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Simple Summary: Abscess disease is a major disease that affects forest musk deer populations.
Accurately identifying the types of pathogenic bacteria responsible for it is crucial for effective clinical
treatment and the development of drugs and vaccines. This study is the first to use high-throughput
16S rRNA sequencing technology to detect the types and abundance of pathogenic bacteria in abscess
disease samples at the genetic level, thereby overcoming limitations of previous methods. Microbial
structure and bacterial community correlation analyses of six sequencing samples revealed that the
dominant pathogenic bacteria were relatively singular and had an overwhelming abundance in
the same individual. The pathogenic bacterial species differed among different individuals, and
the dominant pathogenic bacteria exhibited no significant correlation with other bacteria in the
pus, thus indicating that the dominant pathogenic bacteria were responsible for the production of
abscess disease. The primary dominant pathogenic bacteria were Trueperella pyogenes, Fusobacterium
necrophorum, and Bacteroides fragilis. While Trueperella pyogenes has been confirmed as one of the
pathogenic bacteria responsible for abscess disease in forest musk deer, Fusobacterium necrophorum
and Bacteroides fragilis could not be isolated or identified by previous research methods due to
their obligate anaerobic characteristics. Therefore, this study is the first to report that Fusobacterium
necrophorum and Bacteroides fragilis are the dominant pathogenic bacteria responsible for abscess
disease in forest musk deer.

Abstract: Currently, researchers use bacterial culture and targeted PCR methods to classify, culture,
and identify the pathogens causing abscess diseases. However, this method is limited by factors such
as the type of culture medium and culture conditions, making it challenging to screen and proliferate
many bacteria effectively. Fortunately, with the development of high-throughput sequencing tech-
nology, pathogen identification at the genetic level has become possible. Not only can this approach
overcome the limitations of bacterial culture, but it can also accurately identify the types and relative
abundance of pathogens. In this study, we used high-throughput sequencing of 16S rRNA to identify
the pathogens in purulent fluid samples. Our results not only confirmed the presence of the main
pathogen reported by previous researchers, Trueperella pyogenes, but also other obligate anaerobes,
Fusobacterium necrophorum and Bacteroides fragilis as the dominant pathogens causing abscess diseases
for the first time. Therefore, our findings suggest that high-throughput sequencing technology has
the potential to replace traditional bacterial culture and targeted PCR methods.

Keywords: forest musk deer; abscess; pathogenic bacteria; 16S rRNA high-throughput sequenc-
ing technology

1. Introduction

The forest musk deer (Moschus berezovskii) is a solitary ruminant mammal, and the
musk secreted by the scent glands of male individuals is a valuable traditional Chinese
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medicine and an important raw material for producing high-end perfumes [1]. In modern
times, due to habitat changes and human interference, the forest musk deer population is on
the brink of extinction. It has been listed in the Appendix of the Convention on International
Trade in Endangered Species of Wild Fauna and Flora (CITES) and the International Union
for Conservation of Nature (IUCN) Red List of Threatened Species. It is also a first-class
protected species under the China’s Wildlife Protection Law. The Chinese government
decided in the 1950s to encourage forest musk deer farming in order to protect and expand
the population of forest musk deer [2]. Since the beginning of forest musk deer farming in
1953, diseases have been one of the main obstacles to the development of captive breeding.
Abscess disease is one of the major diseases affecting captive forest musk deer [3].

The abscess disease of forest musk deer can occur all year round and affects forest
musk deer of all age groups. Skin abscesses are mostly observed around the hooves, eye
sockets, and other facial areas, while the pericardium, lungs, liver, and other internal
organs are also frequently affected by abscess disease [4]. The surgical excision of skin
abscesses combined with antibiotic treatment typically yields a favorable prognosis, but
infections and abscesses within internal organs are difficult to detect and typically cannot
be treated, ultimately leading to death. Currently, the primary clinical treatment method
for abscesses involves using broad-spectrum antibiotics. Accurate identification of the
pathogenic bacteria is essential to ensure proper use of antibiotic drugs in clinical treatment.
Although researchers have isolated and identified some of the pathogenic bacteria causing
abscesses, there are discrepancies among different studies regarding the types of bacteria
reported [5–8]. The predominant factor contributing to this issue is that diagnosis has previ-
ously required isolation, cultivation, and identification. Nonetheless, pathogen cultivation
is constrained by media type and cultivation conditions, which renders it challenging to
screen and identify numerous bacteria effectively [9]. Thus, discovering a methodology
that can surmount the constraints of bacterial cultivation and facilitate prompt and precise
pathogenic bacterial identification is an essential prerequisite for accurate diagnosis and
effective treatment of abscesses in the forest musk deer gland.

In recent years, with the development of high-throughput sequencing technology, the
microbiome of clinical samples has been studied in depth, and its taxonomic composition
has been determined [9]. In the diagnosis of pathogens, analyzing pathogens at the genetic
level can overcome the limitations and time constraints associated with bacterial culture.
Furthermore, this method is not impacted by antibiotic treatment, exhibits high sensitivity,
and can fully identify the type and abundance of pathogens present [10]. At present,
metagenomic sequencing is still very expensive, while 16S rRNA sequencing may be a
relatively fast and economical alternative method [11]. Studies have used the 16S rRNA
sequencing method to detect pathogenic bacteria causing mastitis in cows. In addition to
identifying the recognized pathogens associated with mastitis, some additional types of
pathogenic bacteria were also discovered [12].

In this study, we used 16S rRNA sequencing technology to analyze the bacterial
content from several pus samples obtained from different sites on farmed forest musk deer
abscesses. We analyzed the bacterial community composition and correlation structure in
the pus samples, preliminarily identified the types of pathogens and their interrelationships,
and further evaluated their potential use as a clinical diagnostic tool.

2. Materials and Methods
2.1. Pus Sample Collection

Between July 2021 and January 2022, 6 pus samples were collected from 5 adult forest
musk deer (2–4 years old) with abscess in Fengxian County, Baoji City, Shaanxi Province,
China (33◦54′30′′ N, 106◦30′57′′ E). Four of them were taken from different individuals
while the other two were taken from different parts of the same forest musk deer. The
ear tag number was used to identify the individual. Three samples were taken from
individuals with abscesses on their body surface (Figure 1A), and three samples were taken
from individuals that had died due to abscess disease and were subsequently dissected.
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Sample information is presented in Table 1. The superficial pus was collected by surgical
incision of the pustule with the help of a resident veterinarian who cut the pustules after
aseptic treatment and sucked the pus with a disposable medical syringe immediately after
the pus flowed out for 1–2 s, after which it was transferred to sterile cryovials and stored
in liquid nitrogen. Visceral pus was obtained from recently deceased forest musk deer
through dissection following aseptic procedures. Pus with obvious purulence or diffuse
pus was found in the lungs (Figure 1B). Surface pus from lung tissue with abscesses or
tissue with abundant pus was aspirated using a disposable medical syringe and transferred
to sterile cryovials for liquid nitrogen preservation. All samples were stored in dry ice and
transferred to the laboratory and stored in a −80 ◦C freezer until DNA extraction.
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Figure 1. Characteristic lesion locations of forest musk deer abscess disease. (A) Surface lesions; (B)
Visceral lesions. The red circle in Figure A represents the site of surface lesions, and the green circle
in Figure B represents the site of visceral lesions.

Table 1. Pus sample information.

Lesion Sex Strain No

Lung Male P1
Lung Male P2
Lung Male P3
Hoof Male S2
Hoof Male S3
Face Female S4

All samples were collected during surgical diagnosis and treatment by the resident
veterinarian and the ethical approval is not required.

2.2. DNA Extraction and Amplification

Microbial community total DNA was extracted using the E.Z.N.A.® soil DNA kit
(Omega Bio-tek, Norcross, GA, USA) following the manufacturer’s instructions. The quality
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of DNA extraction was checked using 1% agarose gel electrophoresis, and DNA concentra-
tion and purity were determined using NanoDrop2000. PCR amplification of the V3-V4 vari-
able region of the 16S rRNA gene was performed using 338F (5′-ACTCCTACGGGAGGCA-
GCAG-3′) and 806R (5′-GGACTACHVGGGTW TCTAAT-3′). The amplification program
was as follows: predenaturation at 95 ◦C for 3 min, 27 cycles (denaturation at 95 ◦C for
30 s, annealing at 55 ◦C for 30 s, amplification at 72 ◦C for 30 s), then stable extension at
72 ◦C for 10 min, and finally storage at 4 ◦C (PCR instrument: ABI GeneAmp ® Type 9700,
Applied Biosystems, Waltham, MA, USA). The PCR reaction system was: 5 × TransStart
FastPfu buffer 4 µL, 2.5 mM dNTPs 2 µL, forward primer (5 µM) 0.8 µL, reverse primer
(5 µM) 0.8 µL, TransStart FastPfu DNA polymerase 0.4 µL, and template DNA 10 ng 12 µL,
making up to 20 µL.

2.3. 16S rRNA Gene Amplicon Sequencing and Data Processing

First, PCR amplification products were purified, quantified and standardized to form
sequencing libraries. The constructed libraries were then checked for quality, and qualified
libraries were sequenced on an Illumina NovaSeq 6000. The original image data file obtained
by the final sequencing was converted into the original sequence through base-calling analysis
and stored in FASTQ file format. The resulting files were uploaded to the NCBI database
(Accession Number: PRJNA944830). Raw reads obtained from sequencing are filtered using
Trimmomatic v0.33 software [13]. Cutadapt 1.9.1 software was then used to identify and
remove primer sequences, resulting in clean reads that did not contain primer sequences [14].
The dada2 method in QIIME2 2020.6 was used to denoise [15,16], assemble double-ended
sequences, and remove chimeric sequences to obtain the final valid data.

2.4. Statistical Analysis

The qualified sequences with more than 97% similarity thresholds were allocated
to one operational taxonomic unit (OTU). Using SILVA as a reference database [17], the
Naive Bayesian classifier is used to taxonomically annotate the feature sequence, and the
species classification information corresponding to each feature can be obtained, and then
the community composition of each sample is counted at each taxonomic level. QIIME
software (2023.05) was used to generate species abundance tables at different taxonomic
levels [15], and R language tools were used to draw community structure maps of samples
at different taxonomic levels. According to the abundance and variation of each species
in each sample, Spearman’s rank correlation analysis was performed and the data with
a correlation greater than 0.1 and a p value less than 0.05 were screened to construct a
correlation network.

3. Results
3.1. Sequence Statistics

Three of the nine samples collected and sequenced may have been contaminated
during collection and were therefore excluded from the dataset before further analysis. The
other six samples were sequenced by Illumina NovaSeq 6000, and a total of 480,852 pairs
of original reads were obtained. A total of 479,654 clean reads were generated after quality
control and splicing of paired-end reads, and at least 79,694 clean reads were generated
for each sample. Clean reads were denoised, paired-end sequences were spliced, chimeric
sequences were removed, and, finally, 463,856 valid data were obtained. The end of
the sparse curve gradually flattened as the number of sequences per sample increased,
indicating that the sample sequence is sufficient for data analysis (Figure 2). After the
clustering threshold reached 97%, a total of 1563 OTUs were obtained, which were divided
into 45 phyla, 110 classes, 296 orders, 571 families, 1204 genera and 1407 species.
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3.2. Microbial Composition Analysis

Analysis of microbial community composition, revealed that that the main components
of the pus samples from the same body parts were similar. At the genus level, the dominant
bacterial genera in visceral pus sample P1 were Trueperella and Bacteroides, with relative
abundances of 32.82% and 48.23%, respectively. The dominant bacterial genera in samples
P2 and P3 were Trueperella, with relative abundances of 95.38% and 84.44%, respectively. The
relative abundances of Fusobacterium in the body pus samples S2, S3, and S4 were 97.94%,
98.65%, and 99.52%, respectively (see Table 2). These results suggest that the dominant
bacteria in the lung pus were mainly Trueperella and Bacteroides, while the dominant bacteria
in the body surface pus were mainly Fusobacterium (Figure 3A).

Table 2. The main pathogenic bacteria and their relative abundance at the genus level.

Simple Species and Abundance at the Generic Level

P1 Trueperella (32.82%) Bacteroides (48.23%)
P2 Trueperella (95.38%)
P3 Trueperella (84.44%)
S2 Fusobacterium (97.94%)
S3 Fusobacterium (98.65%)
S4 Fusobacterium (99.52%)



Animals 2023, 13, 3142 6 of 12
Animals 2023, 13, x FOR PEER REVIEW 6 of 12 
 

 
Figure 3. Composition and relative abundance of bacterial flora in different pus samples at the genus 
(A) and species (B) levels. 

Table 2. The main pathogenic bacteria and their relative abundance at the genus level. 
Simple Species and Abundance at the Generic Level 

P1 Trueperella (32.82%) Bacteroides (48.23%) 
P2 Trueperella (95.38%) 
P3 Trueperella (84.44%) 
S2 Fusobacterium (97.94%) 
S3 Fusobacterium (98.65%) 
S4 Fusobacterium (99.52%) 

The relative abundance of dominant pathogens at the species level was found to be 
almost identical to the abundance of their corresponding genera in different samples. 
Trueperella pyogenes and Bacteroides fragilis were the dominant pathogens in lung pus, 
while Fusobacterium necrophorum was the main pathogen in surface pus (Figure 3B). In the 
visceral pus sample P1, the dominant pathogens were Trueperella pyogenes and Bacteroides 
fragilis, with relative abundances of 32.82% and 48.21%, respectively. Trueperella pyogenes 
was the dominant pathogen in samples P2 and P3, with relative abundances of 95.38% 
and 84.44%, respectively. The relative abundance of Fusobacterium necrophorum in S2, S3, 
and S4 of the body surface pus samples was 97.94%, 98.65%, and 99.52%, respectively 
(Table 3). Table 4 shows the relative abundance of three dominant pathogens in six pus 
samples. The relative abundance of Fusobacterium necrophorum in visceral pus was 0, while 
the abundance of Trueperella pyogenes in the body surface pus was 0. 

Table 3. The main pathogenic bacteria and their relative abundance at the species level. 

Simple Species and Abundance at the Species Level 
P1 Trueperella pyogenes (32.82%) Bacteroides fragilis (48.21%) 
P2 Trueperella pyogenes (95.38%) 
P3 Trueperella pyogenes (84.44%) 
S2 Fusobacterium necrophorum (97.94%) 
S3 Fusobacterium necrophorum (98.65%) 
S4 Fusobacterium necrophorum (99.52%) 

Table 4. Relative abundance of 3 dominant pathogens in 6 pus samples. 

Pathogenic Bacteria. P1 P2 P3 S2 S3 S4 
Fusobacterium_necrophorum 0 0 0 97.94% 98.65% 99.52% 

Trueperella_pyogenes 32.82% 95.38% 84.44% 0.013% 0 0 
Bacteroides_fragilis 48.21% 0 0 0 0 0 

Figure 3. Composition and relative abundance of bacterial flora in different pus samples at the genus
(A) and species (B) levels.

The relative abundance of dominant pathogens at the species level was found to
be almost identical to the abundance of their corresponding genera in different samples.
Trueperella pyogenes and Bacteroides fragilis were the dominant pathogens in lung pus, while
Fusobacterium necrophorum was the main pathogen in surface pus (Figure 3B). In the visceral
pus sample P1, the dominant pathogens were Trueperella pyogenes and Bacteroides fragilis,
with relative abundances of 32.82% and 48.21%, respectively. Trueperella pyogenes was the
dominant pathogen in samples P2 and P3, with relative abundances of 95.38% and 84.44%,
respectively. The relative abundance of Fusobacterium necrophorum in S2, S3, and S4 of the
body surface pus samples was 97.94%, 98.65%, and 99.52%, respectively (Table 3). Table 4
shows the relative abundance of three dominant pathogens in six pus samples. The relative
abundance of Fusobacterium necrophorum in visceral pus was 0, while the abundance of
Trueperella pyogenes in the body surface pus was 0.

Table 3. The main pathogenic bacteria and their relative abundance at the species level.

Simple Species and Abundance at the Species Level

P1 Trueperella pyogenes (32.82%) Bacteroides fragilis (48.21%)
P2 Trueperella pyogenes (95.38%)
P3 Trueperella pyogenes (84.44%)
S2 Fusobacterium necrophorum (97.94%)
S3 Fusobacterium necrophorum (98.65%)
S4 Fusobacterium necrophorum (99.52%)

Table 4. Relative abundance of 3 dominant pathogens in 6 pus samples.

Pathogenic Bacteria. P1 P2 P3 S2 S3 S4

Fusobacterium_necrophorum 0 0 0 97.94% 98.65% 99.52%
Trueperella_pyogenes 32.82% 95.38% 84.44% 0.013% 0 0
Bacteroides_fragilis 48.21% 0 0 0 0 0

3.3. Correlation Analysis of Microbial Community Composition

Figure 4 shows the correlation between pathogens at the species level. Among the
detected pathogens, Fusobacterium necrophorum and Trueperella pyogenes were significantly
negatively correlated (p < 0.01). Trueperella pyogenes was not correlated with other bac-
teria. Fusobacterium necrophorum was negatively correlated with two unknown bacteria,
but the correlation was not significant, indicating primarily single pathogenic bacteria
causing forest musk deer abscess disease. Table 5 shows the correlation coefficients be-
tween microorganisms at the genus and species levels, respectively. There was no direct
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significant correlation between the dominant pathogenic bacteria and other bacteria in
the samples, indicating that the dominant pathogenic bacteria played a major role in the
process of lesion.
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Table 5. Correlation coefficient at genus level.

From To Corr p Value

Trueperella Fusobacterium −0.985610761 0.000309086
NK4A214_group Bacteroides 0.828571429 0.041562682

Prevotella Escherichia_Shigella 0.828571429 0.041562682
Prevotella Christensenellaceae_R_7_group 0.942857143 0.004804665

Prevotellaceae_UCG_001 Christensenellaceae_R_7_group 0.845154255 0.034109423
Prevotellaceae_UCG_001 Prevotella 0.845154255 0.034109423

From is the name of the first node; To is the name of the second node; Corr is the correlation between two nodes.
The larger the value, the stronger the correlation; p value is a significant correlation between the two, p < 0.05 is a
significant correlation, p < 0.01 is an extremely significant correlation.

Microorganisms with the top 60 relative abundance in body surface and visceral
pus were selected to screen data with a correlation greater than 0.1 and p value less than
0.05 to construct a correlation network for correlation analysis (Figure 5). Both Trueperella
(Figure 5A) and Fusobacterium (Figure 5B) have other positively correlated pathogenic
bacteria. Due to the low relative abundance, this article does not list them all.
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4. Discussion

The accurate diagnosis and identification of the main pathogenic bacteria that causes
forest musk deer abscess can provide accurate guidance for the use of clinical drugs, reduce
the use of unnecessary antibiotics, achieve rapid treatment of diseases and reduce the
resistance of microorganisms to antibiotics in the body [12]. On the basis of previous
studies, this study summarized the possible defects in the methods of existing studies,
and used 16S rRNA high-throughput sequencing technology to detect the species and
abundance of pathogenic bacteria in the pus of forest musk deer abscess at the genus level.
The sequencing results of six pus samples showed that the dominant pathogenic bacteria
in the pus of the same individual were relatively uniform, and the relative abundance in
the flora was extremely high. In such cases, abscesses can be attributed to lesions in the
body caused by specific bacteria. There were three dominant pathogenic bacteria detected
in this study, namely Trueperella pyogenes, Fusobacterium necrophorum and Bacteroides fragilis.
Trueperella pyogenes has been confirmed by researchers to be one of the pathogenic bacteria
causing forest musk deer abscess [18]. Because Fusobacterium necrophorum and Bacteroides
fragilis are obligate anaerobic bacteria [19,20], which cannot be cultured and proliferate
by solid medium under aerobic conditions, these two bacteria could not be detected by
the research methods reported in the existing studies. So far, there is no report of these
two bacteria as the main pathogenic bacteria in forest musk deer abscesses. Our results
demonstrate that diagnosis of pathogenic bacteria in abscess disease by high-throughput
sequencing technology can not only overcome limitations of bacterial culture and improve
the sensitivity of detecting known pathogenic bacteria, but also detect other potential
pathogenic bacteria.

Fusobacterium necrophorum is one of the common anaerobic bacteria that can cause ab-
scesses and respiratory infections in animals [21]. Common diseases caused in commercial
animals are liver abscess [22], endometritis [23] and foot rot [24] in cattle and sheep, while
Fusobacterium necrophorum has also been reported in wild animals such as North American
bighorn sheep [25], white-tailed deer [26,27], tundra caribou and alpacas [28]. This study is
the first to discover forest musk deer abscess disease caused by Fusobacterium necrophorum
as the dominant pathogen. Fusobacterium necrophorum infection has a certain seasonality,
often occurring in rainy, humid and hot seasons [29]. Therefore, it can be speculated
that the main pathogenic bacteria in the three body-surface pus collected in summer is
Fusobacterium necrophorum, but the reason why there is no Fusobacterium necroptosis in the
pus samples collected in winter may be due to the influence of seasons. As an obligate
anaerobic bacterium, Fusobacterium necrophorum overcomes the high oxygen concentration
environment of the body organs and the phagocytosis mechanism of the body’s immune
system through the cytotoxins secreted by itself and other facultative bacteria in the process
of infecting the body [30]. Among them, leukotoxin is considered to be the main pathogenic
factor of Fusobacterium necrophorum infection [31], and it is specific to neutrophils of rumi-
nants and humans [32]. During the infection of the body, the leukotoxin and endotoxin
secreted by Fusobacterium necroptosis act synergistically to produce toxicity to phagocytes
and protect them from being swallowed [30]. Self-secreted leukotoxins cooperate with a
series of virulence factors, such as platelet aggregation factors, to produce fibrin structures
that can protect bacteria from phagocytosis by immune cells [33]. The hemolysin secreted
by itself can destroy red blood cells and affect the oxygen transport capacity [34]. Mean-
while, the synergistic action of Fusobacterium necrophorum and other facultative bacteria
facilitate secretion of endotoxins and platelet aggregation factors that induce intravascular
coagulation [35], establishing the anaerobic microenvironment suitable for the growth
of clostridium necrosis. As a result, Fusobacterium necrophorum infection on the surface
of forest musk deer may be attributed to the individual injury of forest musk deer in a
dark and humid enclosure. Factors such as the hot temperature in summer, the dark and
humid environment in the enclosure, and residual feces and urine provide opportunities
for Fusobacterium necrophorum to infect the body. Due to the small number of samples in
this study and of only pus samples from the same body part, collected in the same season,
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this inference cannot be confirmed by the experimental data. The collection quantity can be
further increased to compare the bacterial community structure of the pus samples from
different parts of the body in the same season and the bacterial community structure of
the pus samples from the same part of the body in different seasons to determine whether
the main pathogenic bacteria types of the affected individuals are affected by the season,
environment and lesion site.

Bacteroides fragilis, as an opportunistic pathogen, can also secrete a variety of pathogenic
factors. When the host mucosa is damaged, it can invade the submucosa and cause infec-
tion. It can also cause suppurative infection accompanied by abscess and acute and chronic
diarrhea through increased blood flow to other organs of the body, such as intestinal tract,
abdominal cavity, liver, lung and brain tissue [36].

According to a published review, Trueperella pyogenes is the most common facultative
bacterium that can coinfect with Fusobacterium necrophorum [19]. However, the results of
this study show a highly significant negative correlation between the two. The reason for
the lack of detection of Fusobacterium necrophorum infection in the visceral pus samples may
be due to the seasonal sampling effect or the absence of infection by the pathogen in the host
organism. The reason for the dominance of Fusobacterium necrophorum in the body surface
pus samples may be due to the longer duration of the disease, as the anaerobic environment
of the affected area is no longer suitable for the survival of other bacteria during the initial
stage of the lesion. This leads to the survival and proliferation of Fusobacterium necrophorum
in a suitable environment, causing infection and disease in the host organism.

In summary, this study used high-throughput sequencing technology to detect the
types of pathogenic bacteria in the pus of forest musk deer abscess disease at the ge-
netic level. In addition to confirming the presence of recognized pathogens, previously
unreported pathogenic bacteria were also discovered, providing a new approach to the
diagnosis of abscess disease pathogens. Due to limitations in sample size and sequencing
fragment length, the number of detected pathogenic bacteria in the results was relatively
small. Moreover, the use of 16SrRNA sequencing technology can only describe bacterial
populations and cannot detect the presence of pathogens such as viruses.

Given this, in future research, the sequencing fragment length can be increased to
analyze and display more pathogenic bacteria at the species level. Secondly, the number
of samples for detection can be expanded to improve the types of pathogenic bacteria
that may exist, providing a basis for clinical diagnosis and drug use. Finally, with the
development of high-throughput sequencing technology and the decrease in sequencing
costs, metagenomic sequencing technology can be used to improve the pathogen types of
abscess disease and analyze the possible pathogenic mechanisms of different pathogens
from the perspective of microbial function, providing a reference for further drug and
vaccine development.

5. Conclusions

In terms of pathogen detection, high-throughput sequencing technology can overcome
the limitations of bacterial culture for detection of pathogens. Two pathogens, Fusobacterium
necrophorum and Bacteroides fragilis, were detected for the first time in forest musk deer
abscesses by using this technology.
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