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Simple Summary: Alpacas (Vicugna pacos) and llamas (Lama glama) constitute the most significant
livestock wealth of the Andean populations of South America. Infectious diseases, particularly
respiratory and enteric infections, cause high morbidity and mortality in offspring and adult
animals. In this study, we demonstrated that multiple variants of the coronavirus co-circulated
among Peruvian alpacas. We also demonstrated that some of these variants bear similarities
to coronavirus strains detected in bats. For a better understanding of the infections that afflict
these animals, continuous surveillance is needed to identify the emergence of new genotypes
and viral variants that are potentially pathogenic to alpacas and humans. Future studies should
include the sequencing of genes encoding CoV spike proteins and host receptors to confirm
interspecies transmission.

Abstract: Coronaviruses (CoVs) infect a wide range of hosts, including humans, domestic animals,
and wildlife, typically causing mild-to-severe respiratory or enteric disease. The main objective of this
study was to identify CoV genera and subgenera detected in Peruvian alpacas. Lung lavage specimens
were collected from 32 animals aged 1 to 6 weeks. CoVs were identified by using RT-PCR to amplify
a pan-CoV conserved region of the RNA-dependent RNA polymerase-encoding gene. A nested PCR
was performed to identify β-CoVs. Then, β-CoV-positive samples were subjected to RT-PCR using
specific primers to identify the Embecovirus subgenus. Out of 32 analyzed samples, 30 (93.8%) tested
positive for at least one CoV genus. β-, α-, or unclassified CoVs were identified in 24 (80%), 1 (3.3%),
and 1 (3.3%) of the positive samples, respectively. A CoV genus could not be identified in two (6.7%)
samples. A mixture of different CoV genera was detected in two (6.7%) samples: one was co-infected
with β- and α-CoVs, and the other contained a β- and an unclassified CoV. A sequence analysis of the
amplicons generated by the PCR identified 17 β-CoV strains belonging to the subgenus Embecovirus
and two α-CoV strains belonging to Decacovirus. A phylogenetic analysis of two strains revealed
a relationship with an unclassified Megaderma BatCoV strain. A subgenus could not be identified in
nine β-CoV samples. Our data show a high prevalence and a high genetic diversity of CoV genera
and subgenera that infect alpacas, in which the β-CoV subgenus Embecovirus predominated. Our
data also suggest a new role for bats in the dissemination and transmission of uncommon CoVs to
alpacas raised in rural Peru.
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1. Introduction

Raising alpacas (Vicugna pacos) and llamas (Lama glama) is the main economic activity
of the Andean populations of southern Peru [1]. The Peruvian alpaca herd represents
85% of the world’s population of these animals. Breeding is distributed primarily (77%) in
the southern highlands in the departments of Puno and Cuzco [2–4]. Most alpaca farms
are small (50–100 animals) and conduct extensive breeding with inappropriate livestock
management [2,3,5].

Neonatal mortality in alpacas can reach up to 30% [2], which is primarily due to respira-
tory and enteric infections following the failure of passive transfer colostrum antibodies [6,7].
Co-circulating viruses and bacteria have been implicated in outbreaks that feature co-
infections due to highly lethal pathogens such as Streptococcus pneumoniae, Mannheimia
haemolytica, and Pasteurella multocida [8]; coronavirus (CoV), mammalian orthoreovirus,
and rotavirus A [9–12]; CoV and Salmonella spp. [13]; parainfluenza virus type 3, bovine
respiratory syncytial virus, Pasteurella multocida, and Mannheimia haemolytica [14,15].

CoVs infect a wide range of hosts, including humans, domestic animals, and wildlife,
typically causing mild-to-severe respiratory or enteric disease [16]. This family of viruses,
with a positive-sense single-stranded RNA genome, exhibits a high genetic diversity and
is classified into four genera: Alphacoronavirus (α-CoV), Betacoronavirus (β-CoV), Gamma-
coronavirus (γ-CoV), and Deltacoronavirus (δ-CoV) [17]. In general, α-CoV and β-CoV infect
mammalian hosts, while γ-CoV and δ-CoV infect birds, although some of them also infect
mammals. It has been suggested that bats are the genetic source of α-CoV and β-CoV, while
birds are the genetic source of γ-CoV and δ-CoV. Bat CoVs, in addition to infecting several
bat species, cross the interspecies barrier infecting other mammals, including humans.
Similarly, CoVs from birds have acquired the ability to infect a variety of bird species
and, occasionally, some mammalian species, such as whales and pigs [18]. Each genus
is further divided into subgenera and species, characterized by great genetic diversity
resulting from the high frequency of homologous recombination and the accumulation of
point mutations, which confer the ability to cross species barriers [17,19]. Recurrent events
of interspecies transmission represent the potential for accelerating viral evolution and,
consequently, the possibility of the emergence of new viral strains. The cohabitation of
birds and mammals in domestic and wild environments, as well as proximity to humans,
may offer the possibility of crossing the interspecies barrier and eventually lead to the emer-
gence of new variants capable of adapting to new hosts, including humans, as observed in
SARS-CoV-1, SARS-CoV-2, and MERS-CoV [17,18,20]. Based on phylogenetic analyses, it
appears that all human coronaviruses have animal origins: SARS-CoV, MERS-CoV, HCoV-
NL63, and HCoV-229E are considered to have originated in bats; HCoV-OC43 and HKU1
likely originated in rodents [17]. Domestic animals may have played important roles as
intermediate hosts that allow for the transmission of the virus from natural hosts to humans.
The camelids were likely intermediate hosts of HCoV-229E [21,22], and HCoV-OC43 likely
evolved from ancestral BCoV strains that crossed the interspecies barrier and established
infections in humans [23,24].

SARSCoV-1, SARSCoV-2, and MERS-CoV are examples of viruses that emerged in the
human population after spillover events, likely from an animal reservoir, with devastating
effects on public health; these viruses are classified as β-CoVs that originated from bats,
which are transmitted to humans through intermediate hosts such as civets, pangolins, and
old-world camelids, respectively [17,20]. Natural and experimental infections by SARS-
CoV-2 have been described in a wide variety of animal hosts. Ferrets and cats were found
to be highly susceptible to the virus, while dogs are less susceptible, and chickens, ducks,
and pigs have shown lower susceptibility [25,26]. The free-ranging white-tailed deer has
also been shown to be highly susceptible to SARS-CoV-2 virus infection and capable of
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sustaining transmission in nature [27]. Serological evidence has demonstrated the ability of
SARS-CoV-2 to naturally infect small ruminants such as cattle, sheep, goats, and dromedary
camels [28,29]. A SARS-CoV-2 spillback transmission from humans to animals has been
suggested [30–32], raising the possibility of SARS-CoV-2 amphixenosis.

Bovine CoVs (BCoVs) that replicate in the intestine, infect the upper and lower respira-
tory systems, and are commonly associated with enteric disease in cattle. Domestic (goats,
sheep, water buffalos, dromedary camels, alpacas, and llamas) and wild ruminants (rein-
deer, elk, sambar deer, sika deer, musk oxen, wisents, wood bison, waterbucks, sitatungas,
stable antelopes, nyalas, giraffes, and Himalayan tahrs) are infected by CoV strains that
share biological, antigenic, and genetic similarities with BCoVs (called bovine-like CoVs or
BCoV-likes) [16,33]. BCoV-likes have also been detected in other species such as Indone-
sian tapirs (Acrocodia indica), an ungulate but non-ruminant species, with dysentery [34];
dogs with respiratory disease [35]; and humans with diarrhea [36], showing the ability of
BCoV-likes to adapt to new hosts.

CoVs detected in Peruvian and other South American alpacas have been associated
with enteritis caused by bovine-like coronavirus strains [10,11,37,38], identified as a β-CoV
of the Embecovirus subgenus. In North America, viruses belonging to the β-CoV genus
(subgenus Embecovirus) and α-CoV (subgenus Duvinacovirus) have been reported in alpacas
with enteric and respiratory diseases, respectively [13,39,40].

This study aimed to identify the genera and subgenera of CoVs present in bronchial
lavage samples obtained from newborn alpacas in Cuzco.

2. Materials and Methods
2.1. Sampling

Lung lavage specimens were collected from newborn alpacas (n = 32) between
one and six weeks of age from the rural community of Silly, located in the District of
Marangani, Province of Canchis, Department of Cuzco, Peru (14◦21′12′′ S, 71◦10′17′′ W,
3800 masl) during the birthing season of 2012. Samples were collected directly from lungs
during necropsy and stored at −70 ◦C until processing at the Laboratory of Veterinary
Virology and Immunology at the Facultad de Medicina Veterinaria of the Universidad
Nacional Mayor de San Marcos (FMV-UNMSM), Lima, Peru.

2.2. Viral Detection and Identification

Viral RNA was extracted from the lung lavage using TRIzol™ LS Reagent (Thermo
Fisher Scientific, Waltham, MA, USA) according to the manufacturer’s instructions. Sam-
ples were tested for the presence of CoVs via reverse-transcription PCR amplification
(RT-PCR) and nested PCR using specific primers targeting a 251 bp fragment of the RNA-
dependent RNA polymerase gene (RdRp), which is conserved across all CoVs (Table 1).
Briefly, the viral RNA was subjected to one reverse-transcription cycle consisting of 5 min
at 25 ◦C followed by 45 min at 42 ◦C and one step of 2 min at 95 ◦C followed by PCR cycles
as described elsewhere [41]. The generated amplicons were submitted to nested PCR using
specific primers for β-CoV to generate a 227 bp from RpRd [9]. β-CoV-positive samples
were further analyzed to identify subgenus Embecovirus using nested PCR. The PCR condi-
tions were as previously described by Brandão et al., 2004 [42] (Table 1). PCR products were
separated with 1.5% (w/v) agarose gel electrophoresis, stained with ethidium bromide, and
visualized under UV light. A 100 bp DNA ladder (Promega, Madison, WI, USA) was used
to determine molecular size.

To validate the PCR assays, positive controls were used for each of the four CoV genera
(α-CoV, β-CoV, γ-CoV, and δ-CoV), which included CoVs isolated from pigs, chickens, and
alpacas and belonging to the collection of the Laboratory of Veterinary Virology and
Immunology of the FMV-UNMSM. The alpaca CoV strains used as positive controls were
AlpCoV-SA44 and AlpCoV-HN (GenBank accession numbers KX266949 and KX266944,
respectively), both belonging to β-CoV; subgenus, Embecovirus; species, bovine-like CoV.
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Table 1. Primers used in the RT-PCR and nested PCR assay for CoV detection †.

Virus Gene Assay Primer * Primer Sequence 5′ → 3′ Position Product Size (bp) Reference

All CoV RdRd + RT-PCR
Cor-FW ACWCARHTVAAYYTNAARTAYGC 14,922–14,944

251 [41]
Cor-RV TCRCAYTTDGGRTARTCCCA 15,153–15,172

β-CoV RdRd Nested PCR
Beta.CoV.F ATTAGTGCWAAGAATAGAGCYCGCAC 14,946–14,971

227 [9]
Beta.CoV.R TCACAYTTWGGRTARTCCCADCCCA 15,148–15,172

Embecovirus RdRd Nested PCR
CV2U.F TACTATGACTGGCAGAATGTTTCA 14,996–15,019

136 [42]
CV2L.R AACATCTTTAATAAGGCGRCGTAA 15,108–15,131

† CoV = coronavirus; + RdRp = RNA-dependent RNA polymerase. * The primers’ positions were determined based on the reference CoV strain DQ915164.
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2.3. CoV Characterization via Phylogenetic Analysis of Partial Sequences of the RdRp Gene

Amplified genomic segments were sequenced by Macrogen Inc. (Seoul, Republic
of Korea). Overlapping sequences were assembled and edited using SeqMan, EditSeq,
and MegAlign in the Lasergene software package (Version 7.0, DNASTAR, Madison, WI,
USA). Phylogenetic analysis was performed with the MEGAX software [43,44]. Dendro-
grams were constructed using the maximum likelihood method based on the Hasegawa–
Kishino–Yano model [43]. Statistical significance was estimated via bootstrap analysis with
1000 pseudoreplicates. Sequences were compared with reference CoV strains obtained
from GenBank (https://www.ncbi.nlm.nih.gov/nucleotide/, accessed on 1 August 2023).
Sequences generated in this study were deposited in GenBank under accession numbers
OQ845932–OQ845939.

3. Results
3.1. Detection and Identification of CoV Genera and Subgenera

Of the 32 lavage samples, 30 (93.8%) tested positive for at least one CoV genus.
Twenty-six samples were positive for β- (24; 80%), α- (1; 3.3%), or unclassified (1; 3.3%)
CoVs. In two (6.7%) RT-PCR-positive samples, the CoV genus could not be identified with
either nested PCR or sequencing (Figure 1; Table 2). The detection of multiple CoV genera
was observed in two (6.7%) samples. One sample contained a mixture of β- and α-CoVs,
and the other contained β-CoV and an unclassified CoV (Table 2). The identification of the
subgenera of the detected strains showed that 17 strains of β-CoV belonged to the subgenus
Embecovirus; two α-CoV strains belonged to the genus Decacovirus. Two strains showed
phylogenetic relationships to an unclassified Megaderma bat-CoV strain. Subgenera could
not be identified for nine β-CoV strains (Figure 2; Table 2).
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Figure 1. Ethidium bromide-stained 1.5% agarose gel showing the amplified products of a pancoron-
avirus RT-PCR (251 or 280 bp) from a nested-PCR of betacoronavirus (227 bp) and an Embecovirus
nested-PCR (136 bp). (A) RT-PCR pancoronavirus (CoV, RdRp gene): PM line, 50 bp of DNA marker;
lines from 1 to 9; lung lavage samples; lane 10, negative control. (B) Nested-PCR (β-CoV, RdRp gene):
PM line, 50 bp of DNA marker; lines from 1 to 9; lung lavage samples; lane 10, negative control.
(C) Nested-PCR (Embecovirus, RdRp gene): PM line, 50 bp of marker DNA; lines from 1 to 9; lung
lavage samples. Note: Pancoronavirus products in alpacas can vary in size from 251 to 280 bp; in
some cases, both bands are present; PM = molecular weight.

https://www.ncbi.nlm.nih.gov/nucleotide/
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Table 2. Identification of genera and subgenera of coronaviruses in samples from lung lavages of
Peruvian alpacas killed in a respiratory outbreak.

Infection Type Genus Subgenus Nº Positive Samples

Single detection

Betacoronavirus
(β-CoV)

Embecovirus
(EmbeCoV) 15

Not identified 9

Alphacoronavirus
(α-CoV)

Decacovirus
(DecaCoV) 1

Unclassified
(Megaderma Bat-CoV-like)

Unclassified
(Megaderma Bat-CoV-like) 1

Not identified Not identified 2

Multiple detection

β-CoV + α-CoV EmbeCoV + DecaCoV 1

β-CoV + Unclassified
(Megaderma Bat-CoV-like) EmbeCoV + unclassified 1

Total 30

β-CoV = Betacoronavirus; EmbeCoV = Embecovirus; α-CoV = Alphacoronavirus; DecaCoV= Decacovirus;
Unclassified = CoV without a determined genus (ICTV, 2023); not identified = products of 251 bp without
success in sequencing.

Figure 2. Phylogenetic relationships of coronaviruses based on a 251 bp fragment of RdRp gene.
Sequences in red are of our study, and sequences in purple are of different CoV species reported in
other camelids. This analysis involved 46 nucleotide sequences identified with GenBank accession
numbers. Dendrograms were constructed using the maximum likelihood method; the distances were
corrected with the Hasegawa–Kishino–Yano model. Statistical support was provided by bootstrap-
ping 1000 pseudoreplicates. Bootstrap values >75% are given at branch nodes. The distance scale
reflects substitutions/sites.
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3.2. Phylogenetic Analysis of the RdRp Gene

Of the eighteen products selected for sequencing the partial RdRp gene (251 bp), eight
were successfully sequenced: 251 bp of four samples (Alp 13K-01, Alp 16K-01, Alp 25K, and
Alp 32K) and 112 bp of four other samples (Alp 13K-02, Alp 16K-02, Alp 26K, and Alp 29K).
A phylogenetic analysis grouped the sequences into three distinct clusters, each belonging
to a different genus: β-CoV (EmbeCoV) or α-CoV (DecaCoV). Two sequences were grouped
with a bat coronavirus (BatCoV) strain not yet classified by the ICTV (Figure 2).

Strains 13K-01, 16K-01, 25K, and 32K shared a 98.8%-to-100% nucleotide identity.
When compared with CoV reference sequences, they showed a phylogenetic relationship
closer to strains of the subgenus Embecovirus, with nucleotide identities in a range of 80.9%
to 100%, phylogenetically closer to CoVs detected in bovines (BCoV) (LC642814/GF2020
and AF391542 /LUN), alpaca (ApCoV) (DQ915164), and dromedary (DcCoV) (MN514977),
with nucleotide identities of 98.8–100%, 98.4–99.6%, 99.2–98%, and 99.2–98.8%, respectively.
On the other hand, these strains showed 65.4%, 69.9%, 63.2%, and 58.1% nucleotide identi-
ties with reference strains of the β-CoV subgenera Sarbecovirus, Nobecovirus, Hibecovirus,
and Merbecovirus, respectively.

The amplicon positives yielded by pancoronavirus and panbetacoronavirus RT-PCRs
that were negative for the Embecovirus subgenus could not be sequenced correctly with the
Sanger method because they presented excessive noise during chromatography.

Sequences 29K and 16K-02 were 100% identical and showed a phylogenetic relation-
ship to the BatCoV/HKU strain (OP963607; 99.1% nucleotide identity), which is classified
as an α-CoV (DecaCoV). Sequences 13K-02 and 26K were identical and phylogenetically
closest (98.1% nucleotide identity) to the Megaderma CoV strain (MZ293749/Bat-CoV),
which is not yet classified in any coronavirus genus. The phylogenetic distance obtained by
aligning the 29K strain with the 32K, 25K, and 26K strains resulted in nucleotide identities
of 66.9%, 64.6%, and 86.5%, respectively. Co-infections were confirmed by sequencing
two samples: 16K (β-CoV + α-CoV) and 13K (β-CoV + unclassified CoV) (Figure 2, Table 2).

4. Discussion

Our results demonstrated the presence of CoV in 93.8% (32/30) of lung lavage samples
from newborn alpacas from Cuzco, Peru. Other reports have described outbreaks of
diarrhea in alpacas from rural communities located in the Departments of Cuzco and Junín,
presenting rates of 87.5% (70/80) and 53.3% (32/60), respectively [9,45].

The β-CoV genus was the most prevalent (86.7%; 26/30), consistent with the data
presented by Castilla et al. [9], which detected β-CoVs associated with diarrhea in neonatal
alpacas (94.3%; 66/70). However, in that outbreak, the Embecovirus subgenus was identified
in only 22.9% (16/70) of samples. Furthermore, the subgenus of 71.4% (50/70) of the
β-CoV strains could not be identified [9]. On the other hand, in our study, Embecoviruses
represented the majority (65%; 17/26) of strains, and yet, subgenus identification was not
possible for 35% (9/26) of the strains. These data reveal the co-circulation of distinct viral
variants in the studied region. The variation in the prevalence of Embecoviruses could be
multifactorial. Although both studies were conducted in the same geographic area, in the
rural community of Silly during the alpaca birthing season (January and February), clinical
samples were obtained from different anatomic sites (fecal versus lung lavage specimens),
which could suggest differential tissue tropisms. On the other hand, the year during which
the samples were obtained differed between studies. Castilla et al. analyzed samples
obtained in 2015, while those analyzed in this study were collected in 2012. Given the CoV
capacity for rapid evolution [17], β-CoV strains belonging to one or more subgenera, distinct
from Embecovirus, that were already circulating in alpaca herds in 2012 may have adapted
to this host, becoming more prevalent over the years and subsequently representing more
than 70% of circulating strains in 2015. Therefore, it is essential to monitor these viruses
continually to better understand their dynamics in the environment.

In the present study, we report a minor percentage of CoV-positive samples in which
a genus could not be identified, similar to previous findings [9]. Our attempts to isolate
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these viruses in Vero cell cultures (African green monkey kidney cells) were unsuccessful,
perhaps because of the long storage period of the samples. These results indicate that
studies using next-generation sequencing techniques and continuous molecular surveil-
lance are necessary to better understand the epidemiology and genetic diversity of CoVs in
Peruvian alpacas.

The sequencing of four strains (Alp16K-01, 13K-01, 25K, and 32K), classified as β-
CoVs/Embecoviruses, showed a close relationship with BCoVs, in agreement with previous
studies suggesting that either the alpaca and BCoVs arose from a common ancestor or
that BCoVs are continuously transmitted to alpacas [11,38,39]. Although South American
camelids have been in contact with cattle for about five centuries, recent reports of dis-
ease associated with BCoVs may be due to the emergence of new CoV variants that are
pathogenic to both bovines and camelids [13,39]. These results can also be explained by
geographic and climatologic conditions, where different animal species (pigs, cows, llamas,
horses, etc.) coexist and graze in proximity [45].

Two strains (16K-02 and 29K) were classified as α-CoVs/Decacoviruses closely related
to a bat CoV (bat CoV/HKU; OP963607). This is not the first report of α-CoV infections
in alpacas; however, the previously reported subgenus was Duvinacovirus, closely re-
lated to human coronavirus 229E (HCoV-229E), one of the most prevalent common cold
coronaviruses in humans [40]. Subsequent genetic studies suggest that the progenitor of
HCoV-229E is an African bat CoV and that camelids were probably the first intermediate
hosts that facilitated transmission to humans [17,21,46,47]. This suggests that bats located
in the region under study may be transmitting various CoV species with the capacity to
adapt and become pathogenic to new host species. To the best of our knowledge, our study
is the first to report α-CoV infections in Peruvian alpacas.

A genus was not identified in a pair of samples (13K-02 and 26K); these sequences are
genetically very similar to a bat CoV strain (MZ293749/Megaderma CoV), which remains
unclassified. This confirms both the great diversity of this viral family and the role of bats
as an important reservoir of these and other unclassified viruses [48–50].

An important observation in this study was the detection of multiple CoV genera
in two samples confirmed through the sequencing of a fragment of RdRp. Genomic re-
combination has been shown to be an important factor in CoV evolution but requires that
different viral strains infect the same host and the same cells simultaneously [17,51,52].
In fact, So et al. demonstrated that a strain of MERS-CoV that infects African dromedary
camels (DcCoV-HKU23; subgenus, Embecovirus) was a recombinant of bovine, rabbit (Rb-
CoVHKU14), and rodent CoVs [51]. We suggest that CoVs circulating in alpacas are in
active recombination, which favors the evolution of β-, α-, and other CoV genera not yet
detected or classified.

Because bats are widely distributed in Peru, they could be the source of the CoV strains
in samples 13K-02, 16K-02, 26K, and 29K. For example, Desmodus rotundus, a hematophagous
bat observed at up to 3680 masl, inhabits the South Andean region (Cusco); alpacas also share
this geographic space (Figure 3) [53,54]. The invasion of their habitat, a hematophagous diet,
migration due to climate change, and proximity to alpacas may favor interspecies spillover.
The transmission of enzootic bat viruses to domestic animals was reported previously. The
HKU2-related BatCoV caused a large-scale epizootic of enteric disease in China, resulting
in the deaths of more than 24,000 piglets. This outbreak demonstrated that the spillover of
a BatCoV can cause severe disease in livestock [17,55]. Bat species are a common origin for
most CoVs affecting humans [21]. The intermediate hosts for these CoVs usually belong to
other mammalian species [46]. The general ecological separation between bats and humans
implies the need for other mammals to act as link hosts between bats and humans [56].

Bergner et al. [54], using metagenomics, characterized viral communities from salivary
and fecal specimens obtained from wild bats captured in caves and trees located in high
Andean and jungle areas of the Departments of Cusco, Ayacucho, and Amazonas in Peru
in a period from 2015 to 2016 (Figure 3) and demonstrated that a subset of CoVs that
infect neonatal alpacas—specifically, α-CoV (Decacovirus subgenus in our study) and other



Animals 2023, 13, 2983 9 of 12

CoVs of a currently unclassified genus—are products of interspecies transmission between
bats and alpacas. This can also be explained because the area where these α-CoVs were
identified is endemic to bats [53,54] and close to the collection area of our study.
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5. Conclusions

Our data showed the high prevalence and the high genetic diversity of CoV genera and
subgenera detected in alpacas, in which the β-CoV subgenus Embecovirus predominated.
Our data also demonstrated the genetic similarity between strains of CoVs circulating
in Peruvian alpacas and bats. Given the high transmissibility and the zoonotic nature of
coronaviruses, continuous surveillance is necessary to identify the emergence of new viral
genotypes and variants potentially pathogenic to alpacas and humans. Future studies
should include the sequencing of genes encoding CoV spike proteins and host receptors to
confirm interspecies transmission.
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