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Simple Summary: Swine nursery mortality is highly impacted by the pre-weaning performance of
the piglets. Even though the importance of the pre-weaning phase on the downstream post-weaning
performance is acknowledged, predictive modeling has yet to be described in the swine industry to
predict the downstream nursery performance of groups of pigs based on their previous pre-weaning
phase. One obstacle to building such predictive models is that pieces of information concerning the
factors impacting swine mortality are collected with separate record-keeping programs and stored in
unconnected databases, creating multiple unutilized data stream clusters. Thus, in this study, we
described the process of building a data-wrangling pipeline that automatically integrates diverse and
dispersed data streams collected from one swine production company, creating then a master table
that was utilized to predict the mortality of groups of pigs during the nursery phase.

Abstract: The performance of five forecasting models was investigated for predicting nursery mor-
tality using the master table built for 3242 groups of pigs (~13 million animals) and 42 variables,
which concerned the pre-weaning phase of production and conditions at placement in growing
sites. After training and testing each model’s performance through cross-validation, the model with
the best overall prediction results was the Support Vector Machine model in terms of Root Mean
Squared Error (RMSE = 0.406), Mean Absolute Error (MAE = 0.284), and Coefficient of Determination
(R2 = 0.731). Subsequently, the forecasting performance of the SVM model was tested on a new dataset
containing 72 new groups, simulating ongoing and near real-time forecasting analysis. Despite a
decrease in R2 values on the new dataset (R2 = 0.554), the model demonstrated high accuracy (77.78%)
for predicting groups with high (>5%) or low (<5%) nursery mortality. This study demonstrated the
capability of forecasting models to predict the nursery mortality of commercial groups of pigs using
pre-weaning information and stocking condition variables collected post-placement in nursery sites.

Keywords: swine; mortality; data-wrangling; forecasting; machine-learning

1. Introduction

The abundance of diverse and large-scale data streams often challenges the imple-
mentation of precision animal agriculture in livestock, which requires a multifaceted
data-wrangling approach to investigate this complex livestock “big data” [1]. Using data
management techniques and machine-learning models on these data can overcome its
complexity for analytical purposes, such as forecasting. Although forecasting analysis in
the livestock realm is acknowledged [2,3], this application has not yet been reported in
the swine industry for mortality rate. Swine post-weaning mortality is a key performance
indicator (KPI) utilized to measure the sustainability of swine production systems [4,5],
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divided into nursery and finisher mortality. Swine nursery mortality refers to the mortality
of pigs in the first 5–8 weeks of the overall post-weaning phase (approximately 5.5 months),
accounting for a large portion of the overall post-weaning mortality [6].

Information concerning the risk factors for swine mortality is routinely collected,
such as health, environment, productivity, and infrastructure. However, integrating and
merging these data streams is necessary for its collective utilization for targeting prediction
or risk factor analyses. The development of means for data integration and analysis under
field conditions allows the implementation of such data analysis approaches, as reported
in previous studies [7–10]. Therefore, the objective of this study was to develop a data-
wrangling pipeline within one swine production system to integrate and manage multiple
data streams, enabling automated and near real-time data consolidation. Furthermore, the
performance of multiple forecasting models was assessed on historical data, and the best
model was tested on new data to predict the nursery mortality of prospective closeouts.

2. Materials and Methods
2.1. Overview and Study Design

This study utilized field data from a large U.S. swine production system in the Mid-
western region. A total of six different and disconnected data streams related to 3242 groups
of marketed pigs (over 13 million animals) slaughtered over three years, here referred to as
closeouts, were collected for the analyses. The retrospective performance of both the pre-
and post-weaning phases of production were imported and integrated into the respective
closeouts’ information, constructing a dataset (also known as the master table) contain-
ing breeding-to-market historical information for each closeout. The pre-weaning phase
variables and stocking conditions data in this master table were utilized as predictors to
forecast the downstream post-weaning mortality of each closeout on their initial 60 days in
the post-weaning phase (nursery mortality), as demonstrated in Figure 1.

Closeouts were defined as the groups of pigs originating from the company’s breeding
herds. The pigs remained in the breeding herd until weaning at approximately 21 days
of age. Following weaning, pigs were placed on feed at growing sites where the groups
remained for around 5.5 months. The groups were managed all-in-all-out, meaning another
group of pigs could only start once all the pigs from the previous groups had been marketed.
The mortality of each closeout during the nursery phase was defined as the outcome
variable of analysis in this study and was calculated as the following: (number of pigs at
placement − number of pigs 60 days post placement) ÷ number of pigs at placement.

Closeouts originating from a single sow farm would have information concerning the
performance of that breeding herd on the designated week. The productivity parameters
assigned to the downstream weaned group represent the retrospective performance of that
batch of pigs from farrow-to-wean, while the pre-farrow information (e.g., abortion rate)
represents the reproductive performance on that farm on the week of the weaning event.

When a group of pigs originated from multiple sow farms (e.g., 2000 pigs placed in
a growing site may have received 1000 pigs from two different sow farms), the variables
concerning the pre-weaning phase for that specific group would be calculated by using a
weighted average for the continuous independent variables, and the mixed classification
was used for the whole group for disease classification statuses.

SAS® Version 9.4 (SAS Institute, Inc., Cary, NC, USA) was utilized to build data-
wrangling pipeline algorithms, thus automating the processes of importing, managing,
cleaning, and integrating the data streams. The integration of the six data streams resulted in
a final master table for the 3242 closeouts that were utilized for comparing the performance
of five different regression and machine-learning models for forecasting swine nursery
mortality. After this step, the model with the best forecasting performance was utilized on
a new dataset to validate the forecasting capability on prospective data, simulating ongoing
near real-time forecasting.
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Figure 1. Flow chart explaining the process of integrating different data streams into a single master
table to be used on the forecasting analyses. A data-wrangling pipeline was built to integrate
information concerning the performance of groups of weaned pigs transferred to growing sites and
their conditions at placement into a single master table. This table was utilized to train forecasting
models on predicting the mortality of the weaned groups throughout the initial 60 days in the post-
weaning phase. The model with the best performance was then applied to forecast the mortality of
prospective new groups of weaned pigs.

2.2. Data-Wrangling Pipeline

The six different data streams available for the development of the master table were:
(1) pre-weaning phase (i.e., breeding herd) productivity and health data; (2) post-weaning
phase (i.e., growing phase) productivity data; (3) closeouts’ health status reports; (4) pig
transportation records; (5) stocking conditions reports; and (6) management procedure
records. The SAS algorithms developed in this study used a similar methodology to that
described by Magalhaes et al. (2022) [10], where the processes of matching and merging
different data streams were conducted based on an identifier (time and location of events)
and through the development of PROC Statements algorithms (PROC MERGE, PROC SET,
PROC SQL, PROC SORT, PROC UNIVARIATE, and PROC FREQ). The swine production
system provided access to the aforementioned data, where a data workflow was developed
using Microsoft Power Automate (Microsoft Corporation, Redmond, WA, USA) and SAS
to automate the data-wrangling processes in this study. Once the master table was built,
the dataset contained information for 3242 closeouts of pigs, originating from 42 breeding
herd sources and weaned into 529 different growing sites. The information from each of
the six data streams was matched and merged to each respective closeout of pigs marketed
in this study period (i.e., each closeout’s historical data from breeding-to-market).

2.3. Comparing Forecasting Models Based on Training Data

The initial step after completing the master table was to select the breeding herd
variables from the pre-weaning phase of production and parameters that represent the
stocking conditions of the weaned groups into growing sites (i.e., characteristics at place-
ment). Among all variables in the master table, 42 parameters were utilized as predictors
in the forecasting analyses (Table 1). The nursery mortality was log-transformed after veri-
fying that its distribution was not normal, thus, utilizing the log-mortality as the response
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variable. The classes of each categorical variable included in the model are described in
Table 2.

Table 1. Variables selected from the master table for the forecasting analyses.

Data Streams Variable Type ‡ Variables

(1) Breeding Herd Productivity and Health *

Rate

Service repeat rate; Abortion rate; Services per
inventory; Proportion of gilts bred; Last week

weaned sows bred rate; Proportion of sows pregnant
at 105 days; Farrowing rate; Stillborn rate; Mummies

rate; Pre-weaning mortality; Pre-natal losses; Sow
death rate; Sow culls rate

Count Number of services; Number of farrows;
Sows inventory

Average

Wean-to-service interval; Total born; Born alive;
Parity at the farrow; Gestation length; Interval

between farrows; Pigs weaned/sow; Piglet wean
age; Non-productive days; Productive sow days;

Litter/female/year; Mated inventory;
Pigs/weaned/female/year

(2) Growing Phase Productivity † Rate Nursery mortality (mortality on the initial 60 days
post placement in a growing site)

(3) Closeouts Health Status * Category

Group status for porcine reproductive and
respiratory syndrome (PRRS) at placement; Group

status for Mycoplasma hyopneumoniae (MhP)
at placement

(4) Pig Transportation *
Time Weaning movement year; Weaning movement week

Count Number of animals transported

(5) Stocking Conditions *
Category Type of flow; Type of ventilation;

Count Number of origins; Time to fill the site; Breeding
herd origins

(6) Management Procedure * Category
Type of PRRS vaccine; Type of piglet medication at

weaning; Breeding herd type of mass
medication protocol

(1)–(6) Data streams utilized; † Outcome variable; * Predictor Variables. ‡ Type of variables. Variable type classified
as “Average” refers to the average number of count events occurring for the batch of groups weaned. For example,
“Total Born” variable represents the average number of total piglets born per farrow over a total number of
farrowing events in a week. More details about the classes of the categorical variables are described in Table 2.

The 42 variables included in the forecasting analysis were selected based on their
potential as factors related to the quality of weaned pigs (i.e., health status and productivity
performance) and the overall conditions at placement in growing sites (i.e., infrastructural
and management factors). Also, only variables that were provided in the master table at
the moment when weaned pigs were placed into growing sites were included in the model.

To forecast the log-mortality, five models were investigated: multiple linear regression
model (MLR), LASSO regression, support vector machine (SVM), neural network (NNet),
and random forest (RF). The evaluation criteria for each forecasting model included Root
Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Coefficient of Determination
(R2). Using the R package ‘caret’ [11], and specifically the ‘train’ function, the optimal
parameters of LASSO regression, SVM, and NNet were selected based on the smallest
RMSE by doing three repetitions of 5-fold cross-validation, and the optimal parameters of
RF were selected based on the smallest out-of-bag (OOB) error.

In order to evaluate the prediction performance of each forecasting model, a leave-
one-out cross-validation was performed, where, for each record, the training set was the
dataset excluding that record. The trained model was then used to predict the log-mortality
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of the excluded record. The best model was selected based on higher R2 and lowest RMSE
and MAE values.

Table 2. Description of the categorical variables included in the forecasting model.

Data Type Variable † A * B * C * D * E * F *

Breeding herd health
PRRS status Epidemic Endemic Mixed Negative - -

MhP status Epidemic Endemic Mixed Negative - -

Stocking conditions *
Type of flow 3 DS-M DS-S Y S - -

Type of ventilation Tunnel Barn Curtain Barn - - - -

Management
procedure *

PRRS vaccine Vaccine A Vaccine B - - - -

Piglet medication 1 Enrofloxacin Tulathromycin Ceftiofur Florfenicol Mixed None

Sow medication 2 CTC 4 Lincomycin Tilmicosin Mixed None -

* Categories of each variable; 1 Type of medication treatment in piglets; 2 Type of medication treatment in sows;
3 DS-M: Double stock moved; DS-R: Double stock remained; Y: Nursery-to-finisher flows; S: Single stock flows;
4 CTC: Chlortetracycline; † Categorical variables from Table 1.

2.4. Performance of the Selected Model on Independent Validation Data

After comparing the performance of the different forecasting models on the retrospec-
tive dataset of 3242 groups, which refers to groups stocked into nursery sites between
week 29 of 2019 through week 5 of 2022 (i.e., marketed between January 2020 to August
2022), a new dataset containing 72 new closeouts weaned into nursery sites between weeks
6 and 12 of 2022 (i.e., marketed between August and September of 2022) was obtained
through the data-wrangling pipeline. The forecasting model was then utilized on this
naïve data to predict the nursery mortality of the groups, and the forecasting performance
of the selected model was measured using the same metric of the same step (R2, RMSE,
and MAE). Also, the predicted vs. actual nursery mortality values were classified into
relatively “high nursery mortality” (>5%) or “low nursery mortality” (<5%) groups, as the
company providing the data used the same classification as their target mortality values.
The performance of the SVM model on accurately predicting closeouts with high or low
nursery mortality was assessed in terms of accuracy (Ac), sensitivity (Se), Specificity (Sp),
positive predicted value (PPV), and negative predicted value (NPV), calculated based on
the difference between the predicted vs. actual mortality of the 72 groups.

3. Results
3.1. Data-Wrangling Pipeline

When assessing data completeness for the 3242 groups, a total of 93 closeouts (2.87%)
were excluded due to a lack of information for all the characteristics included in the master
table, resulting in a final dataset composed of 3149 closeouts and 42 explanatory variables
to be used in the forecasting analyses.

3.2. Comparing Forecasting Models

The overall performance for all forecasting models is reported in Table 2. Notably,
the machine learning models performed better than the regression models, where the RF
and SVM models demonstrated the best overall prediction performance, similar to other
livestock-related studies comparing the performance of multiple forecasting models [3,12,13].
Furthermore, the SVM outperformed the other models (Table 3) measured in terms of
R2 (0.731) and lower errors measured by RMSE (0.406) and MAE (0.284).
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Table 3. Performance of the forecasting models on predicting swine nursery mortality.

Model 1 Parameters 2

R2 RMSE MAE

MLR 0.385 0.614 0.475
LASSO 0.392 0.611 0.471

RF 0.725 0.421 0.313
SVM 0.731 0.406 0.284
NNet 0.533 0.566 0.393

1 MLR: Multiple Linear Regression; LASSO: LASSO regression; RF: Random Forest; SVM: Support Vector Machine;
NNet: Neural Network. 2 RMSE: Root Mean Square Error; MAE: Mean Absolute Error; R2: r-square.

Thereafter, the predicted values for each closeout using the SVM model were averaged
by week for the data collected in this study (Figure 2), where it was observed that the SVM
predicted values were underestimated compared to the actual nursery mortality values
of the closeouts. Despite this, both the average weekly predicted and actual mortalities
followed similar seasonal trends over time, which can be explained by the seasonal activity
of major diseases impacting the swine industry [14,15].
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Figure 2. Average predicted nursery mortality versus actual mortality over season-year for Support
Vector Machine (SVM) forecasting model using the results of the cross-validation step (3149 closeouts).
Season-Year corresponds to the time during the study period when the pigs were weaned.

3.3. Performance of the Selected Model

Identified as the superior model, SVM was prospectively applied to new data consist-
ing of 72 closeouts (Figure 3), representing one month of closeouts, to predict the nursery
mortality of the new groups. The overall forecasting performance of the SVM model
was lower than the training database’s performance on the cross-validation procedure
(R2 = 0.554 and 0.731, respectively). However, even though the prediction of mortality in
new groups was already simulated in the training database during the cross-validation
procedure, the prediction performance was inferior when applying the same model to a
smaller sample of a prospective dataset. It is important to note that the training step was
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conducted in a much larger dataset, while the testing of the SVM model was conducted in
a smaller dataset.
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Figure 3. Correlation plot between the observed and predicted nursery mortality using the SVM
model on 72 new closeouts. True Negative (TN): Predicted as Low mortality (<5%) and actual was
Low (<5%); False Negative (FN): Predicted as Low mortality (<5%) and actual was High (>5%); True
Positive (TP): Predicted as High mortality (>5%) and actual was High (>5%); False Positive (FP):
Predicted as High mortality (>5%) and actual was Low (<5%).

Despite the SVM’s decreased performance on naïve data when categorizing both
predicted and actual nursery mortality of the 72 closeouts into high (>5%) or low (<5%)
nursery mortality, a high accuracy value (77.78%) was observed for the SVM on correctly
predicting the closeouts as high or low nursery mortality. Also, we observed that most of
the groups are located in the positive diagonal axis of the chart, which is the desired area in
terms of prediction (Figure 3).

The values for sensitivity (62.16%), specificity (94.29%), positive predicted value
(92.00%), and negative predicted value (70.21%) also demonstrated an acceptable prediction
performance, especially for precisely predicting groups with “high nursery mortality” rates
(i.e., at high risk). Overall, the SVM model accurately predicted 62.16% of the closeouts with
relatively “high nursery mortality” and 94.29% with relatively low mortality. In other words,
even though the SVM model did not predict all groups that had “high nursery mortality” as
high (false negatives), the model had a high positive predicted value, indicating that 92.00%
of the closeouts predicted as “high nursery mortality” were observed as actually high.

For the categorical variables (n = 7) included in the forecasting model, when comparing
the frequency distribution between the number of closeouts with high and low mortality
groups compared to their respective predicted values (Figure 4), the forecasting model
overestimated the number of groups with low predicted mortality (i.e., right-side trans-
parent bars are longer than the right-side solid bars). On the other hand, the forecasting
model underestimated the actual number of closeouts with “high nursery mortality” for
all classes of the categorical variables illustrated (i.e., left-side transparent bars are shorter
than the left-side solid bars).
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Figure 4. Frequency distribution of the categorical variables included in the forecasting model. Left
and right solid bars refers to the number of closeouts with actual high or low nursery mortality (>5%),
respectively. Left and right transparent bars refer to the number of closeouts predicted as high or low
nursery mortality (<5%), respectively.

Notably, for specific classes within the categorical variables (e.g., “Pig med.—Tulathromycin”
or “PRRS Status—Epidemic”), the proportion of groups predicted as “high nursery mortal-
ity” were higher than the number of groups predicted as “low nursery mortality”. This
hypothesis is supported by the common knowledge that PRRS infections in breeding herds
generate downstream PRRS-epidemic weaned pigs [10,16–20], which are expected to be
more challenged throughout the post-weaning phase. Also, the use of tulathromycin to
treat piglets in breeding herds indicates that health-challenged pigs were weaned, as this
is a frequently prescribed antibiotic in swine due to its ability to modulate the immune
system, as well as an effective treatment against key respiratory diseases [21].

On the other hand, for some factors such as “MhP—Negative” or “Pig med.—None”,
the largest proportion of the groups of pigs were predicted as low nursery mortality
groups, which can be explained by the fact that M. hyopneumoniae infection in weaned pigs
can increase growing pig mortality [22], thus, negative pigs are expected to have higher
survivability. Also, the presence of groups of weaned pigs that were not treated with
medication during the lactation can indicate groups with higher quality that did not need
this procedure.

Altogether, the results demonstrated in Figure 4 indicate the influence of specific
factors on the overall prediction. However, this study was not designed to investigate the
influence of these specific factors on nursery mortality, as this type of approach requires a
causal inference analysis [23,24], which was not the scope of this study.

4. Discussion

The algorithms developed in this study for the data-wrangling pipeline allowed the
integration of information previously stored independently and underutilized for analysis
purposes, combining the dispersed predictors in multiple data streams into a single master
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table. This approach of combining multiple data streams to investigate post-weaning
performance was previously described in other studies [7,8,25–27].

Multiple machine learning and regression algorithms were applied to the master table
to compare their forecasting performance in predicting swine nursery mortality. Also, other
studies in the livestock realm demonstrated the application of similar models for predicting
important KPIs of productivity [2,3,28–33].

Assuming that the swine production system maintains the format of the data streams
utilized to build the master table over time, the algorithms can be utilized to integrate
and prepare new incoming information for prospective analyses, including forecasting
and causal inference, as it is seen that incompatibility of data streams is one of the major
challenges in data integration [34].

The results of both the data-wrangling pipeline procedure and the forecasting models’
comparison allowed the training of the best model on retrospective data and further testing
on new data, simulating the ongoing application of forecasting models on future data, in
other words, utilizing the pre-weaning phase and stocking condition variables to predict
the future mortality of closeouts.

The algorithms developed in this study can support swine practitioners in their
decision-making process to strategically allocate resources (or not) for groups with pre-
dicted high nursery mortality. Notably, the predictive performance of the models refers
specifically to the dataset collected in this study and to the time analyzed. In other words,
the performance may change over time within this company as swine nursery mortality
is impacted by multifactorial components that are dynamically interacting over time and
period [4,5,10], limiting the external validity of this study to other field conditions.

Although there is an opportunity for improving the prediction of the exact values
of nursery mortality (i.e., continuous outcome), there is a trade-off between prediction
error and the utility of the predicted value when using binary vs. continuous outcome.
For example, more relevance was given by the production system in this study to identify
relatively high nursery mortality groups instead of predicting their exact mortality values.

The lower sensitivity results of this study can be explained by limiting the inclusion of
predictor variables related only to the pre-weaning phase and conditions of weaned pigs at
placement in growing sites (stocking conditions variables), as post-weaning infectious and
non-infectious factors are likely to increase swine mortality as well [5]. However, as the
goal of this study was to forecast nursery mortality at the beginning of the post-weaning
phase (at placement), a trade-off of losing accuracy in terms of prediction but allowing
early intervention is expected.

On the other hand, the model demonstrated a high performance when predicting
groups that would have high nursery mortality (high positive predicted value), thus indicat-
ing that sow farm variables related to the quality of the piglets at weaning can drive their
mortality throughout the post-weaning phase as demonstrated by other authors [35–38].

5. Conclusions

Forecasting swine nursery mortality can support decision-makers in allocating re-
sources or interventions toward precision swine health and productivity management.
This study demonstrated the capability of building system-specific algorithms that allows
the development of an automated data-wrangling pipeline, which enables ongoing and
near real-time forecasting. Also, this study demonstrated the ability to utilize breeding
herd characteristics and data concerning the stocking conditions of weaned pigs placed
in nursery sites as predictors for forecasting nursery mortality. Despite the overall ac-
ceptable performance for predicting groups at high nursery mortality risk, there is an
opportunity for improving the model’s performance by including more predictors and
other machine-learning models.
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