphs of calcium
carbonate, or a combination of these phases [17–22].

Two types of pearls have been described in mollusks: ampullae, also called “half-
pearl”, “blister”, or “mabe”, a protuberance of the internal shell surface; and encysted,
formed around a foreign object inside the body of the mollusk [23–25]. In the latter case,
a donor specimen and another recipient are required to produce a pearl. The object to be
implanted can be a piece of mantle tissue alone or a small bead made of different solid
materials such as shells, corals, and fish scales, among others, together with a piece of
mantle tissue. If the implant is successful, a non-nucleated pearl will be produced in the
first case and a nucleated pearl in the second [25].

The genus Diplodon Spix, 1827, a representative of the family Hyriidae Swainson,
1840, comprises conspicuous freshwater clams that inhabit lakes, rivers, and streams in
South America [26]. Although the number of species in the genus is not known with
certainty, it contains more than 50 valid species [27–29]. To our knowledge, no pearls have
been reported in any Diplodon species so far. In the study of the shells and pearls carried
out in several species of unionids [30], no pearls were found in the subspecies Diplodon
chilensis (Gray, 1828). In the present investigation, we apply different techniques for the
characterization of pearls discovered in populations of this species sampled in Chile.

A considerable number of studies have been carried out regarding the morphology,
taxonomy, ontogeny, karyology, reproduction, life cycle, toxicology, and ecology of D. chilensis,
which have led to the species being considered the “best known species of Hyriidae in the
continent” [31]. The objective of this study is to report the finding of pearls in populations of
D. chilensis from two Patagonian lakes in southern Chile. The pearls were characterized using
a light microscope, a scanning electron microscope, and FTIR and Raman spectroscopy.

2. Materials and Methods

Adult D. chilensis individuals were obtained in January 2022 from a shellfisher in
Playa Negra, Lake Caburgua (n = 100) and by a fisherman at the source of the Toltén
River, Lake Villarrica, Southern Chile (n = 49) (Figure 1). The clams from both lakes were
assigned to D. chilensis since (i) our samples were obtained within the species range, (ii) it
inhabits Lake Villarrica [32,33], (iii) the current nonexistence of Diplodon chilensis patagonicus
(d’Orbigny, 1846) populations in Chile [34–37], and (iv) the absence of characters that
differentiate the populations of both lakes. Shell length was measured (in mm) using a
vernier caliper (precision 0.01 mm). The clams were dissected using a Motic SMZ–168
stereoscopic microscope and sexed by microscopic examination of gonad smears using
a Leica light microscope. The pearls were isolated from the mantle tissue using surgical
material, washed with distilled water, and observed using a Hitachi 3500 scanning electron
microscope (SEM). SEM was coupled with Bruker model Quantax 100 energy dispersive
X-ray spectroscopy (EDX) for the chemical determination of the samples through elemental
mapping. Pearls from different individuals were wrapped in paper and then broken with
the blunt part of a dissecting needle to observe the internal microstructure using SEM.

Representative pearls were analyzed with a 4 cm−1 resolution using a PerkinElmer
Spectrum Two FTIR spectrophotometer. Pearls were also analyzed using the Ocean On-
sight Raman spectroscopy model QEPRO-RAMAN-785-PLUS to detect the type of CaCO3
polymorph present in the sample. The measurements were acquired with an excitation
wavelength of 785 nm at 0.890 nW. The spectra were obtained with an 11 cm−1 optical
resolution in a spectral range of 0–2000 cm−1.
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Figure 1. The freshwater clam Diplodon chilensis in southern Chile: (a) shells (6.7 cm) in internal (left) 
and external (right) view; (b) collection sites. The maps were created using QGIS Geographic Infor-
mation System v3.22 (http://www.qgis.org, accessed on 13 September 2022). (Maps: G.A. Collado). 
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3. Results 
Pearls of D. chilensis were found covered by the animal’s mantle tissue (Figure 2) and 

were isolated by making a fine cut on it. Pearls were found in both male and female clams 
and were of different shapes, including spherical, elliptical, buttoned, or with bumps (“ba-
roque”). With the electron microscope, we observed the external appearance of the pearls, 
indicating that most of them were smooth (Figure 3). However, some of them had small 
slits or holes as well as an irregular surface. Most pearls were white or grayish white in 
color, although a few silvers, light blue, pinkish, or brown were also found (Figure 4). In 
some clams, there were small pearls in the adductor muscles. The size of the pearls varied 
between 200 µm and 1.9 mm (Table S1). In Lake Caburgua, we recorded 1% of clams with 
pearls, while in Lake Villarrica, we recorded 18.4%. In this lake, the smallest individual 
with a pearl had a length of 41.9 mm. The largest pearl (1.9 mm) was found in a 47.2 mm 
individual. Only one pearl (924.0 µm) was found in Lake Caburgua in a 65.6 mm individ-
ual.  

Figure 1. The freshwater clam Diplodon chilensis in southern Chile: (a) shells (6.7 cm) in internal (left) and
external (right) view; (b) collection sites. The maps were created using QGIS Geographic Information
System v3.22 (http://www.qgis.org, accessed on 13 September 2022). (Maps: G.A. Collado).

3. Results

Pearls of D. chilensis were found covered by the animal’s mantle tissue (Figure 2) and
were isolated by making a fine cut on it. Pearls were found in both male and female clams and
were of different shapes, including spherical, elliptical, buttoned, or with bumps (“baroque”).
With the electron microscope, we observed the external appearance of the pearls, indicating
that most of them were smooth (Figure 3). However, some of them had small slits or holes
as well as an irregular surface. Most pearls were white or grayish white in color, although
a few silvers, light blue, pinkish, or brown were also found (Figure 4). In some clams, there
were small pearls in the adductor muscles. The size of the pearls varied between 200 µm and
1.9 mm (Table S1). In Lake Caburgua, we recorded 1% of clams with pearls, while in Lake
Villarrica, we recorded 18.4%. In this lake, the smallest individual with a pearl had a length
of 41.9 mm. The largest pearl (1.9 mm) was found in a 47.2 mm individual. Only one pearl
(924.0 µm) was found in Lake Caburgua in a 65.6 mm individual.
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Figure 3. Pearls produced by the freshwater clam Diplodon chilensis from southern Chile: (a–h) pearls
obtained from Lake Villarrica; (i) pearls obtained from Lake Caburgua; (j,k) microstructure of pearl
tablets seen at different angles and magnifications. Scale Bar: a = 1 mm; b, c = 500 µm; d–f = 300 µm;
g–i = 200 µm; j = 5 µm; k = 10 µm.
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Figure 4. Pearls of Diplodon chilensis observed with a stereoscopic microscope showing natural colors.
(a–e) Pearls obtained from Lake Villarrica; (f) pearls obtained from Lake Caburgua. Note that the
pearls (a–c,e,f) were imaged with SEM in Figure 3. In this case, they may have slightly varied in
position because different slides were used in both sample viewing techniques. Scale Bar: a = 1 mm;
b, e = 300 µm; c, f = 200 µm; d = 500 µm.

Scanning electron microscopy images indicate that the internal microstructure of D.
chilensis pearls is composed of irregular polygonal tablets about 0.4 to 0.55 µm thick. EDX
analysis revealed that they are composed principally of Ca, C, and O in stoichiometric
amounts indicative of CaCO3 (Figure 5, Tables 1 and S2–S4). The FTIR spectrum showed
signals located between 1410 and 1255 cm−1, at 1065 cm–1 and between 2800 and 3000 cm−1

(Figure 6). Raman spectra of pearls from different individuals present the main bands at
153, 206, 411, and 1085 cm−1 (Figure 6). Other bands of lesser intensity occurred at 701, 705,
and 1340–1540 cm−1.

Table 1. Elemental composition of the pearl surface of nine Diplodon chilensis individuals obtained by
SEM-EDX analysis.

Element
Pearl

1 2 3 4 5 6 7 8 9

Oxygen 38.2 39.4 40.6 39.9 38.4 39.7 40.0 44.5 42.9
Carbon 36.4 36.5 30.8 33.6 32.3 34.8 30.6 35.0 29.8
Calcium 23.1 24.1 27.4 24.8 27.7 24.3 28.9 19.2 27.4
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Figure 6.  Pearls spectroscopic analysis. (a) FTIR and (b) Raman spectra obtained from different 
pearls of Diplodon chilensis show the same qualitative and quantitative profile with the characteristic 
peaks attributed to aragonite [38,39]. 
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In (a) the green line frames the analyzed area. The red color in (b) shows the energy peaks.
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Figure 6. Pearls spectroscopic analysis. (a) FTIR and (b) Raman spectra obtained from different pearls
of Diplodon chilensis show the same qualitative and quantitative profile with the characteristic peaks
attributed to aragonite [38,39].
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4. Discussion

In this study, the finding of natural pearls in two lacustric populations of the freshwater
clam D. chilensis from southern Chile is reported for the first time, also constituting the first
report made in the genus Diplodon. Diplodon chilensis can produce pearls in a variety of
shapes, sizes, and colors. Pearl production in this species is not a rare phenomenon since
many species of the superfamily Unionoidea Rafinesque, 1820, are potential producers of
pearls [40]. However, in South America, only a few species have been described with this
capability [23,41,42].

In a way, the finding of pearls in D. chilensis is quite surprising since this species has
been relatively well studied in Chile and Argentina regarding its soft body [43–49], but until
now the finding of gems had not been reported. In our lab, dissections of clams quickly
revealed the presence of conspicuous pearls in the mantle tissue of adult individuals of this
species. This could be indicative of differences between D. chilensis populations in pearl
production, and, in fact, our results show that natural pearl formation is more common in
Lake Villarrica than Lake Caburgua. It is unknown if these differences between populations
in both water bodies have a genetic basis. It has been postulated that variations in certain
life history traits between D. chilensis populations from lotic and lentic environments
could be due to genetic differences [49], although a karyological study contradicted this
hypothesis [50]. Consistent with the latter, it has been reported that the populations of
this clam from different basins near the Pacific coast in southern Chile are not genetically
structured [51], and that differences found in the growth rates can be associated with
geographic and limnological parameters [32].

Our results suggest that the shell size does not seem to influence the ability to produce
pearls because several individuals from Lake Villarrica in the 4.0 to 5.0 cm size class
produced pearls, while twice or three times as many individuals from Lake Caburgua
between 5.0 and 7.0 cm did not, except for the 65.6 mm specimen. According to Hohn and
Costa [42], acidic waters prevent the proper formation of pearls in bivalves, but this would
not be the case since the waters of lakes Caburgua and Villarrica have very similar pH [52],
although some variation has been reported in this water body [53]. Rahman et al. [54]
detected seven species of pearl-producing bivalves in waters off the coast of Bangladesh
with a pH of 8.1 to 8.3.

The size of the pearls varies between mollusk species. The largest natural pearl found
in the present study measured 1.9 mm. Pearls with similar sizes have been found in
other bivalve species from South America with relatively similar shell lengths. Triplodon
corrugatus (Lamarck, 1819) produces pearls from 2 to 3 mm, Castalia ambigua Lamarck, 1819,
around 2 mm, and Prisodon obliquus Schumager, 1871, from 2.5 to 4 mm [23]. In Placuna
placenta Linnaeus, 1758, from India, the diameter of pearls varies from 1.5 to 4 mm [54].
The cultured pearls in Mercenaria mercenaria (Linnaeus, 1758) and Pinctada margaritifera
(Linnaeus, 1758) range from 9 to 13 mm, while in Venerupis aff. Decussata (Linnaeus, 1758),
they generally do not exceed 6 mm [55,56]. In the production of cultured pearls, a typical
9-mm round non-beaded pearl takes about 4 years to form [42].

Peaks of the FTIR spectrum located between 1410 and 1255 cm−1 have been associated
with the vibrations of the carbonyl group (C=O) while that at 1065 cm−1 with carbon-oxygen
(C-O) confirming the presence of carbonated compounds (CO3=) in the samples [57,58].
Signals located between 2800 and 3000 cm−1 correspond to carbon–hydrogen (C-H) vibra-
tions that can be attributed to the organic moiety present in the samples [59]. The main peak
of pearls in D. chilensis obtained by Raman at 1085 cm–1 is the main vibration of the CO3=
molecule in carbonates [60], which is also present in pearls of other mollusk species [22].
Bands at 1084–1087 cm−1 have been attributed to aragonite or calcite in different bivalve
species [61–66]. However, distinguishing between the three carbonate polymorphs (arag-
onite, vaterite, and calcite) using only the most intense band v1 (symmetric stretching)
located approximately at 1085 cm−1 is not enough to identify a particular phase [39]. This
led some authors to focus on the v2, v3, and v4 vibrational modes of CO3= depicting
peaks around 850–900, 1430–1600, and 680–750 cm−1, respectively, to characterize some
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of the three phases [39,67]. Thus, the v4 band (a doublet) assigned to the out-of-plane
vibrational modes of CO3= located at 701 and 705 cm−1 and peaks identified in bivalves at
153 and 206 cm−1 have been attributed to aragonite [22,39,63,67–71], all of them detected
and quantified in D. chilensis pearls (Figure 5). No vaterite or calcite could be identified in
this clam.

The causes of the variation in the color of pearls are still a subject of investigation [56,71,72].
Bands obtained near or between 1080, 1135, and 1530 cm−1 using Raman analysis, among other
bands, suggest that the color of the pearls in several species of bivalves might be due to different
chemical compounds, pigments, or optical effects of the sample [56,61,71–75]. However, not
all species that have pearls of different colors exhibit these bands [72,76]. On the other hand,
there are also other factors involved in the color of pearls, including geographics, genetics, type
of mollusk (species), harvest season, water characteristics, depth, quality, and quantity of food
(plankton), and the thickness of the pearl [24,42,75,77–81].

To improve the quality of cultured pearls, current trends show that the production
of pearls has turned from the frequent improvement of traditional cultivation techniques
to producing pearls through selective mollusk breeding [82]. In addition, several studies
have detected genes related to the production of pearls in different species of the group,
so this economic activity seems to have a very encouraging future [82–84]. In this context,
the sequencing of the genomes and transcriptomes of some mollusk species [85–90] will be
important for the identification of genes involved in shell and pearl biomineralization. To
date, in D. chilensis, no progress has been made in this aspect of its biology.

Diplodon chilensis, an efficient filter feeder capable of depleting phytoplankton and
bacteria from the water column [91–93], is one of the most abundant bivalves distributed
in Patagonia [94–96]. However, this clam has been considered a threatened species in
many Chilean water bodies since various localities in the central-southern parts of the
country have experienced a decline in densities and even the disappearance of banks due
to anthropic activities [32,50,96,97]. A drastic reduction in population density has also been
reported in some lacustric towns in the Argentine Patagonia due to water pollution [98].
Despite these situations, the species has been classified as Least Concern (LC) by the IUNC
Red List of Threatened Species as it has a widespread distribution throughout Chile and
Argentina [99].

The culture of D. chilensis has not been implemented in Chile or Argentina. Although
the species is not traded for food or any other purpose in the formal markets of Chile, it is
edible and sold in informal urban and rural markets in the south of the country, considering
the personal observation of the first author and reports by locals [100]. The use of the
species as food is also evidenced by the presence of adult shells deposited in pre-Hispanic
shell mounds in Patagonia [100–102]. The results reported in the present study may be the
first step in boosting pearl production on culture farms in the country.

5. Conclusions

In this article, we provide a description of the main characteristics of the natural pearls
produced by the freshwater clam Diplodon chilensis, considering shape, microstructure, and
chemical composition. This is the first record of pearls produced in the genus Diplodon.
Further studies are needed to investigate whether there are population differences in pearl
production and culture feasibility for the species.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ani13132231/s1. Table S1: Pearls found in Diplodon chilensis
from southern Chile; Table S2: EDX analysis in a pearl of Diplodon chilensis from Lake Villarrica
(individual 8, 1 in Table S1); Table S3: EDX analysis in a pearl of Diplodon chilensis from Lake Villarrica
(individual 12, 2 in Table S1); Table S4: EDX analysis in a pearl of Diplodon chilensis from Lake
Caburgua (individual 21, 9 in Table S1); Figure S1: SEM–EDX of the pearl’s surface (a) of Diplodon
chilensis from Lake Villarrica (individual 4); Figure S2: SEM–EDX of the pearl’s surface (a) of Diplodon
chilensis from Lake Villarrica (individual 12); Figure S3: SEM–EDX of the pearl’s surface (a) of Diplodon
chilensis from Lake Caburgua (individual 21).
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