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Simple Summary: Global positioning system (GPS) coordinates are often used to calculate distance
traveled, a useful metric for research and decision-making processes in livestock management. The
study aimed to determine the accuracy of using LoRa-WAN sensors to measure the walking distances
of grazing cattle in real time. The study compared the accuracy of distance computation using real-
time LoRa-WAN sensed GPS alone or in combination with motion data from triaxial accelerometers.
The analysis showed that the fusion of GPS and accelerometer data was more suitable for calculating
walking distance in detecting animal welfare implications associated with immobility.

Abstract: Animal welfare monitoring relies on sensor accuracy for detecting changes in animal
well-being. We compared the distance calculations based on global positioning system (GPS) data
alone or combined with motion data from triaxial accelerometers. The assessment involved static
trackers placed outdoors or indoors vs. trackers mounted on cows grazing on pasture. Trackers
communicated motion data at 1 min intervals and GPS positions at 15 min intervals for seven days.
Daily distance walked was determined using the following: (1) raw GPS data (RawDist), (2) data with
erroneous GPS locations removed (CorrectedDist), or (3) data with erroneous GPS locations removed,
combined with the exclusion of GPS data associated with no motion reading (CorrectedDist_Act).
Distances were analyzed via one-way ANOVA to compare the effects of tracker placement (Indoor,
Outdoor, or Animal). No difference was detected between the tracker placement for RawDist. The
computation of CorrectedDist differed between the tracker placements. However, due to the random
error of GPS measurements, CorrectedDist for Indoor static trackers differed from zero. The walking
distance calculated by CorrectedDist_Act differed between the tracker placements, with distances
for static trackers not differing from zero. The fusion of GPS and accelerometer data better detected
animal welfare implications related to immobility in grazing cattle.

Keywords: precision livestock farming; precision livestock ranching; internet of things; long range
wide area network
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1. Introduction

Store-on-board telemetry devices, including Global Positioning System (GPS) loggers
and accelerometer sensors, have gained traction in the last two decades for studying
livestock and wildlife grazing behavior. Integrating these unobtrusive telemetry devices
has enabled the scientific community to gain insights into the behaviors of different animals
in their natural settings [1–4]. For instance, studies performed on cattle grazing on extensive
rangelands using GPS loggers have documented animal movement in correlation with
foraging activities influenced by resource distribution, in their search for thermal comfort,
to avoid predator presence in their environment or other essential activities [3,5–7]. Hence,
the mobility of animals within their environment is crucial for their survival, as they
respond to various biotic and abiotic stimuli.

Developments in communication technology have facilitated real-time data trans-
mission from telemetry devices, helping advance Precision Livestock Farming/Ranching
(PLF/R) applications. One such technology is the Long Range Wide Area Network (LoRa
WAN), a wireless low-power data transmission system with bidirectional capabilities, en-
abling data packet transmission and configuration commands to be sent remotely [8–11].
These networks exhibit far-reaching coverage (up to 10 km) with a stronger signal strength
compared to Wi-Fi and Bluetooth, penetrating insulated objects, and requiring minimal
maintenance with a longer lifespan [11,12]. As a result, LoRa WAN offers an affordable
and effective solution for implementing PLF/R on extensive rangelands with limited
connectivity [11–13].

The Internet of Things (IoT) is at the heart of these applications, with sensory devices
that process unique measurements of physiological and behavioral parameters on animals,
gateways that enable data transmissions from sensors to the internet, cloud services that
provide data storage and analysis, with an output application layering tailoring the data
into usable information for a particular end-user [10,14–16].

Integrating PLF/R could facilitate the transition of traditional livestock production
systems that place emphasis on maximizing animal output to aspirational management
systems that optimize production efficiency by increasing animal welfare and whole-farm
sustainability [17–19]. In addition, consumer pressure exerted through purchasing power in
most developed countries has demanded livestock producers increase animal welfare trans-
parency via enhanced traceability [16,20,21]. Also, the continuous monitoring application
of the PLF/R technology in animal production would enable real-time management of the
smallest manageable unit (sensor-based animal-specific attention) on the production front,
enhancing management flexibility and minimizing environmental impacts with alleviation
of intensive labor requirements [20,22,23].

Animal welfare is a multidimensional concept related to the repertoire of behaviors per-
formed by an animal in its natural state that promote ‘normal’ biological functions [20,24].
Therefore, the success of the PLF/R application to address animal welfare will depend
on the accuracy of sensors to detect changes associated with a deteriorating animal
state [5,18,25]. For instance, using frequently acquired GPS data to compute daily dis-
tance traveled can have direct management implications in addressing animal welfare on
extensive cattle production [17,26,27]. However, control of data quality and improvements
in analytical procedures (algorithms for calculating daily distance traveled metrics) are
paramount in facilitating the implementation of PLF/R applications to address issues
stated previously.

For instance, the precision of GPS measurements is affected by several factors, includ-
ing the type of device with internal limitations, the sensor environment placement, and
the timing of data acquisition in relation to the orbiting satellites. Precision ranges for GPS
sensors used in animal tracking have been reported to not exceed 30 m, provided that the
units have a relatively unobstructed view of the sky [28,29]. However, the precision error
varies among devices and can be further affected by obstructions in the communication
pathways with orbiting satellites [29–32]. Therefore, flagging erroneous GPS locations is
vital when incorporating the data into a computation informing a PLF/R application.
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This study aimed to assess the effectiveness of real-time sensors using Long Range
Wide Area Network (LoRa-WAN) communication for monitoring animal welfare through
daily distance travel metrics. To achieve this, we evaluated the accuracy of calculating the
daily distance travel metric using global position system (GPS) data alone or in combination
with motion data derived from triaxial accelerometers. Three algorithms were tested to
detect any differences between the static sensors placed outdoors (Outdoor, n = 6) or
indoors with an obstructed view of satellites (Indoor, n = 5), vs. trackers mounted on
grazing cows (Animal, n = 6). We hypothesized that the daily distance traveled by the
animal tracker would be greater than the static trackers, with no significant difference
between outdoor and indoor means. We also predicted that the daily distance traveled by
the static trackers would be negligible and not differ from zero, as an animal welfare alert
system would require immobility detection.

2. Materials and Methods
2.1. Experimental Site and LoRa Trackers Configuration

The study was conducted at the New Mexico State University’s Clayton Livestock
Research Center (NMSU CLRC), which is located 7 miles east of Clayton, New Mexico,
USA, and covers a total area of 1.39 km2 (320 acres). The research site consists of flat terrain,
with a section of 0.79 km2 (195 acres) of fenced land configured with a center pivot winter
wheat (Triticum aestivum L.) irrigated pasture and a feedlot facility housed with hydraulic
chutes for animal handling south of the section (Figure 1).
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Figure 1. Top left: Reference map of the Southwest United States showing the research site marked
with a star (Clayton, New Mexico). Right: Map of New Mexico State University’s Clayton Livestock
Research Center (CLRC) displaying GPS locations of static trackers and non-static trackers, along
with other important landmarks on the research site.
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Long Range Wide Area Network (LoRa WAN) was chosen as the mode of com-
munication between an antenna and the trackers (widgets) [8,9,15]. The PLF/R sys-
tem at the NMSU (CLRC) consisted of a single Kerlink® LoRa-WAN 915 MHz gateway
(https://www.kerlink.com/, accessed on 15 October 2020) with an external high gain
antenna mounted on the feed mill tower using a 30 m coaxial cable (Figure 1). The gate-
way was purchased with a licensed software platform (Thingpark) developed by Actility®

(https://www.actility.com/, accessed on 15 October 2020), allowing data traffic monitoring
and gateway functionality.

LoRa WAN-enabled Abeeway® (https://www.abeeway.com/, accessed on 10 October 2020)
Industrial Trackers US915 were configured to communicate with a single gateway at the
NMSU (CLRC) site. The trackers weigh 240 g, are housed in a waterproof casing, and
operate using an internal Lithium-thionyl Chloride Type D battery (14 Ah/3.6 V). The
trackers were equipped with position, motion, and temperature sensors, and a LoRa-WAN
communication chip embedded in their motherboard. The trackers were then contained
within a Pelican® R20 Ruck case strapped on an adjustable nylon collar belt to reinforce
structural integrity and waterproofing capabilities [11].

The industrial trackers had a licensed software platform (Abeeway Device Manager
2.13.0) for the data surveillance (Map, Performance Monitor, and Uplinks data log) and
tracker configuration under an annual subscription [11]. We opted for the “Activity track-
ing” configuration, with activity reporting as the “main operational” mode and periodic
position message as a “side operation.” The data collection interval was set at 1 min for
motion detection using the tri-axial accelerometer sensors and 15 min intervals for position
acquisition using the GPS-only option.

The process of GPS acquisition demands significant power, leading to a dilemma
between prioritizing high-frequency, short-duration experiments, or low-frequency data
collection for longer-duration studies [4]. According to the guidelines for LoRa WAN-
enabled Abeeway® Industrial Tracker, the estimated device duration is 20 months when
acquiring 24 positions per day (at an hourly frequency of GPS data collection). The selected
motion and position acquisition scheduling for the study was hypothesized to provide a
battery duration of approximately 5 months, making these trackers suitable for deployment
on a working ranch with minimal livestock interaction.

2.2. Study Deployment, Animals

From 24 October to 17 November 2020, 6 randomly selected trackers (Outdoor)
were positioned in fixed locations at incremental distances from the LoRa WAN gate-
way (Figure 1). Using adjustable belts, the trackers were secured on an existing fence line,
approximately ~1 m above the ground and facing the antenna. In addition, five trackers
were housed inside the feed mill office (Indoor), adjacent to the LoRa WAN gateway, to
simulate obstructed GPS communication with orbiting satellites (Figure 1). The deployment
lasted 24 days, but no data was collected for 15 days due to gateway software maintenance
during the middle of deployment (27 October to 11 November 2020).

A follow-up deployment from 22 December to 31 December 2020, utilized the trackers
mounted on mature cattle (Animal) with a subset of only six trackers out of the eleven
randomly selected for the static phase utilized for analysis. Trackers were safely secured on
the necks of the animals using adjustable nylon belts. The collared animals grazed on native
grasslands with access to a portion of an irrigated winter wheat pasture, with ad libitum
access to water and a mineral salt tub (Figure 1). Animal use was approved by the New Mex-
ico State University Institutional Animal Care and Use Committee (protocol # 2019-008).

2.3. Data Processing

All the trackers’ payloads were routed from the Thingpark server that populated
the Abeeway Device Manager to a local New Mexico State University server for data
retrieval and analysis. The data from the static phase were trimmed, with the initiation and
termination dates excluded from the analysis. In addition, the dates when the gateway was

https://www.kerlink.com/
https://www.actility.com/
https://www.abeeway.com/
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under maintenance (27 October to 11 November 2020) were also excluded. A total of 7 days
of deployment from the static trackers (Indoor, n = 5 and Outdoor, n = 6) were analyzed. In
the follow-up phase with the trackers mounted on mature cattle (Animal, n = 6), animals
were allowed three days to acclimate to collars and the new environment, followed by a
7-day data collection period (25 December to 31 December 2020).

GPS coordinates were projected to NAD 1983 UTM coordinate system (Zone 13 N)
using ArcGIS software (ESRI 2018, ArcMap Desktop v. 10.6). Erroneous GPS locations were
filtered using a z-score outlier detection analysis for the northing and easting coordinates
separately, as described by Nyamuryekung’e et al. [33]. The z-score outlier detection
analysis followed the conversion of daily projected coordinate values for an individual
tracker into a normalized z-score, highlighting extreme score values with low probability
under assumptions for a normal distribution of data points (z > |4.5|) [33]. Motion
data were reported as counts (Motion Index, MI) of shock within the interval of data
acquisition across the triaxial accelerometer using internal default threshold values and
were represented as cumulative counts between successful GPS data (Figure 2).
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Figure 2. Data flow diagram illustrating input data from the LoRaWAN trackers and various
dataset processing steps prior to calculating daily distance traveled using three algorithms: RawDist,
CorrectedDist, and CorrectedDist_Act.

The three algorithms for daily distance traveled included using (1) raw GPS data with
associated erroneous locations (RawDist), (2) GPS data with erroneous locations removed
using z-score > |4.5| analysis (CorrectedDist), or (3) GPS data with erroneous locations
removed combined with the exclusion of GPS data associated with no motion (MI = 0)
from the triaxial accelerometer reading (CorrectedDist_Act) (Figure 2). Using projected
GPS positions for the Static (Indoor and Outdoor) and non-Static (Animal) trackers, we
calculated daily distances traveled (m) using three algorithms by summing the consecutive
GPS distances calculated using the Pythagorean Theorem within a day, as described by
Nyamuryekung’e et al. [34].

The daily distance traveled calculations followed the steps below with their mathe-
matical equations:
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1. Let consecutive GPS position be represented as (x1, y1), (x2, y2), (x3, y3), . . ., (xn, yn)
where n is the total number of daily GPS positions.

2. Pythagorean Theorem for calculating the distance between two consecutive GPS
positions (xi, yi) and (x(i+1), y(i+1)):

Distance =

(√(
xi − x(i+1)

)2
+
(

yi − y(i+1)

)2
)

3. The daily distance traveled within a day was calculated by summing the distance
between all consecutive GPS positions within a day:

Daily distance =

(√
(x1 − x2)

2 + (y1 − y2)
2
)
+

(√
(x2 − x3)

2 + (y2 − y3)
2
)
+

. . . +

(√(
x(n−1) − xn

)2
+
(

y(n−1) − yn

)2
)

Caution GPS coordinates must be projected to provide the daily distance traveled by
the tracker in meters.

2.4. Data Analysis

An analysis based on descriptive statistics on each daily distance measurement
(RawDist, CorrectedDist, and CorrectedDist_Act) was computed using the MEANS proce-
dure in SAS 9.3 (SAS Institute, Cary, NC, USA). The data were grouped according to tracker
placement (Indoor, Outdoor, or Animal) and the calendar date of the deployment. Mean,
standard error, sample size, and minimum and maximum values for each daily distance
measurement (RawDist, CorrectedDist, and CorrectedDist_Act) were computed for each
unique combination of categorical grouping (Placement × Date).

The daily distance measurements (RawDist, CorrectedDist, and CorrectedDist_Act)
were estimated using SAS 9.3 (SAS Institute, Cary, NC, USA). The MIXED procedure
with a ‘covtest’ statement was used to analyze distances via one-way ANOVA com-
paring treatments of trackers’ placement either inside a building (Indoor), on the field
(Outdoor), or mounted on mature cows (Animal) grazing pastures at the research site
(Ho: µIndoor = µOutdoor = µAnimal). The tracker’s ID (n = 11), a categorical classification
for each tracker ID and placement combination (n = 17), in addition to the dates (n = 14) of
deployment, were modeled as random variables. Means were computed and compared via
LSMEANS statement for each daily distance measurement (RawDist, CorrectedDist, and
CorrectedDist_Act) between the treatments of tracker placement (Indoor, Outdoor, or Ani-
mal), with a ‘pdiff’ statement for pairwise comparison. In addition, t-tests were conducted
within each model to determine if the daily distance metrics (RawDist, CorrectedDist, and
CorrectedDist_Act) calculated for each tracker placement (Indoor, Outdoor, or Animal)
differed from zero (Ho: µ = 0). Lastly, using the estimate statement, a comparison of the
means between the static state (Indoor and Outdoor) and non-static trackers (Animal)
was computed (Ho: µStatic = µnon-Static). For all procedures, differences were declared
statistically detectable at p ≤ 0.05.

3. Results

The descriptive analysis revealed variability in the accuracy of each daily distance
measurement (RawDist, CorrectedDist, and CorrectedDist_Act) in combination with the
treatment of the tracker’s placement (Indoor, Outdoor, or Animal). Overall, the RawDist
measurement computed using the indoor trackers had the highest means and standard error.
In contrast, the daily distance calculated using CorrectedDist_Act for the outdoor trackers
had the lowest means and standard error. However, animal trackers exhibited the least
variability in the means when compared between the three daily distance measurements
(RawDist, CorrectedDist, and CorrectedDist_Act) (Figure 3).
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Figure 3. Mean daily distance with standard error bars calculated using three algorithms (RawDist,
CorrectedDist, and CorrectedDist_Act), categorized by tracker placement (Animal, Indoor, or Out-
door) and the calendar date of deployment.

The results from our analysis indicated no significant relationship between RawDist
measurement and the treatment of tracker placement (p = 0.23) when the assumption of
normal distribution was violated (outliers detected) (Table 1). Due to the low precision,
the means of the treatments (Indoor, Outdoor, or Animal) were not different from zero.
In addition, there was no effect on the estimate comparison between static and non-static
groupings of the means.

Table 1. Least square means ± standard errors for a daily distance calculated using three algo-
rithms: (RawDist, CorrectedDist, and CorrectedDist_Act). Statistical analysis involved compar-
ing distance computations across tracker placements (letters) for non-static vs. static trackers
(µ non-static = µ static), and assessing the differences of means from zero (µ = 0).

Distance (m) State Placement
LSmeans p-Value
±Std Err µ Non-Static = µ Static µ = 0

RawDist * non-Static Animal 2724 ± 63,475 a 0.33 0.97
Static Indoor 150,644 ± 69,534 a 0.03
Static Outdoor 11,364 ± 66,543 a 0.86

CorrectedDist non-Static Animal 2695 ± 193 a <0.01 <0.01
Static Indoor 1725 ± 211 b <0.01
Static Outdoor 385 ± 202 c 0.06

CorrectedDist_Act non-Static Animal 2574 ± 186 a <0.01 <0.01
Static Indoor 42 ± 203 b 0.84
Static Outdoor 170 ± 193 b 0.38

* Violation of statistical model assumptions associated with outlier presence.

The CorrectedDist measurement revealed a significance of treatment (p < 0.01), with
animal trackers covering a greater daily distance than either indoor or outdoor placement
(Table 1). However, indoor and outdoor means were different from each other (p < 0.01). In
addition, indoor and animal placement trackers differed statistically from zero (Ho: µ = 0;
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p Indoor < 0.01, p Outdoor = 0.06, p Animal < 0.01). However, the estimate statement indicated
a significant difference (p < 0.01) between the static and non-static groupings of the means.

With the last method of calculating the distance, the CorrectedDist_Act measurement
was also affected by tracker placement (p < 0.01). Animal trackers covered a greater
daily distance compared to either indoor or outdoor placement. In addition, indoor and
outdoor means were not different from each other (p < 0.62). Only the animal trackers were
significantly different from zero (Ho µ = 0; p Indoor = 0.84; p Outdoor = 0.38; p Animal < 0.01)
(Table 1). The estimate statement also indicated a significant difference (p < 0.01) in the
means grouping of Static vs. non-Static trackers.

4. Discussion

To achieve user-friendly PLF/R systems, data flow must be near real time for a
farmer or rancher to monitor an individual animal’s health, welfare, and yields [17,20].
However, it is worth noting that the development of the PLF/R platform depends on the
advancement of precision and accuracy within sensors used in the IoT ecosystem. This is
because the PLF/R system is data-driven, emphasizing the need for high-quality data [35].
While the future of PLF/R lies in data-driven techniques like machine learning (ML) and
deep learning (DL) to identify data patterns, it is equally important not to overlook the
value of mechanistic modeling approaches based on the conceptual understanding of
system dynamics (hypothesis-centered) [18,36]. While robust data-driven approaches
(ML and DL) often lack transparency in their predictions, mechanistic models use animal
performance parameters for prediction. Therefore, a hybridized approach that integrates
both data-driven and mechanistic modeling methodologies is warranted for enhanced
PLF/R outcomes [18,36].

The distance traveled is a standard metric calculated from GPS coordinates with
significant applications in research and management decision-making processes [3,4,26].
The objectives of this study were to test the reliability of the daily distance traveled metric
calculation using three algorithms (GPS data alone or in combination with motion data)
for detecting the differences between static trackers placed either outdoors or indoors
with an obstructed view of orbiting satellites vs. trackers mounted on cows grazing on
pasture. We hypothesized that the daily distance traveled metrics would be higher for the
animal-mounted trackers than the static trackers and that there would be no difference
between the two types of static trackers (Outdoor = Indoor), and that the daily distance
traveled by the static trackers (Outdoor or Indoor) would not differ from zero.

4.1. GPS Accuracy Measurement on Static Trackers

An analysis of GPS data accuracy in this study showed that there were infrequent
erroneous GPS locations that worsened the distance computational means output (RawDist)
when they were integrated into the model. A related study that utilized GPS data from
static indoor and outdoor trackers found that outdoor trackers had greater accuracy in
remote sensing of GPS locations. This is because indoor trackers experience increased
communication interference in acquiring satellite signals. The study’s findings indicated
that 95% of GPS data points fell within a radius of 15 and 40 m for outdoor and indoor
trackers, respectively [33]. The study concluded that these trackers showed comparable
accuracy to other devices available in the market, with a position bias calculated by ex-
cluding erroneous GPS positions using the Euclidean distance between the tracker’s actual
location (Stationary) and the projected GPS points averaging 5.20 and 17.76 m for outdoor
and indoor trackers, respectively [33].

In pasturelands with a canopy cover, obstructed GPS data acquisition is common. For
instance, previous studies collaring goats herded on rugged terrain, and those that calcu-
lated horizontal accuracy between trackers placed in the open field and under canopy cover
both reported low accuracy for trackers with obstructed views of orbiting satellites [29,31].
Therefore, it is essential to include a pre-processing phase to detect outliers in GPS data
before any further analysis [33,37].
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4.2. Daily Distance Traveled Calculated Using RawDist

The computation of distance traveled using raw GPS data (RawDist) did not support
our first hypothesis, as there was no detectable difference between the tracker placements.
Additionally, statistical model assumptions associated with outliers were violated, so
caution is necessary when interpreting these results. This underscores the need for internal
algorithms to filter out extreme GPS outliers. RawDist had the highest numerical value
compared to the other two computations (CorrectedDist and CorrectedDist_Act) used to
calculate the distance traveled. McGavin et al. [27] also found that including GPS data with
low accuracy increased the calculated distance. Furthermore, the RawDist measurement
failed to support our second hypothesis, as the indoor trackers differed from zero, and
there was no difference in the comparison between the static and non-static trackers. This
failure of RawDist measurement suggests that this algorithm has low accuracy in detecting
animal welfare implications associated with immobility.

4.3. Daily Distance Traveled Calculated Using CorrectedDist

The corresponding analysis for screening erroneous GPS positions using the z-score,
as proposed by Nyamuryekung’e et al. [33], improved the normal distribution of the daily
distance metric (CorrectedDist), leading to partial support for our first hypothesis, which
predicted that the Animal tracker would cover a greater daily distance than the indoor
and outdoor trackers. However, indoor and outdoor trackers differed from each other.
CorrectedDist also failed our second hypothesis, as the distance means of the static trackers
differed from zero. Due to the random errors in GPS positioning equipment, the static
trackers registered a significant daily distance measurement that was different from zero,
making the analysis sensitive to inflated error distance measurements in situations with
a high temporal frequency of GPS acquisition and low GPS location accuracy. Ganskopp
and Johnson [32] and McGavin et al. [27] also found a correlation between short GPS
sampling intervals and overestimated distance calculation. However, CorrectedDist was
able to detect differences between static and non-static trackers. Therefore, CorrectedDist
has some utility for use in animal welfare metrics to detect differences between static and
non-static states, but it might fail to statistically detect a zero daily distance measurement
on static trackers.

4.4. Daily Distance Traveled Calculated Using CorrectedDist_Act

The final model, which excluded GPS data with erroneous locations and GPS data
associated with no motion from the accelerometer reading (CorrectedDist_Act), supported
our first hypothesis, showing that the Animal tracker covered a greater daily distance
than both indoor and outdoor trackers, which did not differ from each other. Moreover,
CorrectedDist_Act also supported our second hypothesis, with the daily distance covered
by static trackers not differing from zero. As the static trackers were mostly stationary,
activity data was almost non-existent, with only three trackers contributing to the daily
distance (Indoor n = 1 and Outdoor n = 2). CorrectedDist_Act also detected the difference
between static and non-static trackers. Therefore, CorrectedDist_Act is the recommended
metric for daily distance measurement, with acceptable accuracy in detecting animal
welfare implications associated with immobility.

4.5. Limitations of the Daily Distance Traveled Calculations

The selection of the GPS frequency acquisition has significant implications for calcu-
lating the distance traveled by animals. A high GPS frequency acquisition can lead to an
overestimation of the distance traveled due to the inclusion of GPS positions with inherent
position bias, as well as increased battery drainage of the trackers [4,32]. On the other
hand, low GPS frequency acquisition may result in underestimating the distance traveled,
as it may miss the sinuosity of the actual path taken by the animals [38]. Achieving a
balance in selecting the GPS frequency acquisition is crucial to avoid both overestima-
tion and underestimation of the true distance, and it is essential to consider the spatial
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extent to which the animals are operating. The chosen interval for GPS frequency acquisi-
tion in this study is believed to adequately represent the distance traveled by animals in
extension operations [3].

Improvements in CorrectedDist_Act can be achieved by calibrating the triaxial ac-
celerometer data to represent the animal’s time budget, thus improving the accuracy
of distance traveled estimation from GPS data by excluding a resting activity from the
analysis [32]. Studies have shown that including resting and inactive GPS positions when
calculating the distance traveled can artificially increase it by approximately 15.2% [32].
However, it is important to note that the purpose of this experiment did not involve
time-budget calibration of the accelerometer data. The 1 min interval motion intensity
measurements in this study revealed clear diurnal patterns consistent with grazing ani-
mals’ behavior [33]. For example, intense grazing events are typically observed around
dusk, which was evident from the accelerometer data with a peak of intensity around
1800 h [33]. Future analysis will explore decoding the activity messages into time budgets
for the animals [39,40]. Additionally, accurate classification of the activity data can further
enhance the filtering of erroneous GPS data, as suggested by Muminov et al. [37], who used
maximum animal movement likelihood criteria based on activity classification to filter out
erroneous GPS data.

5. Conclusions

The user interface or dashboard application is arguably the most valuable component
in the Internet of Things (IoT) ecosystem, particularly in a Precision Livestock Farming
and Ranching (PLF/R) platform. This is because the data collected by the sensory devices
are transformed into information tailored to a specific end-user through the user interface
platform. In a PLF/R system, the dashboard application assists ranchers in decision-making
processes. Hence, the metrics presented in the dashboard application must possess both
high accuracy and precision. These findings emphasize the necessary sensitivity required
to develop bio-sensing algorithms that can alert managers of animal welfare concerns.
Similarly, the CorrectedDist_Act model emphasizes the importance of combining GPS and
accelerometer data when calculating the walking distance of grazing cattle. Furthermore,
the results highlight the value of integrating multiple sources of independent sensor data
for an improved interpretation of data derived from PLF/R tools.
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