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Simple Summary: The use of antibiotics in animal feeds has been phased out due to concerns
surrounding microbial resistance to antibiotics. β-glucans have been shown to improve the intestinal
health and growth performance of nursery pigs. β-glucans are non-starch polysaccharides originating
from the cell walls of various sources including yeast, bacteria, fungi, and cereal grains. Depending
on the sources and dose levels of β-glucans, however, their impacts on intestinal health and growth
were not consistent due to the quantitative, compositional, and structural differences of β-glucans.
Cereal grains-based diets provide high amounts of soluble fractions of β-glucans, causing digesta
viscosity in the GIT of pigs and interfering with the nutrient digestion and intestinal health of pigs.
Microbial β-glucans, however, showed positive effects on the intestinal health and growth of nursery
pigs. Microbial β-glucans affect the intestinal immune system through activating dectin-1 and toll-
like receptors related to the intestinal health of nursery pigs. Therefore, this review investigated
the quantitative, compositional, and structural differences of β-glucans and the functional roles of
β-glucans in the intestinal health and growth efficiency of nursery pigs.

Abstract: The objectives of this review are to investigate the quantitative, compositional, and structural
differences of β-glucans and the functional effects of β-glucans on the intestinal health and growth of
nursery pigs. Banning antibiotic feed supplementation increased the research demand for antibiotic
alternatives to maintain the intestinal health and growth of nursery pigs. It has been proposed that
β-glucans improve the growth efficiency of nursery pigs through positive impacts on their intesti-
nal health. However, based on their structure and source, their impacts can be extensively different.
β-glucans are non-starch polysaccharides found in the cell walls of yeast (Saccharomyces cerevisiae),
bacteria, fungi (Basidiomycota), and cereal grains (mainly barley and oats). The total β-glucan content
from cereal grains is much greater than that of microbial β-glucans. Cereal β-glucans may interfere
with the positive effects of microbial β-glucans on the intestinal health of nursery pigs. Due to their
structural differences, cereal β-glucans also cause digesta viscosity, decreasing feed digestion, and
decreasing nutrient absorption in the GIT of nursery pigs. Specifically, cereal β-glucans are based on
linear glucose molecules linked by β-(1,3)- and β-(1,4)-glycosidic bonds with relatively high water-
soluble properties, whereas microbial β-glucans are largely linked with β-(1,3)- and β-(1,6)-glycosidic
bonds possessing insoluble properties. From the meta-analysis, the weight gain and feed intake of
nursery pigs increased by 7.6% and 5.3%, respectively, through the use of yeast β-glucans (from
Saccharomyces cerevisiae), and increased by 11.6% and 6.9%, respectively, through the use of bacterial
β-glucans (from Agrobacterium sp.), whereas the use of cereal β-glucans did not show consistent re-
sponses. The optimal use of yeast β-glucans (Saccharomyces cerevisiae) was 50 mg/kg in nursery pig diets
based on a meta-analysis. Collectively, use of microbial β-glucans can improve the intestinal health
of nursery pigs, enhancing immune conditions, whereas the benefits of cereal β-glucans on intestinal
health were not consistent.
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1. Introduction

Weaning is considered the most critical period for nursery pigs, as piglets are exposed
to a new environment, are separated from their dam, struggle with new pen mates, and
transition from milk to solid feeds, which all negatively affect their overall health, intestinal
immune status, and growth performance [1,2]. Antibiotics have been used in nursery feeds
to mitigate the negative effects of weaning stress and to improve the intestinal health and
growth of nursery pigs. Due to concerns about antibiotic-resistant bacteria, however, the
use of antibiotics in feeds has been phased out in many countries [3]. Thus, there is a
demand for the investigation of feed additives to reduce the usage of antibiotics and to
improve the growth rate of pigs [4]. β-glucans, non-starch polysaccharides (NSP) in cereal
grains and microorganisms, have been proposed as a potential means of improving the
intestinal health and growth of nursery pigs [5,6]. However, cereal and microbial β-glucans
(yeast, bacteria, and other origins) have compositional and structural differences [7].

Cereal β-glucans are based on linear glucose molecules linked by β-(1,3)- and β-(1,4)-
glycosidic bonds with relatively high water-soluble properties, whereas yeast β-glucans
(from Saccharomyces cerevisiae) are largely linked with β-(1,3)- and β-(1,6)-glycosidic bonds
possessing insoluble properties [8,9]. Moreover, the total β-glucan content from microbial
β-glucans (yeast, bacteria, and algae) is lower compared with the levels found in cereal
grain-based diets. Due to these differences, cereal β-glucans can cause increased viscosity
of digesta and negatively impact feed digestion in nursery pigs [10], whereas microbial
β-glucans may not have those effects. Therefore, the objectives of this review are to
investigate the compositional and structural differences between cereal and microbial
β-glucans, to provide an overview of the functional effects of microbial β-glucans on
intestinal health and growth of nursery pigs, and to investigate the potential application of
microbial β-glucans as a feed additive for growth of nursery pigs.

2. Difference of Composition and Structure of β-Glucans Influence Viscosity of
Digesta in GIT of Nursery Pigs

β-glucans are NSP that make up a component of cell walls. β-glucans are derived
from yeast (Saccharomyces cerevisiae), bacteria, fungi, and cereal grains (mainly from barley
and oats) [7]. Those β-glucan sources can cause increased viscosity of digesta in the
gastrointestinal tract (GIT) of pigs. Viscosity of digesta in the GIT of nursery pigs, however,
can be influenced by the structure, amounts, purity, and molecular weight of β-glucans [9].
Therefore, understanding the compositional and structural differences in β-glucan sources
is critical to investigating their effects on the intestinal health and growth of nursery pigs.

Structural and Compositional Difference of β-Glucans

Barley and oats contain generally higher content of β-glucans than other cereal feed-
stuffs [11]. The β-glucan content from barley was 5 to 11%, and 3 to 7% from oats [12]. In
cereal grains, β-glucans are present in endosperm and sub-aleurone cell walls [7], which
require breakdown during the digestion process in pigs.

Cereal β-glucans are based on linear glucose molecules linked with β-(1,3)- and β-(1,4)-
glycosidic bonds with relatively high water-soluble properties in the digesta of animals [7]
(Figure 1). However, the β-(1,3)- to β-(1,4)-glycosidic bonds ratio of barley is greater than
that of oats. In β-glucans, the β-(1,3)-glycosidic bonds are relatively more fermentable than
β-(1,4)-glycosidic bonds in the digesta, and the lower molecular weight of β-glucans also
increases the fermentation in the digesta of pigs [13]. Barley had a greater proportion of
β-(1,3)-glycosidic bonds and a lower molecular weight than oats [14], which may result
in higher water-soluble digesta in pigs fed barley-based diets than that in pigs fed oat-
based diets [15]. A previous study showed that the β-glucans of barley are already 80%
depolymerized in the small intestine of pigs [13]. Moreover, the ileal digestibility of barley
β-glucans ranged from 63 to 72%, and the total tract digestibility ranged from 89 to 93%,
indicating that most of the β-glucans in barley are digested in the small intestine of pigs [16].
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Thus, β-glucans in barley may have greater water solubility in the GIT of pigs compared
with that in oats.

Unlike cereal β-glucans, yeast β-glucans (from Saccharomyces cerevisiae) are largely linked
with β-(1,3)- and β-(1,6)-glycosidic bonds, which contain 53 to 83% of the insoluble fraction [7].
However, structural differences also exist within the microbial β-glucans, which can affect the
viscosity in the digesta of nursery pigs. The β-(1,3)-glycosidic bonds are relatively soluble,
whereas β-(1,6)-glycosidic bonds are less soluble in the digesta of pigs [17]. Laminarin, a
β-glucan derived from algae, is extensively linked with β-(1,3)-glycosidic bonds randomly
attached to β-(1,6)-glycosidic bonds, making it relatively soluble and thus causing viscosity
in the digesta of pigs. However, laminarin from Laminaria hyperborean is interestingly less
fermentable due to fewer β-(1,3)-bonds not causing viscous digesta in pigs [18]. The β-glucans
from yeast (Saccharomyces cerevisiae) mainly consist of branched β-(1,3)-linkage bonds and
generally have greater molecular weight compared with Laminarin [19]. The structure of
the bacterial β-glucan (from Agrobacterium sp.) mainly consists of linear β-(1,3)-glycosidic
bonds. Therefore, considering the structural difference among the microbial β-glucans, yeast
β-glucans (from Saccharomyces cerevisiae) generally have less soluble properties than algal and
bacterial β-glucans in the GIT of nursery pigs.
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Figure 1. Structural and branching degree of β-glucans from different sources: (a) cereal β-glucans
(linked with β-(1,3)- and β-(1,4)-glycosidic bonds); (b) yeast β-glucans (linked with β-(1,3)- and
β-(1,6)-glycosidic bonds); and (c) bacterial β-glucans (linked with β-(1,3)-glycosidic bonds). The
concept used in this figure was adapted from Du et al. [20].

Quantitative contributions of β-glucans in typical feed fed to pigs are mainly from
cereal grains (~30 g/kg feed) [21–23] rather than microbial feed additives (~1 g/kg feed)
(Tables 1–3). Considering the property of β-glucans from microorganisms, the use of
microbial feed additives would not cause viscosity issues in the GIT of pigs. Viscosity refers
to the ability of mixed fluids (digesta) and soluble polysaccharides such as gums, pectin,
and β-glucans to thicken or form gels in the GIT of pigs [24]. In pigs fed diets with highly
soluble NSP, the viscosity of digesta was increased [25,26]. Specifically, in pigs fed barley-
based diets, the viscosity of digesta in the stomach and ileum was greater when compared
with corn-based diets [27]. This is likely due to the high content of soluble NSP in barley [28].
Moreover, barley-based diets also increased the viscosity of digesta in the small intestine
of nursery pigs, which can result in a higher incidence of enterotoxigenic Escherichia coli
(ETEC) infections [29] and reduced feed digestion [30]. Exogenous enzymes can degrade
the NSP fractions to reduce viscosity of digesta of nursery pigs [30,31]. However, the
viscosity of digesta was not decreased by enzyme supplementation of nursery pigs fed
diets containing 50% barley [32]. Additionally, 10% oat-derived β-glucans did not affect
the viscosity of digesta, except in the stomach [33]. The possibility of diverse outcomes is
likely due to the high depolymerization of the β-glucans from various sources in the GIT of
pigs [34]. The depolymerization of cereal β-glucans occurs in the stomach [35], and a high
proportion of β-glucans are hydrolyzed in the small intestine of pigs [16,36]. Therefore,
some β-glucans in cereal grain-based diet such as processed barley could decrease the
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intestinal health of nursery pigs by increasing viscosity, whereas microbial β-glucans may
not cause increased viscosity and decreased feed digestion.

3. Effects of Dietary β-Glucans on Intestinal Microbiota and Intestinal Health of
Nursery Pigs

The intestinal tract is where feed digestion and absorption occur. Intestinal health is
inclusive of seven major criteria: (1) mucosal and luminal microbiota; (2) mucosal inflam-
mation; (3) mucosal oxidative stress; (4) morphological damages and mucosal integrity;
(5) crypt stem cell proliferation and tissue repair; (6) effective digestion and absorption of
nutrients; and (7) overall well-being and growth efficiency [37]. Among the factors that
influence the intestinal health of nursery pigs, feed is highly influential on the intestinal
microbiota, intestinal immune responses, and digestion and absorption of nutrients [34,38].
Both cereal and microbial β-glucans (from yeast and bacteria) have been shown to im-
prove the intestinal health of nursery pigs [6,39]. However, some previous studies have
not detected the positive effects of dietary β-glucans on intestinal health of nursery pigs,
raising questions about the efficacy of β-glucans on the improving intestinal health of pigs.
Therefore, this section is focused on the potential of β-glucans to improve the intestinal
health of nursery pigs.

3.1. Effects of Cereal β-Glucans on Intestinal Health of Nursery Pigs

Supplementation of exogenous β-glucans extracted from cereal grains at 3.5% in-
creased the beneficial microbiota in the ileum, cecum, and colon of pigs [40]. Additionally,
barley-derived β-glucans decreased K88-ETEC adhesion to the enterocytes of nursery
pigs [41], reducing pathogenic infection in the small intestine. In pigs fed exogenous oat
β-glucans, the abundance of Lactobacillus spp. and Bifidobacteria spp. was greater than in
pigs fed exogenous barley β-glucans [40]. Oat β-glucans also increased populations of
Bifidobacteria spp. and Lactobacillus spp. in the stomach and colon of nursery pigs [42]. The
reason for different results from β-glucans from cereal grains may be due to the higher
insoluble fractions of oats than barley [13]. These studies indicate that cereal β-glucans
possess prebiotic effects, modulating the intestinal microbiota and mitigating the negative
effects of pathogenic bacterial infection in the GIT of pigs, but the effects of cereal β-glucans
could vary. Prebiotics are non-digestible soluble NSP and are fermented by gut microbiota,
which potentially enhance the beneficial microbiota in the GIT of pigs [4,43]. However, high
levels of soluble β-glucans from barley, especially in processed barley, can cause increased
viscosity of digesta and negatively affect microbiota in the GIT of pigs [44]. Moreover,
increased viscosity could result in the increased fermentation of pathogenic bacteria related
to the post-weaning diarrhea (PWD) of nursery pigs [29,45]. Both barley and oat β-glucan
extracts may have beneficial effects on the intestinal microbiota of nursery pigs, but high
inclusion rates of high-β-glucan barley in feeds, especially in processed barley, should be
used with caution on account of increased digesta viscosity.

3.2. Effects of Microbial β-Glucans on Intestinal Health and Growth Performance of Nursery Pigs

Microbial (yeast and bacteria) and algal β-glucans decreased the population of pathogenic
bacteria (Enterobacteria) in the ileum and colon of pigs [39], indicating the potential role of
microbial β-glucans in improving the intestinal health of nursery pigs.

Biological indicators used to determine the inflammation status of the intestine of
nursery pigs include decreased levels of pro-inflammatory cytokines (TNF-α, IL-8, IL-
6, IL-1β, and IFN-γ) and increased levels of anti-inflammatory cytokines (IL-4, IL-10,
and IL-13) [4]. After weaning, the mRNA expression of pro-inflammatory cytokines was
increased [46], indicating that weaning stress affects cytokine signaling modulation in
the small intestine of nursery pigs [47]. Supplementation of yeast β-glucans reduced
pro-inflammatory cytokines and increased anti-inflammatory cytokines in the jejunum of
nursery pigs [48]. The potential of microbial β-glucans to improve the immune response
may be attributed to the activation of dectin-1 receptor in the intestine through β-(1,3)-
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glycosidic bonds present in β-glucans [6,49]. The increased dectin-1 receptor stimulation
by microbial β-glucans (yeast and bacteria) increased phagocytosis in the immune cells
and increased cytokines, modulating the immune response through humoral immunity
in pigs [50]. As a result, microbial β-glucans reduce the energy cost of the immune
response through the activation of dectin-1 receptor, decrease inflammation in the GIT, and
improve the growth rate of nursery pigs [51,52]. Therefore, supplementation of microbial
β-glucans could reduce enteric inflammation in the GIT and improve the growth rate of
nursery pigs [34].

The effects of microbial β-glucans include (1) reduced pathogenic microbiota in the GIT;
(2) increased immune responses (pro-inflammatory cytokines); (3) increased mucosa protein
and tight junction protein of enterocytes; and (4) improved morphology of nursery pigs.
The possibility for these effects is mainly due to the prevention of enterocyte inflammation
in nursery pigs, which increases growth performance [6,10,53]. However, the optimal use
of β-glucans may be variable depending on β-glucan sources due to differences in the
purity, molecular weight, conformation, chemical structure, and solubility of β-glucans in
nursery diets [6]. Therefore, this section investigates the effects of microbial β-glucans on
the intestinal health and growth of nursery pigs.

3.2.1. Yeast (Saccharomyces cerevisiae)

The use of yeast β-glucans (from Saccharomyces cerevisiae) has positive effects on the
intestinal health and growth performance of nursery pigs, with an increase in weight gain of
7.6% and an increase in feed intake of 5.3% (Table 1). Yeast β-glucans decreased Enterobacte-
ria spp. in the ileum and proximal colon [39]. Additionally, yeast β-glucans improved the
morphology parameters of nursery pigs such as VH:CD and jejunum goblet cells [54] and
increased the digestibility of nutrients for nursery pigs [55]. The reason for the improvement
in the intestinal health of nursery pigs is likely due to the activation of the dectin-1 receptor in
the small intestine. However, yeast β-glucans (from Saccharomyces cerevisiae) did not linearly
improve the growth performance of nursery pigs with increasing β-glucan levels [10,53]. The
reason for the growth of pigs showing quadratic changes through yeast β-glucans (from
Saccharomyces cerevisiae) could be due to high immune stimulation increasing energy use for
body maintenance [52,56,57]. During the period of high immune stimulation, proinflam-
matory cytokines such as TNF-α, IL-6, and IL-1 are released to activate macrophages for
defense against infection in pigs [10,58,59]. The supplementation of yeast β-glucans (from
Saccharomyces cerevisiae) showed quadratic responses in the growth performance, IL-1, and
TNF-α in broiler chickens [57]. In the case of an in vitro study using macrophages from
mice, zymosan (a form of yeast β-glucan) increased TNF-α secretion [60]. The optimal use of
yeast β-glucans (from Saccharomyces cerevisiae) could be considered to improve the immune
responses of nursery pigs related to growth performance. In this review, the optimal use
of yeast β-glucans (from Saccharomyces cerevisiae) was determined as 50 mg/kg of nursery
diets (Figure 2). In summary, yeast β-glucans (from Saccharomyces cerevisiae) have the po-
tential to increase the intestinal health and growth performance of nursery pigs, showing
decreased pathogenic bacteria in the GIT, improved morphology parameters, and increased
nutrient digestibility.
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yeast (Saccharomyces cerevisiae) β-glucans (0 to 1000 mg/kg) using a linear broken line analysis. The
meta-analysis is conducted by Proc NLMIXED to determine the breakpoint on the regression of body-
weight gain in nursery pigs based on the data from six published studies (ten experiments with a
non-challenged period). The breakpoint (a one-slope broken line analysis) was 50 mg/kg (standard
error = 0.561; p < 0.05) of β-glucan content in nursery pig diets. The equation for body weight gain
in nursery pigs was ADG, g/d = 404.1 − 0.235 × z1 (β-glucan content, mg/kg), R2 = 0.87 if β-glucan
content is≥breakpoint, then z1 = 0. Due to the lack of published data for other microbial β-glucans, a
meta-analysis was not conducted [10,55,58,61,62].

A meta-analysis was conducted to determine the optimal use of yeast β-glucans (from
Saccharomyces cerevisiae) in feeds based on the growth performance data of nursery pigs. A total
of 29 datasets with body weight (BW), average daily gain (ADG), average daily feed intake
(ADFI), and gain to feed ratio (G:F) from six published research papers with ten experiments
were used. For the literature search in PubMed, Web of Science, and Google Scholar, the
used keywords were β-glucans, growth performance, intestinal health, and nursery pigs.
The found papers were manually screened based on the title and experimental procedures.
During this screening process, data from growing pigs or sows were excluded. Additionally,
papers which did not contain information about specific levels of β-glucans in the test product
were not included in the meta-analysis. For the meta-analysis, the inclusion rate of yeast
β-glucans (from Saccharomyces cerevisiae) with respect to the growth response was evaluated
with a one-slope broken line analysis using the Proc NLMIXED procedure in SAS (SAS Inst.
Inc., Cary, NC, USA) [63]. Using a one-slope broken line analysis, the optimal use of yeast
β-glucans in feeds for the ADG of nursery pigs was obtained. Statistical significance and
tendency were declared at p < 0.05 and 0.05 ≤ p < 0.10, respectively. The optimal use of yeast
(Saccharomyces cerevisiae) β-glucans in nursery pig diets was 50 mg/kg (Figure 2). For other
microbial β-glucans, a meta-analysis of their optimal use was not conducted due to the limited
amount of data.

Table 1. Effects of the use of yeast β-glucans (from Saccharomyces cerevisiae) on the intestinal health
and growth performance of nursery pigs 1,2.

Item Initial BW
(kg) or Age (d)

Experimental
Period (d)

β-Glucan
Compound

(mg/kg)

β-Glucan
(mg/kg) Results Reference

Intestinal
health

8.0 kg 28 500 141

Increased jejunal goblet cells, tended to decrease diarrhea
during d 0 to 14, tended to increase VH:CD, and tended

to increase apparent ileal and total tract digestibility
of energy

[54]

6.4 kg 35 - 100, 200, 300,
and 400

Linearly increased apparent total tract digestibility
of nutrients [55]

5.8 kg 21 - 50, 100, and
150 Increased villus height and VH:CD on the jejunum [61]

15.3 kg 28 - 250 Decreased Enterobacteria spp. In ileum and
proximal colon [39]

Item Initial BW
(kg) or age (d)

Experimental
period (d)

β-glucan
compound

(mg/kg)

β-glucan
(mg/kg)

ADG (%
change)

ADFI (%
change) G:F (% change) Reference

4.9 kg 28 - 250 19.9 ** 23.2 ** −1.1

[58]500 7.7 11.6 −1.1
5.0 kg 28 - 1000 −1.9 −7.1 ** 2.6

1000 0 −1.5 ** 0

Growth
performance

28 d 28 - 150 10.6 7.4 0 [62]300 15.8 15.4 * 0

8.7 3 kg 28 - 25 11.4 7.5 3.1

[10]
50 14.8 11.6 2.7

100 −3 −4.6 0.6
200 −4.8 −3.7 −1.3

8.2 kg 28 - 50 12.7 ** 11.5 ** 1.3
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Table 1. Cont.

Item Initial BW
(kg) or age (d)

Experimental
period (d)

β-glucan
compound

(mg/kg)

β-glucan
(mg/kg)

ADG (%
change)

ADFI (%
change) G:F (% change) Reference

6.4 4 kg 35 - 100 4.7 3.2 1.6

[55]

Growth
performance

200 10.5 9 0
300 11 6.8 3.2
400 10.7 5.4 4.8

6.2 kg 35 - 200 5.9 1.8 4.2

5.8 kg 21 - 50 8.4 ** 2.4 5.9
[61]100 12.9 ** 6.0 ** 6.6

150 12.3 ** 8.8 3.2

8.0 kg 28 500 141 6.7 * 2.8 3.8 [54]

6.0 kg 35 2000 NA 7.4 ** 6.5 ** 0.9 [64]

6.0 kg 48 2000 NA −5.5 −6.9 1.6 [65]

Average % change: 7.6 5.3 1.9

BW, body weight; NA, not available; VH:CD, villus height to crypt depth ratio. 1 Asterisk marks (*, **) represent
statistical tendency (p < 0.10) and significant difference (p < 0.05), respectively. 2 The percentage increase or
decrease in the average daily gain (ADG), average daily feed intake (ADFI), and gain-to-feed ratio (G:F) was
determined in beta-glucan supplementation groups relative to the control group. 3 β-glucan supplementation
contents quadratically increased (p < 0.05) the ADG of nursery pigs. 4 β-glucan supplementation contents linearly
tended to increase (p < 0.10) the ADG of nursery pigs.

3.2.2. Bacteria (Agrobacterium sp.)

The supplementation of bacterial β-glucans (from Agrobacterium sp.) showed positive
effects on the intestinal health and growth performance of nursery pigs, resulting in an 11.6% in-
crease in weight gain and a 6.9% increase in the feed intake of nursery pigs (Table 2). Specifically,
the supplementation of 50 mg/kg bacterial β-glucans (from Agrobacterium sp. ZX09) in feeds
increased villus height, decreased crypt depth, and increased VH:CD after lipopolysaccharide
(LPS) challenge [6]. Moreover, the 50 mg/kg of bacterial β-glucans (from Agrobacterium sp.
ZX09) decreased the intestinal permeability of the small intestine of nursery pigs [61]. The
intestinal permeability function can be determined by tight junction proteins such as occludin,
claudin, and MUC1 and 2. High tight junction protein complexes between intestinal cells
inhibit the paracellular flow, thus enhancing pathogen prevention [4]. Additionally, the highly
viscous mucus in the intestine, consisting of cross-linked mucins, antimicrobial factors, and
trefoil peptides, acts as an additional physical and chemical intestinal barrier and prevents
microorganisms from making contact with the intestinal epithelium [48]. The reason for the
decrease in intestinal permeability is likely the activation of dectin-1 receptor. The increase
in dectin-1 receptor in the intestine can increase phagocytosis in immune cells and cytokine
production, which can improve the intestinal health of nursery pigs. Lastly, bacterial β-glucans
(from Agrobacterium sp.) linearly increased IL-10 and linearly decreased TNF-α in the jejunum
mucosa of nursery pigs. As prebiotics effects of β-glucans in the intestinal microbiota of pigs,
supplementation with 200 mg/kg of bacterial β-glucans (from Agrobacterium sp.) increased
the relative abundance of Fournierella, Parabacteria, and Alistipes in the ileum, providing growth
substrates with alpha-glucosidase activity, and increased Oscillospira, a butyrate-producing
bacteria [66]. Additionally, supplementation with 300 mg/kg of bacterial β-glucans (from
Agrobacterium sp.) showed interaction with morphological parameters (villus height), the ex-
pression genes related to intestinal integrity (Z0-1, Occludin-1, and MUC2), and the growth
performance of nursery pigs challenged with ETEC [67], indicating that bacterial β-glucans can
be highly effective under challenged conditions in mitigating pathogenic bacteria infection [48].
In terms of the growth of nursery pigs, bacterial β-glucans (from Agrobacterium sp.) also showed
a quadratic response (as was shown in the yeast β-glucans (from Saccharomyces cerevisiae)) [6],
which indicates that bacterial β-glucans also require optimal usage in order to improve intestinal
health and growth. However, due to the lack of published data, the optimal use of bacterial
β-glucans cannot be determined. In summary, bacterial β-glucans can decrease intestinal per-
meability, which can prevent pathogenic bacteria infections and improve the intestinal health
and growth performance of nursery pigs.
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Table 2. Effects of the use of bacterial β-glucans (from Agrobacterium sp. and Paenibacillus polymyxa)
on the intestinal health and growth performance of nursery pigs 1,2.

Item Initial BW
(kg) or Age (d)

Experimental
Period (d)

β-Glucan
Compound

(mg/kg)

β-Glucan
(mg/kg) Results Reference

Intestinal health
Bacteria

(Agrobacterium sp.)
21 d 28 - 50

Increased villus height, decreased crypt depth,
and increased VH:CD after LPS challenge;
increased mRNA abundance representing

intestinal permeability (Z0-1, occludin, claudin,
and MUC1 and 2), and decreased

malondialdehyde in the jejunal mucosa after LPS
challenge

[48]

7.0 kg 28 - 50, 100, and
200

Linearly increased IL-10 and linearly decreased
TNF-α level of jejunal mucosa [6]

100 Increased MUC1 and 2 to β-actin mRNA ratio [6]

6.1 kg 21 - 200
Increased VH:CD in jejunum and increased

mRNA abundance of an intestinal permeability
parameter (occludin)

[66]

6.1 kg 21 500 300

Increased VH:CD in jejunum, increased mRNA
abundance of intestinal permeability parameter in

jejunum (Z0-1, claudin-1, and MUC2), and
increased Lactobacillus spp. and propionic acid in

cecum digesta after ETEC challenge

[67]

Decreased malondialdehyde, TNF-α, and IL-6 in
jejunum after ETEC challenge [68]

Item Initial BW
(kg) or age (d)

Experimental
period (d)

β-glucan
compound

(mg/kg)

β-glucan
(mg/kg)

ADG (%
change)

ADFI (%
change)

G:F (%
change) Reference

Growth
performance 21 d 21 - 50 21.6 ** 11.0 ** 9.2 [48]

Bacteria
(Agrobacterium sp.) 50 14.1 8.2 6.6

7.0 3 kg 28 - 25 2.5 2.8 −0.6 [6]

50 10.4 8.0 2.4 [6]

100 15.7 10.2 4.9

200 −0.9 1.0 −2.3

6.1 kg 21 - 200 17.6 6.9 4.3 [66]

Average % change 11.6 6.9 3.5

Bacteria
(Paenibacillus

polymyxa)
5.6 kg 28 400 5.8 * −0.8 6.6 [69]

BW, body weight; NA, not available; MUC, mucin; LPS, lipopolysaccharide; VH:CD, villus height to crypt depth
ratio; IL-10, interleukin-10; TNF-α, tumor necrosis factor-α; Z0-1, zonula occludens-1. 1 Asterisk marks (*, **)
represent statistical tendency (p < 0.10) and significant difference (p < 0.05), respectively. 2 The percentage increase
or decrease in the average daily gain (ADG), average daily feed intake (ADFI), and gain to feed ratio (G:F) is
determined in beta-glucan supplementation groups relative to the control group. 3 β-glucan supplementation
contents linearly (p < 0.05) and quadratically (p < 0.05) increased the ADG of nursery pigs.

3.2.3. Algae (Euglena gracilis, Laminaria digitata, and Laminaria hyperborea)

The use of algal β-glucans has been shown to improve the intestinal health of nursery
pigs by decreasing intestinal permeability in jejunal mucosa and decreasing pathogenic
bacteria such as Enterobacteria spp. (Table 3), but it did not improve growth performance [54].
Specifically, 54 mg/kg of algal β-glucans increased mRNA abundance, representing a decrease
in intestinal permeability (claudin, occludin, and MUC2) in the jejunal mucosa of nursery
pigs [49]. Additionally, 108 mg/kg of algal β-glucans increased the mRNA abundance of
dectin-1 receptors in the jejunal mucosa, and 141 mg/kg of β-glucans also increased the
relative gene expression of tight junction proteins (claudin, occludin, and MUC1) in the
jejunum of nursery pigs. Lastly, microbiota data showed that 250 mg/kg of 2 algal β-glucans
(from Laminaria digitata and Laminaria hyperborea) decreased Enterobacteria spp. In the ileum
and proximal colon of nursery pigs. Several studies showed improvements in the growth
performance and intestinal health in pigs fed seaweed extract-supplemented diets (from
Laminaria spp.) [70–72]. However, information on the algal β-glucans content in the seaweed
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extract was not available. Further research is needed to investigate the effects of algal β-
glucans on the growth performance of nursery pigs.

Table 3. Effects of the use of algal β-glucans (from Euglena gracilis, Laminaria digitata, and Laminaria
hyperborea) on the intestinal health of nursery pigs.

Item Initial BW (kg) or Age
(d)

Experimental Period
(d) β-Glucan (mg/kg) Results Reference

Algae (Euglena gracilis) 7.7 kg 17 54

Increased mRNA
abundance representing
intestinal permeability
(claudin, occludin, and

MUC2) in jejunal
mucosa on d 12

[65]

108

Increased mRNA
abundance representing
intestinal permeability

(dectin) in jejunal
mucosa on d 5 and 12.

Decreased transcellular
permeability.

Algae (Laminaria
digitata) 15.3 kg 28 250

Decreased Enterobacteria
spp. in ileum and
proximal colon;

increased acetic acid
and decreased

propionic acid in ileum [39]

Algae (Laminaria
hyperborea) 15.3 kg 28 250

Decreased Enterobacteria
spp. in ileum and
proximal colon;

decreased total volatile
fatty acid in the ileum

MUC, mucin; mRNA, messenger ribonucleic acid.

4. Conclusions

Due to their quantitative, compositional, and structural differences, cereal β-glucans
have relatively high water-soluble properties, whereas microbial β-glucans (yeast and
bacteria) have water-insoluble properties in the digesta of nursery pigs. The high water-
soluble properties of cereal β-glucans, if fed in ample amounts, are shown to cause digesta
viscosity, negatively affecting the intestinal health and nutrient utilization in nursery pigs.
In contrast, the use of microbial β-glucans showed positive effects on the intestinal health
of nursery pigs at an optimal level through mainly activating the dectin-1 receptor and
prebiotic effects without causing digesta viscosity. From this review, it is evident that the
use of microbial β-glucans can improve intestinal health and nutrient utilization, which, in
turn, can improve the growth efficiency of nursery pigs.
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