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Simple Summary: Normal feed intake and efficient nutrient absorption are prerequisites for achiev-
ing rapid growth, high body weight and dimensions, high carcass and meat yield, and feed efficiency
in chickens. Gut hormones released from enteroendocrine cells (EECs) have been recognized as
regulators for appetite as well as nutrient absorption in other species. However, the underlying
regulation mechanisms of appetite control and nutrient absorption by gut hormones are not fully
understood in chickens. This review suggests that gut hormones released from EECs play important
roles in appetite and nutrient absorption, and these hormones are considered to be able to influence
the reduction of feed intake by infection (e.g., Eimeria spp. and Salmonella spp.) and environmental
stresses (e.g., heat stress and high stock density).

Abstract: This review focuses on the role of hormones derived from enteroendocrine cells (EECs) on
appetite and nutrient absorption in chickens. In response to nutrient intake, EECs release hormones
that act on many organs and body systems, including the brain, gallbladder, and pancreas. Gut
hormones released from EECs play a critical role in the regulation of feed intake and the absorption
of nutrients such as glucose, protein, and fat following feed ingestion. We could hypothesize that
EECs are essential for the regulation of appetite and nutrient absorption because the malfunction of
EECs causes severe diarrhea and digestion problems. The importance of EEC hormones has been
recognized, and many studies have been carried out to elucidate their mechanisms for many years
in other species. However, there is a lack of research on the regulation of appetite and nutrient
absorption by EEC hormones in chickens. This review suggests the potential significance of EEC
hormones on growth and health in chickens under stress conditions induced by diseases and high
temperature, etc., by providing in-depth knowledge of EEC hormones and mechanisms on how these
hormones regulate appetite and nutrient absorption in other species.

Keywords: enteroendocrine cell; chickens; feed intake; nutrient absorption; gut hormone

1. Introduction

One of the many functions of gut hormones secreted before and after feeding is to
give signals to the brain that regulate feed intake [1,2]. Numerous studies have reported
that gut hormones (e.g., ghrelin, cholecystokinin, CCK, peptide YY, PYY, glucagon-like
peptide-1, and GLP-1) induce substantial change in feed intake [3,4]. In addition, certain
gut hormones help to digest feed and absorb nutrients by acting on the endothelial cells
and gastrointestinal epithelium [5]. Although the absorption of carbohydrates, protein,
and fat has been persistently investigated in many studies, it is not clearly shown how the
gut hormones work for nutrient absorption [6–8]. Mellitzer et al. [9] and Beucher et al. [10]
reported that the absence of enteroendocrine cells (EECs) in mice resulted in failed fat
absorption, thereby affecting body weight and survival rate. Likewise, McCauley [5] indi-
cated that loss of all EECs can cause chronic malabsorptive diarrhea. These findings suggest
that gut hormones are closely involved in nutrient absorption [11,12]. The understanding
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of the effects of gut hormones on feed intake regulation and nutrient absorption has been
established mostly in humans, rodents, and/or other mammals such as pigs and cattle.
However, the physiological roles of gut hormones in poultry differ from those of other
species [13]. Therefore, in the current review, we discuss the overall mechanisms of these
hormones in controlling feed intake and sensing nutrients in broilers. Additionally, this
review provides an overview of the process of the reduction of feed intake and weight gain
by several infections (e.g., Salmonella, Eimeria spp., and Clostridium perfringens).

2. Structure of Enteroendocrine Cells Secreting Gut Hormone
Enteroendocrine Cells

Enteroendocrine cells (EECs) are dispersed in villi and crypts throughout the intestinal
tract [14,15]. They are located with nonendocrine cells such as absorptive enterocytes, goblet
cells, stem cells, and paneth cells (Figure 1) [16] and are also considered the largest endocrine
cells relative to the total number of cells, although they occupy less than 1% of the epithelial
cell population [16,17]. EECs have been identified and classified by hormone contents
(e.g., I cell, K cell, L cell, N cell, S cell, etc.) [18,19]. An overview of the different types of
EECs, hormones, and their brief functions are presented in Table 1. The primary function
of hormones derived from EECs is to regulate various metabolic responses including
interaction with nutrient transporters in brush border and different receptors in the central
nervous system (CNS) following feed ingestion [20–22]. Therefore, this review provides the
mechanisms and effects of gut hormones on feed intake and nutrient absorption according
to the hormones released from EECs.

Table 1. Overview of the different types of enteroendocrine cells, secreted peptides, and their
brief function.

Cell Type Hormone Location Function Reference

X or A/
P or D1 Ghrelin

Stomach and
proximal
intestine

Stimulation of food intake

[18,19]

G Gastrin Stomach Gut motility and pancreatic
enzyme release

D STT Stomach and
intestine Inhibition of GI hormone

EC Serotonin Stomach and
intestine

Inhibition or stimulation of
food intake

Stimulation of gut motility

I CCK

Proximal
intestine

Inhibition of food intake and
stimulation of the gallbladder

K GIP
Stimulation of insulin and

gastric acid secretion,
nutrient sensing

S Secretin Inhibition of gastric acid
secretion and motility

N NTS

Distal intestine

Stimulation of gastric acid and
bile secretion

L
GLP-1, GLP-2,

PYY, OXM,
NTS

Inhibition of food intake,
gastric acid secretion, and

response in glucose absorption
Abbreviation: EC, enterochromaffin cells; STT, somatostatin; CCK, cholecystokinin; GIP, glucose-dependent
insulinotropic peptide; NTS, neurotensin; GLP-1, glucagon-like peptide-1; GLP-2, glucagon-like peptide-2; PYY,
peptide YY; OXM, oxyntomodulin.
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feed intake and is mitigated by the central and peripheral nervous systems. The arcuate 
nucleus (ARC) and the lateral hypothalamus (LH) play an important role in appetite reg-
ulation. Neuropeptide Y (NPY) and agouti-related protein (AgRP) neurons released from 
the ARC are called orexigenic neurons [23,24]. The secretion of gamma-aminobutyric acid 
(GABA) as a neurotransmitter is stimulated by NPY and AgRP, and GABA regulates orex-
igenic effects by inhibiting anorexigenic neurons [23,25]. Moreover, orexin and melanin-
concentrating hormones (MCH) are involved in appetite regulation, although the effect of 
orexin is inconsistent according to the results of previous studies [26,27] reporting that 
orexin did not affect the feed intake in broilers. 

Figure 1. Enteroendocrine cells (EECs) are embedded with other cells such as absorptive enterocytes,
goblet cells, stem cells, paneth cells, and tuft cells in intestinal epithelial cells. Along with released
hormones, their cell type changes and they are also associated with appetite and nutrient absorption.

3. Feed Intake Control: Mode of Action
3.1. Orexogenic Effects

The mechanism of appetite can mainly be divided into two kinds of effects: orexigenic
and anorexigenic effects (Figure 2). The orexigenic effect is related to the increased feed
intake and is mitigated by the central and peripheral nervous systems. The arcuate nucleus
(ARC) and the lateral hypothalamus (LH) play an important role in appetite regulation.
Neuropeptide Y (NPY) and agouti-related protein (AgRP) neurons released from the ARC
are called orexigenic neurons [23,24]. The secretion of gamma-aminobutyric acid (GABA) as
a neurotransmitter is stimulated by NPY and AgRP, and GABA regulates orexigenic effects
by inhibiting anorexigenic neurons [23,25]. Moreover, orexin and melanin-concentrating
hormones (MCH) are involved in appetite regulation, although the effect of orexin is
inconsistent according to the results of previous studies [26,27] reporting that orexin did
not affect the feed intake in broilers.
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Figure 2. Illustration of the central nervous system's response to gut hormones from enteroen-
docrine cells in the intestine. Blue arrows represent that it stimulates pathways of orexi-
genic effect/anorexigenic effect; Red arrows represent that it inhibits pathways of orexigenic ef-
fect/anorexigenic effect; CCK, cholecystokinin; PYY, peptide YY; PP, pancreatic polypeptide; GLP,
pancreatic polypeptide; OXM, oxyntomodulin; PVN, paraventricular nucleus; NPY, neuropeptide
Y; AgRP, agouti-related protein; POMC, pro-opiomelanocortin; CART, cocaine- and amphetamine-
regulated transcript; MCH, melanin-concentrating hormone; GABA, gamma-aminobutyric acid;
α-MSH, alpha-melanocyte-stimulating hormone.
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3.2. Anorexogenic Effects

The anorexigenic effect causes feed intake reduction mitigated by central and pe-
ripheral nervous systems (Figure 2). Pro-opiomelanocortin (POMC) and cocaine- and
amphetamine-regulated transcript (CART) neurons produced from the ARC are called
anorexigenic neurons [24,27,28]. Anorexigenic effects have two distinct mechanisms. Firstly,
GABA released by NPY and AgRP neurons inhibits the generation of POMC and CART
neurons. Secondly, POMC and CART neurons release the alpha-melanocyte-stimulating
hormone (α-MSH), leading to feed intake reduction [27].

4. Hormones from Enteroendocrine Cells on Feed Intake Control
4.1. Ghrelin

Ghrelin is the only known orexigenic gut hormone and hunger hormone [29]. It
is an amino acid peptide hormone produced by the EECs in the oxyntic glands in the
stomach fundus [30]. Ghrelin binds to G protein-coupled receptors (e.g., growth hormone
secretagogue receptor) that are located in areas of the brainstem, the pituitary gland, and
the hypothalamus [31–33]. During fasting, the ghrelin levels increase nearly two times
just prior to meals and then decrease to the lowest value after meals; in addition, ghrelin
intravenous injections increase appetite and food intake in humans [34,35]. In rodents,
ghrelin injections via intracerebroventricular (ICV) and intraperitoneal (IP) routes also
stimulated feed intake and appetite and increased weight gain (Table 2) [29,36]. The
possible orectic mechanism of ghrelin is as follows: Feed intake is tightly regulated by
the ARC of the hypothalamus [37]. In response to ghrelin binding to growth-hormone
secretagogue (GHS) receptors, protein kinase A (PKA) triggers the AMP-activated protein
kinase (AMPK). By phosphorylating AMPK, ghrelin stimulates orexigenic NPY and AgRP
secretion in the ARC of the hypothalamus [38,39]. As a result, ghrelin increases AMPK and
NPY/AgRP and thereby feed intake is increased in mammals. Furthermore, the brainstem,
via the vagus nerve, could be a potential extrahypothalamic location to release ghrelin [33].
It has been suggested that the stomach and the nucleus of the solitary tract (NTS) of the
brainstem, which has outputs to the ARC, are connected via vagal afferents [33,38,39].
However, the orexigenic effects of ghrelin in avian species have shown controversial
results. For example, some studies showed that increased ghrelin levels in blood-induced
anepithymia [40], whereas other studies reported that ghrelin injection into intravascular
(IV) and IP routes decreased or did not alter feed intake in broilers and laying hens,
respectively [41–44]. The IP injection of 0.5–1 nmol/bird of ghrelin increased feed intake,
while 3 nmol/bird and ICV injection of 0.5–1.0 nmol/bird decreased feed intake in Japanese
quail [45]. IV administration of acyl-ghrelin at 1 nM/100 g BW/d suppressed feed intake,
whereas des-acyl-ghrelin improved feed intake [46]. These findings suggest that these
inconsistent outcomes may be attributed to the differences in doses, forms (e.g., acyl- and
des-acyl-ghrelin), and injection routes. In addition, different outcomes between mammals
and avian species may be due to the activation of AMPK. Xu et al. [47] reported that
administration of ghrelin in chickens down-regulated AMPK and decreased appetite.
Although all studies mentioned above did not measure AMPK activation and feed intake at
the same time, ghrelin injection in chickens showed the opposite results such as reduction
of AMPK, unlike studies with other species reporting that ghrelin activates AMPK and
then stimulates NPY and AgRP in ARC thereby activating feed intake. However, there is a
limitation in previous studies that only estimated the effects of artificial ghrelin injection
on feed intake and appetite. Therefore, further research is needed to determine whether
endogenous ghrelin suppresses feed intake in avian species.
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Table 2. Effects of functions and/or effects according to dosage and location of ghrelin injection.

Species Location Dosage Function/Effects Reference

Rat

ICV 1.2 µmol/kg BW ↑ Feed intake and body
weight gain [36]

ICV 3 nmol
↑ Feed intake, GH hormone,

ACTH hormone, and
TSH hormone [29]

IP 30 nmol ↑ Feed intake and GH
hormone

Human
(Lean vs. Obese) IV 5.0 pmol/kg BW ↑More food intake in obese [35]

Laying hen IV 0.6 nmol/100 g BW
↔ feed intake and

expression of mRNA in
proventriculus

[42]

Broiler IV 1.0 nmol/100 g BW ↓ Feed intake/↔ heat
production [41]

Broiler IV 1.0 nmol/chick
↑ Feed intake for 30 min

after injection, and then no
effect of feed intake

[43]

Broiler IP 0.5–2.0 nmol/100 g BW ↓ Feed intake [44]

Broiler IV 1 nM/100 g BW ↓ Feed intake [46]

Japanese quail
IP

0.5–1.0 nmol/chick ↑ Feed intake

[45]3.0 nmol/chick ↓ Feed intake

ICV 0.5–1.0 nmol/chick ↓ Feed intake
Abbreviation: BW, body weight; IV, intravascular injection; IP, intraperitoneal injection; ICV, intracerebroventricu-
lar injection; ↓, represents decreased or downregulated; ↑, represents increased or upregulated;↔, represents
no difference.

4.2. Peptide YY (PYY)

Peptide YY belongs to the PP fold protein family, which also includes NPY and PP [33].
It is a 36 amino acid peptide and is derived from the L cells of the gastrointestinal tract,
particularly those in the colon and rectum [48]. PYY1-36 is divided at the last two amino
acids of the N-terminus by DPP-IV, resulting in the truncated form PYY3-36 [49]. However,
the major form of PYY is PYY3-36 in animals and humans [50,51]. During fasting, PYY
levels are low but reach a peak within a few hours after a meal [48]. The effects of PYY are
different depending on the injection location (Table 3). For example, ICV injection of PYY1-
36 and PYY3-36 had orexigenic effects [52–55]. Interestingly, PYY via intra-arcuate (IA)
injection showed anorexigenic effects in rodents and humans [51]. At the same time, PYY3-
36 injection into IV decreased the feed intake in rodents [51,56]. PYY binds preferentially
to the NPY Y2 receptor (Y2R) among the isoform receptors (e.g., Y1, Y2, Y4, Y5, and Y6)
and is mainly found on NPY neurons of the ARC and NTS [57–60]. Feed intake was
inhibited after the administration of a selective Y2R agonist as well as direct injection of
PYY3-36 into the ARC [61]. The inhibitory effect of peripheral PYY3-36 is reduced in rats
treated with Y2R antagonists and abolished in knockout mice for Y2R (Table 3) [51,62].
The anorectic mechanism of PYY3-36 via IV injection can be explained as follows: PYY3-
36 inhibits NPY neurons with consequent disinhibition of POMC neurons in the ARC.
Additionally, hypothalamic explants incubated in vitro with PYY3-36 resulted in a decrease
in NPY release and an increase in α-MSH release [51]. However, orexigenic effects by ICV
injection of PYY may suggest that PYY binds Y1R and Y5R, which are mainly expressed
in the hypothalamic paraventricular nucleus (PVN) [63]. Similar results were observed in
studies with chickens. In chickens, PYY isolated from the small intestine did not contain
PYY3-36, the major form of PYY in mammals [64]. ICV injection of PYY1–36 stimulated
feed intake in neonatal chickens [65], whereas PYY3-36 administration via IV injection
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inhibited feed intake in neonatal chickens [66]. These inconsistent results may be attributed
to the differences in doses and injection routes. Moreover, the main sites where PYY mRNA
is expressed are different depending on the species [67]. In broilers, sites where PYY mRNA
is mainly expressed are present in the small intestine, while sites where PYY mRNA is
expressed are located mainly in the large intestine in mammals [67,68]. Because most of
the studies have been performed with the administration of exogenous PYY [69], further
research is needed to determine how to exert the endogenous PYY in animals including
avian species.

Table 3. Effects of functions and/or effects according to dosage and location of peptide YY (PYY)
injection.

Species Location Dosage Function/Effects Reference

Rat ICV 0–1175 pmol ↑ Feed intake [52]

Rat IV
0.3–10.0 µg/100 g BW ↓ Feed intake

[51]Mice IA

Human IV 0.8 pmol/kg BW ↓ Calorie intake

Mouse ICV 5.0 nmol/day ↑ Feed and water intake
↑ Body weight gain [53]

Rat IV 25 nmol/kg BW ↓ Feed intake [56]

Broiler ICV 59 or 118 pmol ↑ Feed intake [65]

Broiler IV 3–6 nmol/kg BW ↓ Feed intake [66]
Abbreviation: BW, body weight; IV, intravascular injection; ICV, intracerebroventricular injection; IA, intra-arcuate
injection; ↓, represents decreased or downregulated; ↑, represents increased or upregulated.

4.3. Glucagon-like Peptide (GLP)

GLP is released in response to food intake from the L-cells of the small intestine
and colon, the neurons in the NTS of the brainstem, and the α-cells of the Islets of
Langerhans [70–72]. Also, pre-proglucagon, a precursor of GLP, is converted to glucagon,
glucagon-like peptide-1 (GLP-1), glucagon-like peptide-2 (GLP-2), and oxyntomodulin
(OXM), depending on the sites of syntheses by prohormone convertase 1 and 2 [73]. Espe-
cially, in mammals and chickens, GLP-1 and GLP-2 brain-gut peptides are produced by
cleavage of the precursor preproglucagon [74].

4.3.1. Glucagon-like Peptide-1 (GLP-1)

Glucagon-like peptide-1 (GLP-1) is synthesized and secreted from the L-cells in the
intestinal epithelium [75,76]. A key function of GLP-1 is to regulate blood glucose levels
by increasing glucose-stimulated insulin secretion and decreasing glucagon secretion [77].
Several studies reported that GLP-1 had a negative effect on feed intake of experimental
animals [74,78,79]. For example, feed intake of rats and mice was reduced by ICV and IP
injection of GLP-1 [78,80,81], and increased feed intake was induced by ICV injection of the
GLP-1 receptor antagonist (Table 4) [78,82,83]. Furthermore, a study on humans showed
the anorectic effects of administrating GLP-1, thereby causing reduced feed intake [84].
Actually, obese subjects have shown reduced levels of GLP-1 and higher weight gain [85,86].
A central nervous system component plays a role in the regulation of GLP-1, and GLP-1 is
especially affected by GLP-1 receptor (GLP-1R) [87,88]. GLP-1R is abundantly detected in
the hypothalamus (i.e., the ARC). This fact may be supported by the result of a previous
study reporting that ICV injection of GLP-1 increased the expression of c-fos in the ARC [89].
It means that GLP-1 has the potential to act directly on the ARC in the hypothalamus. GLP-
1R is also synthesized by the POMC neurons and GLP-1R agonists that exert direct as well as
indirect effects on these neurons [90,91]. GLP-1R expressed in POMC neurons also indirectly
affects NPY neurons [88]. According to the results of Secher et al. [92], they observed that
GLP-1R restricts the synapses of NPY/AgRP neurons by influencing GABAergic neurons.
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As a result, GLP-1 suppressed NPY and AgRP expression, which promotes appetite, and
increased POMC expression, which alleviates appetite [93]. The anorexigenic effect of
GLP-1 can be explained by incretin production. Incretin is a hormone originally secreted
from the digestive system while nutrients are absorbed in the intestinal tract [76]. It also
increases the release of insulin and inhibits the movement of the gastrointestinal tract,
causing suppressed feed intake. In chickens and ducks, GLP-1 is released from L cells
in the epithelium of the jejunum and ileum [94–96]. This result is in agreement with the
results of studies on other species reporting that GLP-1 was secreted from L cells in the
intestines of mammals [71,97]. Several studies demonstrated that the anorectic effects of
GLP-1 were detected in poultry as well. GLP-1 regulates the emptying of the crop and
strongly reduces feed intake in chickens [98,99]. ICV and IP injection of GLP-1 significantly
reduced the feed intake in laying hens and Japanese quail, respectively [100]. On the other
hand, the injection of GLP-1 via IP and ICV did not affect the feed intake of laying hens
and broilers [98,101]. GLP-1 levels in the blood did not fluctuate for fasting and refeeding
periods in broilers [102]. In chickens, the GLP-1 receptor mRNA is widely detected in the
brain as well as the gastrointestinal tract [103]. Although the role of GLP-1 in the regulation
of feed intake in chickens has not been elucidated yet, the anorectic effect of GLP-1 in
chickens is considered to be similar to the mechanism mentioned above in other species.
It is necessary to conduct further research to determine the physiological importance of
GLP-1 among various gut hormones in birds.

Table 4. Effects of functions and/or effects according to dosage and location of glucagon-like peptide-
1 (GLP-1) injection.

Species Location Dosage Function/Effects Reference

Rat
ICV 10 µL

↓ Feed intake/↑ c-fos in PVN
(Exendin (9–39) injection as
GLP-1-receptor antagonist
inhibits effects of GLP-1 on

feed intake)

[78]

IP 100 µg/kg BW ↓ Feed intake [80]

Mouse ICV 1–3 nmol/kg
↓ Feed intake and body

weight
↑ POMC expression in ARC

[81]

Human
(Obese) IV 0.75 pmol/kg BW

↓ Appetite, food intake, and
body weight gain

↓ Plasma glucose and Gastric
emptying

[85]

Laying hens

ICV 15–60 pmol/kg BW

↓ Crop emptying/↔
Feed intake

↓ Feed intake (IP injection in
unpublished paper) [98]

IP 120–3000 pmol/kg BW ↔ Crop emptying/
Feed intake

ICV 1 pmol/kg of BW ↓ Feed intake and
plasma glucose [99]

ICV 5 pmol ↓ Feed intake
[101]

Broiler ICV 5 pmol ↔ Feed intake

Japanese
quail ICV, IP 0.5–1.0 nmol/kg BW ↓ Feed intake and body

temperature [100]

Abbreviation: BW, body weight; IV, intravascular injection; IP, intraperitoneal injection; ICV, intracerebroventricu-
lar injection; ↓, represents decreased or downregulated; ↑, represents increased or upregulated;↔, represents
no difference.
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4.3.2. Glucagon-like Peptide-2 (GLP-2)

In the L cells of the intestine, GLP-2 is co-encoded and co-stored with GLP-1 by the
gene that encodes proglucagon [104]. GLP-2 has been known to play a physiological
role in mammals as an intestinal growth factor [74,105]. GLP-2, like GLP-1, has various
actions in distal tissues, such as regulation of appetite, inhibition of gastric emptying,
and reduction of bone resorption [106–108]. The process of gastric emptying is critical
for regulating short-term intake and may be used to modulate appetite. Previous studies
reported that the anorexigenic effects of GLP-2 are closely related to gastric emptying
(Table 5) [109]. Also, these actions are regulated by GLP-2 receptors that are present in the
gut and brain [110]. Likewise, GLP-2 suppressed feeding behavior and activated POMC
neurons in experimental animals when administered via ICV and IP [111–114]. In chickens,
Honda et al. [115,116] found that central and peripheral injection of GLP-2 significantly
suppressed feed intake. Moreover, Kewan et al. [117] reported that ICV injection of GLP-2
significantly improved POMC levels in the hypothalamus in layers. These findings suggest
that GLP-2 exerts anorexigenic effects as GLP-1. However, another study reported that
GLP-2 injection via ICV and IP did not affect feed intake and body temperature in Japanese
quail [100]. GLP-2 regulation of feed intake in chickens has also not been explained yet and
led to different results. Therefore, judging by these results, the anorexigenic effects of GLPs
may differ depending on various factors, including animal species, dosage, and injection
location of exogenous GLP-2. Further studies are required to elucidate the relationship
between GLP-2 and anorexigenic effects.

Table 5. Effects of functions and/or effects according to dosage and location of glucagon-like peptide-
2 (GLP-2) injection.

Species Location Dosage Function/Effects Reference

Japanese quail
ICV 0.01–1.0 nmol/kg of BW ↔ Feed intake and

body temperature [100]
IP 0.5–5.0 nmol/kg BW

Rat ICV 10 µg ↓ Feed intake [111]

Mouse ICV - ↓ Feed intake [112]

Mouse IP 0.30 µg/g BW ↓ Feed intake and
gastric emptying rate [113]

Laying hen ICV 30–300 pmol
↓ Linearly feed intake
and concentration of

glucose [115]

Broiler ICV 30 pmol ↓ Feed intake

Broiler
ICV

30–300 pmol
↓ Feed intake

[116]10 pmol

IP 1.5 nmol/kg BW ↓ Feed intake
Abbreviation: BW, body weight; IP, intraperitoneal injection; ICV, Intracerebroventricular injection; ↓, represents
decreased or downregulated;↔, represents no difference.

4.4. Oxyntomodulin (OXM)

OXM is derived from the cleavage product of preproglucagon processed in endocrine
L-cells of the intestine and CNS. After meal ingestion, OXM is co-secreted with the hor-
mones GLP-1 and PYY3-36 [118]. Previous studies reported that the ICV and intranuclear
injection of OXM reduced feed intake in rats (Table 6) [119,120]. In humans, OXM via intra-
venous (IV) injection caused reduced energy intake by 19.3%, and pre-prandial injection in
obese subjects decreased body weight gain by 1.8 kg [121,122]. These findings supported
that OXM is well established as a gut hormone having anorectic effects in rodents as well as
humans. Although the anorectic mechanism of OXM has not been clearly elucidated, there
are some hypotheses on the suppression of appetite as follows. The anorectic mechanism of
OXM may be similar to that of GLP-1. Previous studies reported that the appetite suppres-
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sion of OXM via IP injection was restricted when GLP-1 receptor antagonist exendin (9–39)
was injected in the ARC and when the GLP-1 receptor was eliminated in mice [120,123].
Moreover, other studies have shown that OXM has an incretin effect, meaning that it
multiplies glucose-dependent insulin secretion like GLP-1 [124,125]. Additionally, the
anorectic mechanism of OXM may be explained by the reduction of ghrelin in blood. The
administration of OXM showed a reduction of ghrelin by 44% and 15–20% in humans and
rodents, respectively [120,121], suggesting that OXM may indirectly inhibit feed intake
by reducing circulating ghrelin levels. In studies with chickens, OXM inhibited not only
feed intake but also water intake in broilers and Japanese quail [126–128]. In laying hens,
ICV injection of OXM dramatically reduced feed intake and increased plasma glucose
concentration [127]. In addition, peripheral and intrahepatic glucose injection enhanced
plasma glucose levels while suppressing feed intake in layer chicks and cockerels [129–131].
At least in the early post-hatch period, OXM and GLP-1 likely suppress feed intake through
different mechanisms.

Table 6. Effects of functions and/or effects according to dosage and location of oxyntomodulin
(OXM) injection.

Species Location Dosage Function/Effects Reference

Rat
ICV 3 nmol

↓ Feed intake [119]
IPVN 1 nmol

Rat
IP 100 nmol/kg BW ↓ Feed intake and body weight

[120]
IA 1 nmol ↓ Feed intake

Human IV

3 pmol/kg BW ↓ Energy intake and ghrelin [121]

400 nmol ↓ Energy intake and body
weight gain [122]

Broiler ICV 0–2.68 nmol ↓ Linearly feed intake and
water intake [126]

Laying hen ICV 0.1–1.0 nmol
↓ Feed intake

↑ Plasma glucose and
corticosterone

[127]

Japanese quail ICV, IP 0.32–1.30 nmol ↓ Feed intake and water intake
↑ c-Fos activity in ARC [128]

Abbreviation: BW, body weight; IV, intravascular injection; IP, intraperitoneal injection; ICV, intracerebroventricu-
lar injection; IA, intra-arcuate injection; IPVN, intraparaventricular nucleus injection; ↓, represents decreased or
downregulated; ↑, represents increased or upregulated.

4.5. Cholecystokinin (CCK)

It was also discovered that cholecystokinin (CCK) affects appetite [132]. CCK is
widely distributed across the gastrointestinal tract but is mainly synthesized in the I-cells
of the duodenum and jejunum [133]. CCK is a local regulator in the gastrointestinal
tract that stimulates gallbladder contraction and pancreatic enzyme secretion and inhibits
gastric emptying (Table 7) [134,135]. Within 15 min of starting a meal, plasma CCK levels
rise [134]. Studies in humans have shown that CCK reduces food intake and meal size [136].
Additionally, CCK has also been evaluated for its therapeutic potential in the treatment of
obesity. CCK-A may be a more important receptor in the regulation of food intake and is
found in the pancreas, vagal afferent, efferent neurons, nucleus of the solitary tract, and
area postrema in the brainstem [137]. There has been evidence that abdominal or gastric
vagotomy can block the satiety effect of peripherally administered CCK, suggesting that
the CCK-A receptors on the vagus nerve may play an important role in the effect of CCK
on food intake [138]. Actually, the administration of a CCK-A antagonist inhibited the
reduction of feed intake by CCK in rats [139,140]. This finding is similar to the results of
studies with chickens. For example, previous researchers reported that the administration of
CCK in chickens restricted feed intake [141] and suppression of CCK-A receptors increased
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growth and body weight [142]. However, the difference between other species and poultry
is the location where CCK is expressed. In poultry, CCK is released from the small intestines
of chickens [143] and from the small and large intestines of ducks [144,145]. Despite the
distal small intestine being the primary production site for CCK mRNA in poultry, CCK is
abundant in mammal’s proximal small intestines [2,146]. CCK receptors are also located in
the brain and peripheral tissues like in other species [147,148].

Table 7. Effects of functions and/or effects according to dosage and location of cholecystokinin
(CCK) injection.

Species Location Dosage Function/Effects Reference

Human IV 4 ng/kg BW ↓ Food intake [136]

Rat IP 16 µg/kg BW ↓ Feed intake [139]

Human IV 0.75 µg/mL ↓ food intake
↑ Food intake by CCK antagonist [140]

Laying hen
IP 60–300 nmol/kg BW ↓ Feed intake

↑ Corticosterone by 300 nmol/kg BW
in IP injection and 1 nmol ICV injection

[141]
ICV 0.2–1.0 nmol

Abbreviation: BW, body weight; IV, intravascular injection; IP, intraperitoneal injection; ICV, intracerebroventricu-
lar injection; ↓, represents decreased or downregulated; ↑, represents increased or upregulated.

4.6. Gastric Inhibitory Polypeptide (GIP)

GIP was first reported in the study with dogs and is a 42 amino acid hormone. It is
secreted from the K cell in the proximal small intestine (duodenum and jejunum) after
the uptake of nutrients, including glucose, peptide, and fat [149,150]. In addition to
glucagon-like peptide, GIP is classified to act as an incretin and can regulate feed intake
(Table 8) [151,152]. Previous studies showed that IP and ICV injection of GIP decreased body
weight gain and feed and water intake compared with mice challenged with saline [81,153].
These results clearly suggest that GIP is reduced during the hungry stage. However, there
are not enough studies to elucidate the mechanisms of GIP and reduced feed intake in
avian species. Therefore, further research is needed to determine whether GIP suppresses
feed intake in avian species.

Table 8. Effects of functions and/or effects according to dosage and location of gastric inhibitory
polypeptide (GIP) injection.

Species Location Dosage Function/Effects Reference

Mouse
ICV 1–6 nmol/kg ↓ Feed and water intake [81]

IP 0.12 mg/kg ↓ body weight gain
↔ Feed intake [153]

Abbreviation: IP, intraperitoneal injection; ICV, intracerebroventricular injection; ↓, represents decreased or
downregulated;↔, represents no difference.

4.7. Serotonin (5-Hydroxytrptamine, 5-HT)

About 95% of serotonin is secreted via the enterochromaffin (EC) cells in EECs. The
function of serotonin is different depending on its central and peripheral sites because it
does not pass into the blood-brain barrier [154]. Central serotonin plays a role in regulating
food consumption by increasing POMC and CART expression within the ARC, thereby
having anorexigenic effects [155,156]. More specifically, the anorexigenic effects of central
serotonin are controlled by 5-HT receptor 2C (HTR2C). Tecott et al. [157] found that HTR2C
absence in mice was associated with increased feed intake. According to a previous study,
HTR2C appeared within POMC neurons, and thus increased central serotonin can stimulate
POMC neurons that are involved in the suppression of appetite [158]. On the other hand,
peripheral serotonin produced by L-tryptophan has orexigenic effects [159]. Numerous
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studies have reported that high tryptophan supplementation increased the synthesis of
serotonin, thereby increasing feed intake in pigs [160,161]. Moreover, peripheral serotonin
increased intestinal motility and reduced plasma leptin and adiponectin concentrations,
which can decrease appetite [159]. In poultry, insufficient tryptophan has been known
to decrease serotonin synthesis [162]. However, most studies have focused on stress
mitigation and meat quality, but not feed intake. There are only a few studies on serotonin
and feed intake in avian species. Therefore, further research is needed to determine whether
serotonin suppresses feed intake in avian species.

4.8. Neurotensin (NTS)

NTS is released in response to nutrient ingestion, in particular to fat, regulates GI
motility and pancreatic and biliary secretion, facilitates fat translocation, and acts as an in-
cretin [163]. NTS has been reported as a hormone having anorectic effects and is co-secreted
with PYY and GLP-1, which also have anorectic effects. Actually, systemic administration
of PEGylated NTS, with an increased half-life, causes a sustained reduction in food intake
coupled with increased hypothalamic POMC expression [164]. Moreover, other researchers
reported that peripheral injection of NTS might positively influence weight reduction [165].

5. Regulation of Nutrient Absorption by Gut Hormone
5.1. Carbohydrate Absorption by EEC Hormones

The absorption of nutrients by the gut is critical to stimulate gut hormone secretion
by monosaccharides, peptides, and lipids [166]. EECs can actively respond to the rate at
which nutrients are absorbed apart from sensing nutrients in the gut lumen [166]. Ingested
carbohydrates are broken down into monosaccharides by a combination of amylases from
saliva and the pancreas and hydrolases from enterocytes [167]. Glucose absorption is
mainly regulated by glucose transporter (GLUT2) and sodium-glucose cotransporter 1
(SGLT1) (Figure 3). GLUT2 helps glucose absorption by translocating to the brush border in
the membrane following high luminal sugar concentrations [168]. In addition, it transports
glucose out of the cell by facilitated diffusion. SGLT1 is mainly used as a glucose transporter
for mixed meal conditions and carries one glucose or galactose molecule as well as two
Na+ ions to intestinal epithelial cells [169]. SGLT1 is expressed in EECs and absorbs two
Na+ ions and glucose, leading to the stimulation of EEC hormones (GLP-1, GIP, and
GLP-2) [167]. In addition, gut hormones secreted from EECs are also involved in the
regulation of glucose absorption. GIP affects glucose absorption in the small intestine and
increases intracellular cAMP, suggesting that GIP may up-regulate SGLT1, which is partly
regulated by cAMP [170,171]. Moreover, as a result of GIP injection, GLUT2 is stimulated to
release glucose to the basolateral membrane and GLUT2 translocation is increased [172,173].
GLP-2 plays a more important role in intestinal glucose absorption along with GIP [171].
Ogawa et al. [174] reported that GLP-2 up-regulates the gene expression of SGLT1 in
enterocytes, resulting in an increase in the Na+/glucose transport activity. In addition,
GLP-2 increases the basolateral export of GLUT2, as well as the translocation of GLUT2 to
the apical brush border, thereby resulting in an increase in glucose absorption [172,175].
However, the effects of GLP-1 secreted with GLP-2 vary among previous studies. There was
a reduction in the secretion of GIP and GLP-1 by mice lacking SGLT1, while the inhibition
of SGLT1 enhanced GLP-1 release in SGLT1 knockout mice [176,177]. There is another gut
hormone exerting negative effects on glucose absorption in the small intestine. Serotonin
(5-HT) stimulates water and ion secretion in the intestine and inhibits Na+/dependent
galactose absorption [178]. CCK also down-regulates the localization of SGLT1 to the brush
border, thereby causing a reduction in glucose absorption [5,179]. However, there are no
studies evaluating the relationship between gut hormones and glucose absorption in avian
species. Therefore, further research is needed to determine the relationship among glucose
transporters, gut hormones, and nutrient digestibility in avian species.
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5.2. Fat Absorption by EEC Hormones

Fat absorption is regulated by various gut hormones. Mice lacking CCK showed
reduced weight gain and triglyceride absorption [180]. CCK is known to regulate the
secretion of bile, bicarbonate, and pancreatic enzymes that play a role in emulsifying and
hydrolyzing dietary fats (Figure 4) [181]. Incretins (e.g., GLP-1 and GIP) also regulate fat
absorption, including an increase in insulin secretion in β-cells and a reduction of blood
glucose [182,183].
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Lipid transport proteins are fatty acid binding proteins and CD36, expressed in
EECs, has been known as a regulator of various EEC hormones in response to fat in-
gestion [184,185]. Mice lacking CCK showed poor triglyceride absorption although this
appeared to be independent of pancreatic enzyme secretion [5]. These findings were related
to CD36 expressed in EECs. CD36 deficiency remarkably caused a reduction of CCK and
secretin in experiments [184]. Therefore, CD36 can be a receptor of secretin and CCK,
increasing fat absorption in the small intestine [186]. Interestingly, GLP-1 restricts the
expression of CD36 but can help fat digestion via activating protein kinase A (PKA) in hu-
mans and rodents [187,188]. On the other hand, GLP-2, co-secreted with GLP-1, improves
fat absorption via the up-regulation of the expression of CD36 [189]. Neurotensin (NTS) is
also involved in fat absorption. Previous studies reported that NTS enhanced fat absorption
by GLP-2 [190,191]. Like GLP-1, PYY has negative effects on fat absorption. The treatment
of exogenous PYY to intestinal cells inhibits apolipoprotein synthesis and chylomicron
formation, which are important for fat absorption, in an in vitro experiment [192]. However,
unlike other nutrient regulations, there are no studies to determine the exact mechanisms
of fat regulation by gut hormones.

5.3. Protein Absorption by EEC Hormones

Ingested proteins are broken down into amino acids, dipeptides, and tripeptides
by proteases in the GI tract [193]. The absorption of amino acids can be facilitated by
the difference in H+ ion concentration, and peptide transporter 1 (PEPT1) is involved in
most protein absorption [194]. In addition to the regulation of glucose absorption, amino
acid absorption is also regulated via various gut hormones. Previous studies found that
GIP improved dipeptide absorption via PEPT1 by increasing the activity of cAMP and
phosphoinositide-3 kinase (Figure 5) [195]. GLP-2 also is known as a regulator of amino
acid absorption [196–198]. This evidence could be supported by the results that GLP-2R
knock-out mice had reduced amino acid uptake [199]. Conversely, GLP1, which is co-
secreted with GLP-2, did not influence amino acid absorption via PEPT1 [200]. There
are very few studies on protein absorption by EEC hormones compared with those on
glucose and fat absorption. Therefore, it is considered that additional research is needed to
determine the roles of EEC hormones on protein and amino acid absorption in poultry.
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6. Change of Feed Intake, Nutrient Absorption and Gut Environment in Chickens
under Different Stress Conditions
6.1. Disease
6.1.1. Eimeria spp. Challenge

Eimeria spp. infects via the fecal-oral route and invades the epithelium of the intestine,
thereby causing severe cell damage, diarrhea, impaired feed intake, and mortality [201–203].
E. maxima infection causes a severe reduction in feed intake due to sickness and lethargy
in chickens [204]. Moreover, a meta-analysis study revealed that an Eimeria spp. infection
decreased average daily feed intake by 20% [205]. Many studies showed that feed intake
was decreased in broiler chickens challenged by Eimeria spp. [206–208]. The reduction in
feed intake might be attributed to impaired nutrient absorption and intestinal cell functions
by Eimeria infection. Chickens challenged by Eimeria spp. have shown severely damaged in-
testinal morphology, inflammation, and oxidative stress in many previous studies [209–213].
Chapman [202] reported that an Eimeria (e.g., E. maxima, E. acervuline, E. mitis, E. tenella)
infection caused epithelial inflammation and disruption of the villi. Additionally, other
researchers reported that Eimeria spp. oral inoculation resulted in epithelial damage of the
small intestine by decreasing villus height (VH) and increasing crypt depth (CD) [214,215].
These results were attributed to the fact that Eimeria sporozoites and merozoites secrete
proteins that can form a moving junction at the cell membrane [216,217]. By utilizing this
moving junction, sporozoites and merozoites penetrate and damage intestinal epithelial
cells and decrease nutrient absorption [218,219]. Previous experiments reported that Eimeria
spp. increased ileal endogenous amino acid (AA), thereby reducing AA digestibility and
decreasing ileal digestibility of dry matter, starch, and fat [202,220–224]. Also, an Eimeria
infection significantly decreased the expression of amino acid and glucose transporters
(e.g., APN, B◦AT, b◦,+ AT, EAAT3, PepT1, rBAT, GLUT2, and GLUT5) in the brush border
of intestinal epithelium [223–229].

6.1.2. Pathogen Challenge

Several studies reported that an S. Typhimurium infection decreased FI, thereby re-
ducing BWG and feed efficiency [230–234]. These results are in agreement with those of
Moharreri et al. [235] who reported that other types of salmonella (e.g., S. enteritis) also
reduced total feed intake and body weight in chickens. The reduced performance ob-
served in the challenged birds is probably due to intestinal mucosal damage induced by
S. Typhimurium [231]. According to the results of Jazi et al. [236] and Choi et al. [234],
S. Typhimurium led to a remarkable reduction in VH and VH: CD after challenge. These
results were confirmed by previous studies, which reported Salmonella spp. (e.g., S. Ty-
phimurium and S. Enteritidis) reduced VH and the VH: CD ratio in the small intestine of
broilers [235,237,238]. Birds infected with Salmonella spp. exhibited a damaged intestinal
morphological structure and reduced goblet cell numbers in the jejunum, leading to im-
paired absorption of nutrients along with other pathogenic bacteria [235,239]. Likewise, a
C. perfringens infection, which is a main factor in the outbreak of necrotic enteritis (NE), and
an E. coli infection, which is a major source of Avian colibacillosis, caused the reduction
of feed intake and nutrient digestibility along with impaired intestinal morphology (e.g.,
reduced VH, VW and the number of goblet cells) [240–242].

Pathogen-induced anorexia is well known and associated with most infections [243,244].
It could be caused by the high requirements of nutrient resources to restore damage and
stimulate immune responses in response to infection [243]. Thus, since most of the feed
intake is controlled via the brain-gut axis by appetite-related hormones, it is considered
that the reduction of feed intake by infection is inevitably caused by changes in these gut
hormones. However, although these infections by pathogenic bacteria and parasites un-
doubtedly cause the reduction of feed intake and nutrient absorption, there are not enough
studies on the relationship between infection and appetite-related hormones. Therefore,
it is considered that further research is needed to understand the underlying mechanism
between infection and appetite-related hormones.
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6.2. Environment
6.2.1. Heat Stress

Chickens exposed to heat stress showed significant reduction in body weight gain and
feed intake [245]. Several studies reported that heat stress remarkably increased mortality
and decreased feed intake in poultry [246–248]. Moreover, heat stress negatively affects
nutrient digestibility, resulting in a reduction of DM and energy digestibility [249]. The im-
pairment of nutrient digestibility by heat stress is supported by previous studies [250,251].
Heat stress also impaired nutrient digestibility as well as the nutrient transporters [252,253].
These findings were consistent with those of Orhan et al. [254] and Sun et al. [255], who
reported that heat stress significantly decreased fatty acid binding protein (FABP) expres-
sion; binding fatty acids in the jejunum; SGLT1, which binds glucose; and PEPT1 and 2,
which bind peptides in the ileum. These results were attributed to the damaged intestinal
morphology, causing increased intestinal permeability to endotoxins regardless of animal
species [256–258]. Moreover, many researchers detected that heat stress increased CD
and decreased VH in the jejunum [246,247,250,259,260]. Goblet cells produce mucus to
cover the intestinal epithelium, which protects it from pathogen attacks and environmental
toxins. These cells also contribute to the healing of minor wounds and injuries to the ep-
ithelium. Liu et al. [260] reported that black-boned chickens exposed to heat stress showed
significantly decreased goblet cell numbers in the jejunum and ileum. Similarly, Zhang
et al. [261] showed that heat stress reduced the number of goblet cells and the mRNA
level of the mucin-2 gene in the jejunum. Although we may expect that appetite-related
hormones would not be secreted normally as various stresses damage the intestine, He
et al. [262] and Wang et al. [263] found that heat stress increased CCK concentration in
the serum and jejunum. On the other hand, He et al. [264] also found that heat stress
caused increased ghrelin, which upregulates appetite along with CCK, which downregu-
lates appetite in broiler chickens. Therefore, further research is needed because of these
inconsistent results and there are not enough studies on the relationship between heat
stress and appetite-related hormones.

6.2.2. Stocking Density

High stocking density resulted in a reduction in feed intake of broilers [265–268].
High stocking densities may cause reduced feed intake due to the high environmental
temperature and the reduced airflow at the bird level [269]. Similar results have been
reported by Uzum and Toplu [270], showing that birds housed at high stocking density
were not able to effectively dissipate their body heat to the environment, resulting in
feed intake reduction for maintenance of body homeostasis. Additionally, VHs in the
duodenum, jejunum, and ileum were decreased when broilers were reared at high stock
density [271,272]. Moreover, stress under high stock density induced the disruption of
mucosal tight junction [273]. However, although high stock densities undoubtedly cause
the reduction of feed intake, there are no studies on the relationship between high stocking
density and feed intake hormones; thus, further research is needed.

7. Conclusions and Future Perspectives

Over the last three decades, there has been significant research achievement on the
gut-brain axis, which has revealed a wealth of information about the role of gut hormones
in the regulation of appetite and nutrient absorption in mammals and rodents. According
to the increasing evidence of EECs, EECs have been found to directly affect the regulation
of appetite and nutrient absorption. Many scientists have agreed that endocrine hormones
released from EECs circulate in the blood and act on CNS targets in rodents and mammals
including humans. Likewise, some studies have been conducted to evaluate the appetite
regulation system of chickens in recent years. The physiological roles of PYY, CCK, GLP-1,
and GLP-2 have been studied in chickens like other species. In other species, hormones re-
leased from EECs have also been reported to have significant effects on nutrient absorption,
and the EEC number is changed by intestinal inflammation [274]. EEC cells were increased
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in some species such as fish, lamb, pigs, mice, and humans during the infection [21,275,276].
Intestinal epithelial cells damaged during infection try to recover to maintain intestinal
homeostasis. In particular, GLP-1 is associated with the anorexigenic effect and GLP-2 is
associated with epithelial homeostasis and barrier function, and repair following injury is
increased after intestinal damage [277]. In many studies, chickens under stress conditions
commonly had impaired intestinal morphology, resulting in reduced feed intake and nutri-
ent digestibility. The structural integrity of the intestine is essential for efficient digestive
function and nutrient absorption, which depends on the normal development of intestinal
mucosa. Therefore, nutrient digestibility and feed intake could be negatively affected if in-
testines are damaged and an alternation of subsequent hormones happens. However, there
have been few studies on nutrient absorption and EEC hormones in chickens. Therefore,
further studies are essential to elucidate the relationship between EEC hormones, appetite
regulation, and nutrient absorption in chickens. In conclusion, comprehensive studies
on EEC hormones are essential to understand the regulation mechanism of appetite and
nutrient absorption and to determine the physiological importance of each EEC hormone
in chickens under stress conditions in the future.
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