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Simple Summary: As an excellent but most expensive source of protein, fish meal (FM) is commonly
used in 30–60% of the aquafeed for salmon fish species including coho salmon. However, the high
cost and unstable supply of FM led it no longer to be considered as a sustainable protein source for
aquafeeds. Accordingly, alternative protein sources with low cost and high availability have become
a research hotspot in aquafeed for carnivorous species. Poultry by-product meal (PBPM), one of
the rendered animal protein sources, can be used as protein substitute of FM in aquafeed due to its
economical availability and high protein content and growth promotion effects in comparison to plant
proteins. Until now, little information has been available on evaluating the effects of replacing FM by
animal proteins including PBPM for coho salmon. In this study, the effects of PBPM instead of FM on
growth, muscle composition, and tissue biochemical indexes of coho salmon were investigated. The
results showed that the growth performance, feed utilization, muscle composition, serum biochemical
indices, and liver antioxidant enzyme activities of coho salmon were negatively affected by high
dietary inclusion level of PBPMs, and the optimum substitution level was evaluated based on the
specific growth rate (SGR).

Abstract: The present study evaluated the effects of partially substituting fish meal (FM) with poultry
by-product meal (PBPM) on the growth, muscle composition, and tissue biochemical parameters
of coho salmon (Oncorhynchus kisutch) post-smolts. Five isonitrogenous (7.45% nitrogen) and isoen-
ergetic (18.61 MJ/kg gross energy) experimental diets were made by substituting 0%, 10%, 20%,
40%, and 60% FM protein with PBPM protein, which were designated accordingly as PBPM0 (the
control), PBPM10, PBPM20, PBPM40, and PBPM60, respectively. Each diet was fed to triplicates of
ten post-smolts (initial individual body weight, 180.13 ± 1.32 g) in three floating cages three times
daily (6:50, 11:50, and 16:50) to apparent satiation for 84 days. Both specific growth rate (SGR) and
protein efficiency ratio did not differ significantly (p > 0.05) among the control, PBPM10, and PBPM20
groups, which were remarkably (p < 0.05) higher than those of the PBPM40 and PBPM60 groups.
Feed conversion ratio varied inversely with SGR. The PBPM replacement had no remarkable effects
on the morphological indices and proximal muscle components. The control and PBPM10 groups
led to significantly higher muscle contents of leucine, lysine, and methionine than groups of higher
PBPM inclusion. The groups of PBPM40 and PBPM60 obtained significantly (p < 0.05) higher serum
alanine aminotransferase and aspartate aminotransferase activities than the control and low PBPM
inclusion groups. The control group had significantly higher albumin and total cholesterol contents
than the groups with PBPM inclusion. The control group had significantly higher triglycerides
content than the PBPM60 group. The PBPM60 group had significantly lower contents of high-density
lipoprotein, low-density lipoprotein, and total protein than the control and PBPM10 groups. The
high PBPM replacement level up to 40% and 60% had adverse effects on hepatic malondialdehyde
levels. The catalase and superoxide dismutase activities were not affected by low PBPM inclusion,
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but significantly decreased in high-PBPM-inclusion groups. Based on broken-line regression analysis
of SGR and PER, the optimum dietary PBPM replacing level was evaluated to be 16.63–17.50% of FM
protein for coho salmon post-smolts.

Keywords: biochemical tissue parameters; fish meal; growth performance; Oncorhynchus kisutch;
poultry by-product meal; replacement

1. Introduction

In the past several decades, the aquaculture of precious economic fish species has
expanded rapidly and developed into a large-scale enterprise in China. Modern fish pro-
duction in intensive aquaculture relies on formulated feed, which is the single largest cost
of the production process and determines the productivity and profitability of aquaculture.
Fish meal (FM), an excellent but most expensive source of protein, is commonly used
in 30–60% of the aquafeed for predatory fish [1,2]. However, the high cost and unstable
supply of FM led it no longer to be considered as a sustainable protein source for aquafeeds.
Accordingly, alternative protein sources with low cost and high availability have become a
research hotspot in aquafeed for carnivorous species [3–9].

Poultry by-product meal (PBPM), one of the rendered animal protein sources, can be
used as a protein substitute of FM in aquafeed due to its economical availability and high
protein content and growth promotion effects in comparison with plant proteins [10–12].
Many studies have investigated FM substitution with PBPM in diets of African catfish (Clar-
ias gariepinus) [13], dourado (Salminus brasiliensis) [14], Florida pompano (Trachinotus caroli-
nus L.) [15], golden pompano (Trachinotus ovatus) [16], humpback grouper (Cromileptes al-
tivelis) [17], Pacific white shrimp (Litopenaeus vannamei) [18,19], rainbow trout (Oncorhynchus
mykiss) [20,21], red drum (Sciaenops ocellatus) [22], silver seabream (Rhabdosargus sarba) [23],
sobaity sea bream (Sparidentex hasta) [24], and young eels (Anguilla Anguilla) [25], and
suggested that partially substituting FM with PBPM had no negative effects on growth
performance and feed utilization [26,27]. Replacing FM with PBPM improved the sensory
quality of fillets [28]. However, the appropriate substitution level varied among different
studies, and the discrepancy was probably due to many reasons, such as the manufactur-
ing processes and the quality of raw material. Furthermore, supplementation of PBPM
together with other animal and plant protein ingredients such as fish protein hydrolysates,
hydrolyzed feather meal, and fermented soybean meal was shown to be beneficial to the
growth and disease resistance of fish [29–32].

Coho salmon (Oncorhynchus kisutch), an anadromous migratory species, is widely
distributed in the North Pacific Ocean, and has become one of the cold-water fish species
with the most potential in China. It is famous for its high contents of unsaturated fatty acids
(HUFAs) and protein, which has effects in preventing cardiac–cerebral vascular disease
and diabetes in human beings [33]. In traditional aquaculture, fish meal and fish oil are
the main components of farming salmonids feed; however, with the development of the
global aquaculture industry, the shortage resources, the rising price, and other factors, it is
necessary to develop diets with low or FM-free products. Until now, studies on protein
source substitution in coho salmon feed mainly focused on single-cell protein and soybean
as substitutes for FM [34,35], and little information is available on evaluating the effects
of replacing FM with animal proteins including PBPM. Thus, the effects of PBPM instead
of FM on growth, muscle composition, and tissue biochemical indexes of coho salmon
were studied to provide nutritive data for developing cost-effective and environmentally
friendly feed.
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2. Materials and Methods
2.1. Experimental Ingredients and Diets

The proximate composition, essential amino acid (EAA) profile, and pepsin in vitro
digestibility of FM and PBPM are shown in Table 1. FM, PBPM, and other feed ingredients
were provided by Shandong Conqueren Marine Technology Co. Ltd. (Weifang, China).
Pepsin in vitro digestibility of FM and PBPM was assayed according to the AOAC [36]
method, but slightly modified (pepsin concentration was changed from 0.2% to 0.02%).

Table 1. Proximate composition, EAA profile, and pepsin in vitro protein digestibility of fish meal
and poultry by-product meal (% dry matter).

Ingredients Fish Meal Poultry by-Product Meal

Proximate composition and pepsin in vitro protein digestibility
Moisture (%) 8.27 5.52

Crude protein (%) 70.21 66.52
Crude lipid (%) 11.55 13.63

Ash (%) 17.08 12.57
Gross energy (MJ/kg) 21.80 22.87

Pepsin in vitro digestibility (%) 84.03 92.41
EAA profile (g/kg crude protein)

Arginine 64.73 56.28
Histidine 26.79 23.73
Isoleucine 50.84 41.97
Leucine 70.43 57.12
Lysine 80.96 63.72

Methionine 29.94 23.97
Phenylalanine 53.76 42.39

Threonine 39.85 36.51
Valine 51.03 45.45

Cystine 8.30 9.66
Tyrosine 40.52 37.96

Abbreviations: EAA, essential amino acid.

Five isonitrogenous (7.45% nitrogen) and isoenergetic (18.61 MJ/kg gross energy)
experimental diets were prepared by substituting 0%, 10%, 20%, 40%, and 60% FM protein
with the same proportion of PBPM protein, and were designated as PBPM0 (the control),
PBPM10, PBPM20, PBPM40, and PBPM60, respectively (Table 2). The protein sources were
FM, PBPM, Antarctic krill meal, soybean meal, and corn gluten meal, while the fat sources
were soybean oil and fish oil, and the carbohydrate sources were α-starch and high-gluten
wheat flour. The dietary EAA profile is shown in Table 3. The solid ingredients were
ground into 198 µm powder, mixed well with the oil, and extruded, and the diet pellets
were dried at low temperature and packed separately and stored at −20 ◦C until use.

2.2. Fish and Feeding Management

The post-smolts were provided by Conqueren Leading Fresh (Shandong) Marine Sci-
ence and Technology Inc., Ltd. (Xiashan, Weifang, China) and reared at one of the hatcheries
at this company. The control diet was fed to the fish before the formal experimental period.
After fasting for 24 h, 10 individuals (each weight: 180.13 ± 1.32 g) were assigned to one
of the 15 cages (water capacity 1000 L/cage) with three cages per diet. All the cages were
arranged in an earthen pond supplied with filtered underground cold spring water. During
the 84-day feeding trial, the post-smolts were manually fed to satiation three times a day
(6:50, 11:50, and 16:50). Surplus feed was then collected and dried at 105 ◦C to obtain the
dry weight. The dissolved oxygen, pH value, and water temperature were maintained at
9.5 ± 0.8 mg/L, 6.9 ± 0.3, and 15.5 ± 0.5 ◦C, respectively.
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Table 2. Formulation and proximate composition of the experimental diets for coho salmon (On-
corhynchus kisutch) post-smolts (% dry matter).

Ingredients
Diets (Designated Percentage of PBPM Replacement Levels)

PBPM0 (Control) PBPM10 PBPM20 PBPM40 PBPM60

Peru fish meal 40.00 36.00 32.00 24.00 16.00
Poultry by-product meal 0.00 4.20 8.40 16.80 25.20

Antarctic krill meal 1 7.00 7.00 7.00 7.00 7.00
Soybean meal 1 15.00 15.00 15.00 15.00 15.00

Corn gluten meal 1 6.00 6.00 6.00 6.00 6.00
High-gluten wheat flour 1 16.25 16.25 16.25 16.25 16.25

α-starch 1 2.50 2.50 2.50 2.50 2.50
Soybean lecithin 1 1.00 1.00 1.00 1.00 1.00

Soybean oil 1 4.00 3.92 3.84 3.68 3.52
Fish oil 1 4.00 4.00 4.00 4.00 4.00

Mono-calcium phosphate 1 1.00 1.00 1.00 1.00 1.00
Mineral premix 2 1.00 1.00 1.00 1.00 1.00
Vitamin premix 3 1.00 1.00 1.00 1.00 1.00
Choline chloride 0.40 0.40 0.40 0.40 0.40

Ascorbic acid phosphate (35%) 0.10 0.10 0.10 0.10 0.10
α-cellulose 0.72 0.60 0.48 0.24 0.00

Ethoxyquin (60%) 0.03 0.03 0.03 0.03 0.03
Proximate composition

Dry matter 89.14 90.04 88.95 91.23 90.35
Crude protein 46.95 46.76 46.41 46.10 46.43

Crude lipid 15.15 15.55 15.25 15.36 15.75
Ash 9.81 9.66 9.47 8.93 8.56

Gross energy (MJ/kg) 18.71 18.77 18.63 18.47 18.49
1 Provided by Shandong Conqueren Marine Technology Co., Ltd., Weifang, China. 2 Composition (g/kg mineral
premix): AlK(SO4)2·12H2O, 123.7; CuSO4·5H2O, 32.0; CoCl2·6H2O, 49.0; FeSO4·7H2O, 707.0; MgSO4·7H2O,
4317.0; MnSO4·4H2O, 31.0; KI, 5.3; NaCl, 4934.0; Na2SeO3·H2O, 3.4; ZnSO4·7H2O, 177.0. 3 Composition (IU or
g/kg vitamin premix): retinal palmitate, 10,000 IU; cholecalciferol, 4000 IU; α-tocopherol, 75.0 IU; menadione,
22.0 g/kg; thiamine–HCl, 40.0 g/kg; riboflavin, 30.0 g/kg; D-calcium pantothenate, 150.0 g/kg; pyridoxine–HCl,
20.0 g/kg; meso-inositol, 500.0 g/kg; D-biotin, 1.0 g/kg; folic acid, 15.0 g/kg; niacin, 300.0 g/kg; cyanocobalamin,
0.3 g/kg.

Table 3. EAAs profile (g/kg crude protein) of the experimental diets for coho salmon (Oncorhynchus
kisutch) post-smolts.

EAAs 1
Diets (Designated Percentage of PBPM Replacement Levels)

PBPM0 (Control) PBPM10 PBPM20 PBPM40 PBPM60

Arginine 62.27 62.05 61.82 61.46 61.08
Histidine 24.07 23.98 23.85 23.63 23.45
Isoleucine 49.72 49.60 49.45 49.07 48.69
Leucine 82.66 82.43 82.17 81.79 81.36
Lysine 68.92 68.51 68.25 67.56 67.03

Methionine 28.70 28.48 28.17 27.87 27.51
Phenylalanine 54.63 54.47 54.25 53.94 53.57

Threonine 46.67 46.54 46.44 46.29 46.02
Valine 50.08 49.91 49.76 49.55 49.26

Cystine 9.44 9.47 9.52 9.68 9.87
Tyrosine 39.33 39.18 38.91 38.87 38.79

1 No tryptophan was detected because of acid hydrolysis. Abbreviations: EAA, essential amino acid.

2.3. Sample Collections

After fasting for 24 h, the post-smolts in each cage were anesthetized with tricaine
methanesulfonate (MS-222, 30 mg/L), weighed, and counted to measure growth and
survival rate. Three post-smolts were sampled from each cage to determine the condition
factor (CF), hepatosomatic index (HSI), and viscerosomatic index (VSI). Another five post-
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smolts were used for collecting serum samples from the caudal veins, and the samples
were stored at room temperature for two hours. The serum samples were collected after
centrifuging at 3500× g for 10 min at 4 ◦C, and then stored at −80 ◦C for determination of
biochemical parameters. Subsequently, the liver and muscle samples were removed from
these five fish and stored at −80 ◦C for analyses of antioxidative parameters and muscle
composition, respectively.

2.4. Analytical Methods
2.4.1. Composition Analysis

Proximate content was measured by standard methods of AOAC [36]. Briefly, the
content of dry matter was determined by drying at 105 ◦C to a constant weight. The contents
of crude protein, crude lipid, and ash were tested by determining nitrogen (N × 6.25) using
the Kjeldahl method, ether extraction using the Soxhlet method, and by heating at 550 ◦C
for 24 h in a muffle furnace, respectively. The test samples were hydrolyzed with 6 mol/L
HCl solution at 110 ◦C for 24 h, and EAAs were measured with automatic amino acid
analyzer (Model A300, MembraPure GmbH, German). Gross energy was measured with a
Parr 1281 automated oxygen bombardment meter (Parr, Moline, IL, USA).

2.4.2. Biochemical Tissue Analysis

The commercial reagent kits (Nanjing Jiancheng Bioengineering Institute, Nanjing,
China) were used to test biochemical tissue parameters. The alanine aminotransferase
(ALT) and aspartate aminotransferase (AST) activities of serum samples were tested by
the method of Reitman and Frankel [37]. Total cholesterol (TC) and triglyceride (TG)
contents were analyzed according to Hardisari and Koiriyah [38]. The serum total protein
(TP) level was analyzed according to Grant et al. [39]. High-density lipoprotein (HDL)
and low-density lipoprotein (LDL) contents were measured by the production of H2O2,
which underwent peroxidase to produce a red-purple pigment and a POD color rendering
reaction, respectively. The serum albumin (ALB) contents were determined according to
Doumas et al. [40]. The malondialdehyde (MDA) contents in the liver were determined
according to Ayhanci et al. [41]. Superoxide dismutase (SOD) activities in the liver were
analyzed by the xanthine oxidase method. Catalase (CAT) activities in the liver were
determined according to Kosik-Bogacka et al. [42].

2.5. Calculation Methods

The relative formulae [43] were calculated as follows:

Survival rate (SR, %) = 100 × final fish number
initial fish number

Specific growth rate (SGR, %/day) = 100 × ln final body weight (g) − ln initial body weight (g)
days

Feed coefficient ratio (FCR) =
food intake (g)

final body weight (g) − initial body weight (g)

Protein efficiency ratio (PER, %) =
final body weight (g) − initial body weight (g)

food intake (g) × food protein content (%)

CF (g/cm3) = 100 × body weight (g)

body length (cm)3

HSI (%) = 100 × liver weight (g)
body weight (g)
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VSI (%) = 100 × visceral mass weight
body weight

2.6. Statistics Analysis

All data are given as mean ± standard deviation (SD), and percentage data were
arcsine transformed before analysis. The analyses were performed using SPSS version 25.0.
The statistical significance was performed using a one-way analysis of variance (ANOVA)
followed by Tukey’s test, and the significant difference was set at p < 0.05. The optimum
level of PBPM substitution for FM was evaluated by using a broken-line model.

3. Results
3.1. Growth Performance and Diet Utilization

The survival rate (SR) did not differ significantly (p > 0.05) among the dietary groups
(Table 4). FBW (final body weight), specific growth rate (SGR), and protein efficiency
ratio (PER) all reached the highest values in the PBPM0 (control) group, which was not
significantly different (p > 0.05) from the PBPM10 and PBPM20 groups, but they showed
significant differences (p < 0.05) compared with PBPM40 and PBPM60 groups. FCR varied
inversely with SGR. The morphological indices (CF, HSI, and VSI) were not significantly
affected by the PBPM substitution for FM. Based on broken-line regression analysis of SGR
and PER, the optimum dietary PBPM replacing level was evaluated to be 16.63% (Figure 1)
and 17.50% (Figure 2) of FM protein for coho salmon post-smolts, respectively (Figure 1).

3.2. Muscle Composition and EAA Profile

The dietary PBPM inclusion had no significant (p > 0.05) effects on the contents
of moisture, crude fat, crude protein, and ash in fish muscle (Table 5). No significant
differences were found in muscle contents of leucine, lysine, and methionine between the
control and PBPM10 groups, which were significantly higher than those of the other three
groups.

Table 4. Growth performance and feed utilization of coho salmon (Oncorhynchus kisutch) post-
smolts fed diets partially substituting FM with PBPM for 12 weeks.

Parameters
Diets (Designated Percentage of PBPM Replacement Levels)

PBPM0 (Control) PBPM10 PBPM20 PBPM40 PBPM60

SR (%) 96.67 ± 0.57 100 ± 0.00 100 ± 0.00 96.67 ± 0.58 96.67 ± 0.58
IBW (g) 180.62 ± 1.47 179.09 ± 0.92 179.73 ± 1.15 180.21 ± 1.87 181.02 ± 1.19
FBW (g) 550.49 ± 5.07 b 545.02 ± 3.51 b 540.15 ± 3.29 b 525.74 ± 2.93 a 514.75 ± 4.73 a

SGR (%/day) 1.33 ± 0.01 b 1.32 ± 0.01 b 1.31 ± 0.01 b 1.27 ± 0.01 a 1.24 ± 0.01 a

FCR 1.56 ± 0.03 a 1.59 ± 0.01 a 1.58 ± 0.01 a 1.78 ± 0.02 b 1.79 ± 0.03 b

PER 1.29 ± 0.02 b 1.28 ± 0.01 b 1.28 ± 0.01 b 1.21 ± 0.03 a 1.18 ± 0.03 a

CF (g/cm3) 1.67 ± 0.07 1.68 ± 0.05 1.60 ± 0.04 1.65 ± 0.02 1.64 ± 0.05
HSI (%) 1.01 ± 0.03 1.07 ± 0.04 1.06 ± 0.03 0.97 ± 0.03 0.99 ± 0.03
VSI (%) 7.72 ± 0.23 7.32 ± 0.46 7.30 ± 0.35 7.43 ± 0.53 8.00 ± 0.32

Values are presented as mean ± SD of three replicate groups. Means in the same row with different superscript
letters are significantly different (p < 0.05). Abbreviations: IBW, initial body weight; FBW, final bodyweight;
SGR, specific growth rate; FCR, feed conversion ratio; PER, protein efficiency ratio; CF, condition factor; HSI,
hepatosomatic index; VSI, viscerosomatic index.
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Figure 2. A broken-line regression analysis of the relationship between protein efficiency ratio (PER)
and PBPM inclusion level evaluated that the optimal substitution level of PBPM protein was 17.50%
of FM protein for coho salmon (Oncorhynchus kisutch) post-smolts.

3.3. Serum Biochemical Parameters

The PBPM60 group had the highest serum ALT and AST activities, which was not
significantly (p > 0.05) different from the PBPM40 group, but significantly (p < 0.05) higher
than the control, PBPM10, and PBPM20 groups (Table 6). The control group had signifi-
cantly higher ALB and TC contents than the other four groups, and the PBPM60 group
led to the lowest contents. The control group had the highest TG content, which was
not statistically different from the PBPM10 and PBPM20 groups, but significantly higher
than the PBPM40 and PBPM60 groups. The HDL, LDL, and TP contents all reached the
lowest values in the PBPM60 group and were not different significantly (p > 0.05) from the



Animals 2023, 13, 2789 8 of 14

PBPM20 and PBPM40 groups, but they were significantly (p < 0.05) lower than the control
and PBPM10 groups.

Table 5. Muscle proximate composition and EAA profile of coho salmon (Oncorhynchus kisutch)
post-smolts fed diets partially substituting FM with PBPM for 12 weeks.

Parameters
Diets (Designated Percentage of PBPM Replacement Levels)

PBPM0
(Control) PBPM10 PBPM20 PBPM40 PBPM60

Proximate composition (% wet weight)
Moisture (%) 73.40 ± 0.37 73.26 ± 0.25 73.39 ± 0.32 73.14 ± 0.21 73.18 ± 0.46

Crude
protein (%) 20.69 ± 0.14 20.51 ± 0.28 20.35 ± 0.19 20.63 ± 0.22 20.65 ± 0.26

Crude lipid
(%) 3.38 ± 0.15 3.49 ± 0.16 3.46 ± 0.14 3.27 ± 0.16 3.35 ± 0.12

Ash (%) 2.43 ± 0.12 2.35 ± 0.15 2.50 ± 0.15 2.34 ± 0.09 2.26 ± 0.10
EAAs profile (g/kg crude protein)

Arginine 74.41 ± 0.39 75.59 ± 0.23 73.68 ± 0.25 73.96 ± 0.30 73.73 ± 0.44
Histidine 28.64 ± 0.22 28.21 ± 0.17 27.69 ± 0.31 28.25 ± 0.28 28.07 ± 0.26
Isoleucine 58.48 ± 0.35 58.22 ± 0.29 57.97 ± 0.21 57.83 ± 0.23 56.97 ± 0.16

Leucine 97.53 ± 0.37 b 96.67 ± 0.42
ab 96.13 ± 0.34 a 95.75 ± 0.25 a 95.11 ± 0.28 a

Lysine 82.65 ± 0.26 b 82.22 ± 0.33
ab 81.77 ± 0.52 a 81.39 ± 0.65 a 80.55 ± 0.22 a

Methionine 34.18 ± 0.25 b 33.12 ± 0.34
ab 32.61 ± 0.27 a 32.06 ± 0.36 a 31.97 ± 0.20 a

Phenylalanine 65.46 ± 0.31 65.69 ± 0.23 64.80 ± 0.46 64.55 ± 0.24 64.21 ± 0.53
Threonine 55.52 ± 0.29 55.16 ± 0.22 54.63 ± 0.25 54.51 ± 0.54 56.66 ± 0.33

Valine 59.65 ± 0.23 60.07 ± 0.35 59.26 ± 0.36 58.67 ± 0.39 57.19 ± 0.47
Cystine 12.23 ± 0.15 11.73 ± 0.21 12.36 ± 0.27 12.91 ± 0.10 12.84 ± 0.12
Tyrosine 45.90 ± 0.39 45.54 ± 0.37 45.29 ± 0.33 45.89 ± 0.18 45.94 ± 0.30

Values are presented as mean ± SD of three replicate groups. Means in the same row with different superscript
letters are significantly different (p < 0.05). Abbreviations: EAA, essential amino acid.

Table 6. Serum biochemical parameters of coho salmon (Oncorhynchus kisutch) post-smolts fed diets
partially substituting FM with PBPM for 12 weeks.

Parameters
Diets (Designated Percentage of PBPM Replacement Levels)

PBPM0 (Control) PBPM10 PBPM20 PBPM40 PBPM60

ALB mg/mL 26.15 ± 0.79 c 22.27 ± 0.89 b 21.79 ± 1.01 ab 20.98 ± 0.69 ab 18.70 ± 0.93 a

ALT U/mL 6.37 ± 0.31 a 6.59 ± 0.28 a 6.83 ± 0.24 a 7.96 ± 0.27 b 8.51 ± 0.19 b

AST U/mL 5.42 ± 0.34 a 6.45 ± 0.27 ab 7.27 ± 0.28 b 8.74 ± 0.33 c 9.80 ± 0.36 c

HDL nmol/mL 0.37 ± 0.02 b 0.35 ± 0.02 b 0.32 ± 0.02 ab 0.29 ± 0.02 ab 0.26 ± 0.01 a

LDL nmol/mL 0.93 ± 0.04 b 0.87 ± 0.03 b 0.81 ± 0.04 ab 0.75 ± 0.03 ab 0.70 ± 0.03 a

TC nmol/mL 8.54 ± 0.28 c 7.35 ± 0.24 b 7.29 ± 0.19 b 6.22 ± 0.33 a 5.84 ± 0.29 a

TG nmol/mL 1.90 ± 0.11 b 1.75 ± 0.07 ab 1.72 ± 0.12 ab 1.66 ± 0.05 a 1.60 ± 0.08 a

TP nmol/mL 48.59 ± 0.53 b 47.97 ± 0.38 b 46.87 ± 0.40 ab 45.39 ± 0.45 ab 43.71 ± 0.36 a

Values are presented as mean ± SD of three replicate groups. Means in the same row with different superscript
letters are significantly different (p < 0.05). Abbreviations: ALB, albumin; ALT, alanine aminotransferase; AST,
aspartate aminotransferase; HDL, high-density lipoprotein; LDL, low-density lipoprotein; TC, total cholesterol; 6;
TP, total protein.

3.4. Hepatic MDA Content and Liver Anti-oxidative Enzyme Activity

No significant (p > 0.05) differences were observed in the hepatic MDA contents among
the PBPM0, PBPM10, and PBPM20 groups, but they increased significantly (p < 0.05) with
further increase in PBPM replacement level (Table 7). The highest SOD activity was
observed in the control group, which did not differ from the PBPM10 group but was
significantly higher than the PBPM20, PBPM40, and PBPM60 groups. The CAT activities
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of the control, PBPM10, and PBPM20 groups were significantly higher than those of the
PBPM40 and PBPM60 groups.

Table 7. Liver MDA and anti-oxidative enzyme activities of coho salmon (Oncorhynchus kisutch)
post-smolts fed diets partially substituting FM with PBPM for 12 weeks.

Parameters
Diets (Designated Percentage of PBPM Replacement Levels)

PBPM0 (Control) PBPM10 PBPM20 PBPM40 PBPM60

MDA (nmol/mg) 8.22 ± 0.86 a 9.68 ± 1.02 a 9.79 ± 0.87 a 12.56 ± 0.83 b 15.10 ± 1.42 c

SOD (U/mg) 209.55 ± 22.33 b 163.18 ± 29.83 ab 150.57 ± 21.22 a 131.20± 19.25 a 117.91 ± 25.33 a

CAT (U/mg) 35.77 ± 1.33 b 33.94 ± 2.24 b 30.56 ± 1.56 b 23.23 ± 1.03 a 21.53 ± 0.66 a

Values are presented as mean ± SD of three replicate groups. Means in the same row with different superscript
letters are significantly different (p < 0.05). Abbreviations: MDA, Malondialdehyde; SOD, superoxide dismutase;
CAT, catalase.

4. Discussion

The present study showed that partial PBPM substitution for FM had no negative
effect on the SR, indicating that the post-smolts had the characteristics of tolerance to the
dietary PBPM inclusion. No significant differences were found in SGR and PER among
the control, PBPM10, and PBPM20 groups; these values were significantly decreased with
further increase in PBPM level, revealing that a high level of dietary PBPM replacement
had negative effects on the growth and PER. Using a broken-line model to analyze the
relationship between PBPM protein replacement levels and SGR or PER showed that the
optimal substitution level of PBPM was 16.63–17.50% of FM protein. FCR showed an
inverse trend with SGR and PER. Ma et al. [44] found a similar result that higher than 40%
PBPM replacement level significantly decreased the SGR and increased the FCR of golden
pompano. However, groups of 15%, 25%, and 35% PBPM protein replacement led to higher
final body weight and SGR of juvenile sobaity sea bream than in groups of the control, 45%,
and 55% PBPM replacements [45]. Yang et al. [46] found that the SGR and PER were all
higher in the PBPM inclusion (40.5–100% of FM protein) groups than those in the control
group. Other research has found that PBMP partial replacement of FM has no effect on
growth and feed utilization, for example, rainbow trout (PBPM substitution < 66%) [47],
snakehead (Channa striata) fingerlings (PBPM substitution < 40%) [48], hybrid grouper
(Epinephelus lanceolatus ♂× E. fuscoguttatus ♀, PBPM substitution 40–60%) [49], red porgy
(Pagrus pagrus, PBPM substitution 0-70%) [50], and humpback grouper (Cromileptes al-
tivelis, PBPM substitution < 100%) [17]. Of course, it also has been found that PBPM can
fully replace FM, but some conditions are required, such as required supplementation
of EAAs [51,52]. PBPM is the waste of poultry production and processing plants, which
quality depends to a large extent on the composition of the raw material and the processing
process, including heating, extraction of water, and separation of fat, as well as the time
and temperature of the cooking process [53–55]. Nile tilapia (Oreochromis niloticus) fed diets
replacing FM with 10% and 20% fermented PBPM had significantly higher SGR and lower
FCR than those fed the control and 40% PBPM groups, which might be explained by the fact
that the fermented PBPM enhanced utilization in comparison to the respective untreated
fish [56]. Except PBPM containing less certain EAAs and having lower digestibility than
fish meal, other factors such as differences in fish species with different metabolism due to
different osmotic regulation mechanism, growing stage, experimental period, and different
experimental conditions might also influence the results.

The CF, HSI, and VSI contents of the post-smolts were not affected significantly by
the PBPM replacement. However, the groups of 10% and 20% PBPM replacements led to
remarkably higher HSI than other groups, while the VSI was not affected by the dietary
PBPM substitution for yellow catfish (Pelteobagrus fulvidraco) [57]. Similar results were
found in rainbow trout [58] and Japanese seabass (Lateolabrax japonicus) [59]. Kim and
Lall [60] suggested that the morphological indices could be affected by dietary macro-
nutrients such as protein, lipid, and carbohydrate. Although the feed was formulated as
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isonitrogenous and isoenergetic, the differences in ingredient digestibility and composition
might have effects on the morphological indices.

Generally, the quality of fish fillets can be directly reflected by the fish body composi-
tion [61]. Proximate body composition affects several characteristics of fish biology, which
have important implications for the development of feeds for farmed fish. PBPM instead
of FM as a protein source had no significant effects on muscle proximate composition
of coho salmon. Similar results were reported in studies for grouper [48], Oreochromis
niloticus [62], Pagrus pagrus [49], Sparus aurata [63], Tinca tinca [64], Lutjanus guttatus [65],
Sparidentex hasta [11], Chanos chanos [66], yellow catfish [57], Siberian sturgeon (Acipenser
baerii) [67], and great sturgeon (Huso huso) [68]. In comparison, Amirkolaie et al. [46]
reported that dry matter and fat content of Oncorhynchus mykiss fillets were reduced in the
PBPM 100% replacement group, while water content increased with increasing levels of
PBPM replacement. High content of EAAs in muscle reflects high nutritional value [69]. In
the present study, the contents of leucine, lysine, and methionine in muscles of coho salmon
between the control and PBPM10 groups were significantly higher than those of groups
with over 20% PBPM protein inclusion, which was in accordance with their contents in the
diets. Although the EAA profiles were similar in the diets, Irm et al. [70] found that 30%
PBPM replacement of FM resulted in higher lysine and methionine contents in muscles of
juvenile black sea bream (Acanthoparus schlegelii) than groups of 0, 10%, 20%, 40%, and 60%
PBPM replacements, and the latter two groups led to significantly reduced levels. These
differences might be influenced by the differences in composition and processing of protein
sources, fish species and age, experimental period, and other conditions. The variation in
alpha-cellulose and ash contents between the diets also affected the experimental results.

The metabolic function, physiology, and health status are inextricably linked to the
dietary nutrition level, which is reflected by the serum biochemical indicators of fish [71].
Energy is produced by TG in serum and stored in fish [72,73]. Cell membrane formation,
bile acids, vitamin D, and hormone synthesis all require TC as a source [74]. The contents
of TC and TG can reflect the absorption of lipids, while the HDL and LDL represent the
decomposition and transport of lipids. The post-smolts fed the control diet exhibited higher
serum contents of TC, TG, TP, HDL, and LDL than fish fed with diets including PBPM,
which was in accordance with the findings in Pagrus major fed a diet blended with fish
hydrolysate and animal protein [43], pompano (Trachinotus blochii) fed diets with high
PBPM [75], and in grouper [48]. These findings indicated that increasing PBPM content
in the diet might reduce plasma nutrient content to some extent and further suppress the
growth rate. The serum ALB level decreased with increasing dietary PBPM inclusion,
suggesting that dietary PBPM inclusion had negative effects on liver function to synthesize
protein. ALT and AST are usually used as indicators of liver damage to determine liver
health, and higher levels of these enzymes may indicate hepatocyte damage or deleterious
effects of feeding regimes [76]. In the present study, both serum ALT and AST contents
increased with increasing PBPM inclusion, revealing that PBPM is inferior to FM for the
liver health of coho salmon.

MDA is usually used as one of the indexes to assess the extent of oxidative stress [77],
and a high MDA level can induce programmed cell death [78]. An appropriate amount
of dietary PBPM inclusion level (substituting < 40% FM) did not affect the antioxidant
capacity of post-smolts, but the added amount should not be too high. CAT and SOD are
the main antioxidant enzymes that protect cells and tissues from oxidative damage by
producing ROS and catalyzing the production of hydrogen peroxide (H2O2) to produce
oxygen and water [79–81]. Compared with the control group, the low content of dietary
PBPM had no significant effects on the activities of SOD and CAT in the liver of coho
salmon, which were significantly decreased in the group fed high amounts of PBPM. Zhou
et al. [82] found that the SOD and CAT activities in the liver of juvenile cobia (Rachycentron
canadum) were not significantly affected by the replacement of FM with PBPM. The effects
of PBPM instead of FM on antioxidant enzymes, immune system, and health status are
worthy of further study.
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5. Conclusions

In conclusion, the growth performance, feed utilization, muscle composition, serum
biochemical indices, and liver antioxidant enzyme activities of coho salmon were negatively
affected by high dietary inclusion level of PBPM. Higher PBPM (substituting < 40% FM) will
affect liver antioxidant capacity and health. Based on SGR and PER, the optimal substitution
level of PBPM protein was 16.63–17.50% of FM protein for coho salmon post-smolts using
broken-line regression analysis.
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