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Simple Summary: Ocean acidification can significantly affect marine organisms, but, so far, no
studies have examined its effects on the intestinal flora of crustaceans. Therefore, in this study, the
impact of ocean acidification on the gut morphology and intestinal flora of Exopalaemon carinicauda
was explored. It was found that, after exposure to acidified seawater, the integrity of E. carinicauda’s
intestinal structure was disrupted and there was a significant change in the flora’s composition.
However, the control and acidification groups did not differ significantly in terms of the α diversity.
Functional prediction of the acidification groups also suggested that pathways related to metabolism
were enriched. The findings indicated that ocean acidification led to an imbalance in the intestinal
flora of E. carinicauda, which would probably influence the absorption of nutrients and aggravate the
susceptibility of shrimp to pathogens.

Abstract: Marine crustaceans are severely threatened by environmental factors such as ocean acid-
ification, but, despite the latter’s negative impact on growth, molting, and immunity, its effects
on intestinal microflora remain poorly understood. This work studied the gut morphology and
intestinal microflora of Exopalaemon carinicauda, grown in seawater of different pH levels: 8.1 (control
group), 7.4 (AC74 group), and 7.0 (AC70 group). Ocean acidification was found to cause intestinal
damage, while significantly altering the microflora’s composition. However, the α-diversity did
not differ significantly between the groups. At the phylum level, the relative abundance of Pro-
teobacteria decreased in the acidification groups, while at the genus level, the relative abundance of
Sphingomonas decreased. Babeliales was a prominent discriminative biomarker in the AC74 group,
with Actinobacteriota, Micrococcales, Beijerinckiaceae, Methylobacterium, and Flavobacteriales being
the main ones in the AC70 group. The function prediction results also indicated an enrichment
of pathways related to metabolism for the acidification groups. At the same time, those related to
xenobiotics’ biodegradation and metabolism were inhibited in AC74 but enhanced in AC70. This is
the first study examining the impact of ocean acidification on the intestinal microflora of crustaceans.
The results are expected to provide a better understanding of the interactions between shrimp and
their microflora in response to environmental stressors.

Keywords: ocean acidification; Exopalaemon carinicauda; intestinal microflora

1. Introduction

Ocean acidification has become a major environmental concern due to the increasing
annual discharge of CO2 into the atmosphere as a result of human activities. As pointed
out in the report of the Intergovernmental Panel on Climate Change (IPCC), a reduction of
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0.12 has already been noted in the average pH of oceans since 1880 [1], with projections
indicating further declines from the current pH of 8.1 to a pH of 7.8 and 7.4 by 2100 and
2300, respectively [2,3].

Calcifying marine organisms, including mollusks, reef-forming corals, and crustaceans,
are particularly affected by ocean acidification. For instance, early studies have reported
that changes in the pH value of aquaculture waters had adverse effects on the survival rate,
feeding, and growth of Penaeus indicus and Paphia mdabarica [4,5]. Elevated PCO2 also has a
negative effect on the growth of swimming crabs (Portunus trituberculatus) [6]. Similarly,
exposure to acidified seawater reduced the survival rate and growth of Palaemon pacificus [7],
while in the case of Carcinus maenas and Asterias rubens, impaired food intake and poor
growth were noted [8]. In addition, raising crabs (Petrolisthes cinctipes, Hyas Araneus, and
Cancer magister) in environments of low pH also induced metabolic stress, alongside poor
survival rates, growth rates, and hatching rates, as previously reported [9–11].

An increasing number of studies have established that ocean acidification may also
affect the intestinal flora of marine organisms. The intestinal microbiota represents a
complex ecosystem of microorganisms that live in symbiosis with the host, and as such,
they contribute to many of the latter’s physiological processes [12]. For example, a healthy
intestinal microbiota generates useful metabolites for the host, while conferring protection
against colonization by pathogenic microorganisms. In contrast, dysbiosis, characterized by
an imbalance in the microbiota, can yield harmful metabolites that not only alter immunity
but also heighten susceptibility to diseases [13,14]. It has been reported that in oysters,
stress induced by ocean acidification could reduce the abundance of probiotics in their
intestinal tracts; thereby, favoring the proliferation of pathogenic microorganisms, which
could eventually disrupt the physiology and health of the oysters [15]. Similarly, following
exposure to ocean acidification stress, distinct dysbiosis was observed in the intestinal
microflora of sea bream, and this was characterized by the absence of Firmicutes from the
bacterial communities, along with an increased relative abundance of Proteobacteria at
higher CO2 levels [16].

Crustaceans play a significant role in world aquaculture and marine ecosystems
but they are highly sensitive to ocean acidification. So far, most studies have examined
the impact of ocean acidification on the development, molting, and immunity of crus-
taceans [17–19], but none have explored the effects on their intestinal flora.

E. carinicauda is a commercially important shrimp species, as compared with other
species; it possesses distinct advantages in terms of fast growth, short breeding cycle,
and strong adaptability. Such features also make it a suitable organism for research on
crustacean biology [20–23]. Indeed, as a model species of marine crustaceans, E. carinicauda
is often used in the study of environmental stress, such as salinity [24] and temperature [25].
The current study used E. carinicauda, grown in acidified seawater of different pH levels, to
explore changes in their gut morphology and the composition of their intestinal microflora.
It is expected that the findings will improve current understanding of the adaptation
mechanisms of E. carinicaudato in acidic environments.

2. Materials and Methods
2.1. Experimental Design and Sample Collection

Healthy E. carinicauda (6.5 ± 0.2 cm in length and 1.426 ± 0.03 g in weight) were
randomly selected from a local aquaculture pond at Jiaxin Aquatic Products Company,
Lianyungang city, Jiangsu province, China. These shrimp were cultured in three tanks
containing 50 L of aerated and filtered seawater. After being allowed to acclimatize for seven
days, they were randomly assigned to the following three groups (with three repetitions
in each group; each with 30–40 shrimp): the control group (CONT), in which the shrimp
were reared in seawater at a pH of 8.10 ± 0.05; the moderate acidification group (AC74), for
which the seawater was at a pH of 7.40 ± 0.05; and the severe acidification group (AC70),
with a pH of 7.00 ± 0.05. To create the different conditions, ambient air was continuously
bubbled into the aquarium tank for the control group, while for the acidification groups,
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mixtures of air–CO2 were used, with the pH also controlled using an acidometer (LICHEN,
Shanghai, China). During the experiment, the pH of each aquarium was monitored and
maintained manually. The other water parameters, such as temperature (20 ± 1.1 ◦C),
salinity (25 ± 0.5), and dissolved oxygen (5.7 ± 0.2), were maintained and evaluated based
on standard methods (APHA, 2005) [26]. Commercial feed was given to the shrimp twice
a day (8:00, 18:00). The unfed feed, waste, and dead shrimp were collected daily. And
after 30 days of exposure to CO2, the survival rate was calculated and a survival curve was
drawn. Intestinal tissues, including the contents, were collected from each sampled shrimp
under aseptic conditions using sterile tweezers and scalpels. In each case, three intestines
were put together as one sample. The 17 samples (CONT: 6 samples, AC74: 6 samples,
AC70: 5 samples) were then rapidly frozen in liquid nitrogen prior to storage at −80 ◦C,
until required for DNA extraction.

2.2. Assessment of Intestinal Morphology

After 30 days of exposure to CO2, the intestines of three shrimps from each tank
were collected. A 24-h tissue fixation process was then performed at 4 ◦C using 4%
paraformaldehyde, and this was followed by sample dehydration using varying ethanol
concentrations (75% alcohol for 4 h, 85% alcohol for 2 h, 90% alcohol for 2 h, 95% alcohol for
1 h, anhydrous ethanol I for 30 min and anhydrous ethanol II for 30 min). The samples were
subsequently subjected to acetone and xylene treatment to make the tissues transparent, and
after being embedded in paraffin, 3-µm thick sections were cut. The latter were eventually
stained with hematoxylin and eosin (HE) before being observed under a microscope
(OLYMPUS, DP26).

2.3. Extraction of DNA and Sequencing

Genomic DNA was extracted prior to high-throughput sequencing, as previously
described [27]. Briefly, this involved DNA extraction using the Magnetic Soil and Stool DNA
Kit (TIANGEN®, Beijing, China), according to the manufacturer’s instructions, followed by
assessment of the DNA quality using agarose gel electrophoresis. The V3-V4 region of the
16S rRNA gene was amplified using specific primers (341F 5′ CCTAYGGGRBGCASCAG 3′

and 806 R 5′ GGACTACNNGGGTATCTAAT3′) [28], then sequenced on the NovaSeq 6000
Illumina platform (San Diego, CA, USA). In order to obtain high-quality clean reads, raw
reads were filtered according to the following rules: (1) we used CUTADAPT 3.3 software
to intercept and filter data, and the minimum sequence length was 20 bp; (2) FLASH [29]
(Mago and Salzberg 2011) (1.2.11) software was used to splice the double-ended data, with
the length of min-overlap being 10 bp and the max mismatch density being 0.2; (3) FLASH
(1.2.11) software was used to control the quality of the spliced data, the qualified quality
Phred was 19 and the unqualified percent limit was 15.

2.4. Analysis of Microbial Diversity and Predicted Functions

Analysis of amplicon sequencing data was performed with QIIME 2 (version QIIME2-
202006, (https://www.qiime2.org, accessed on 15 March 2022), with the DADA2 plugin first
used for denoising single-end demultiplexed reads. The resulting operational taxonomic
units (OTUs) [30] were subsequently classified into taxa with a naïve Bayes classifier
trained on the SILVA v132 database (clustered at 99% identity, with only the V3–V4 region
of 16S rRNA sequences extracted) (https://www.arb-silva.de, accessed on 15 March 2022).
Shared and unique OTUs were eventually identified using Venn diagrams, while relative
abundances of the different taxa were displayed as stacked bar plots that were generated
after using the “sum” mode to group the relative abundances of replicate samples.

Phylogenetic diversity was analyzed with FastTree [31], and, prior to additional
diversity analysis, the dataset was standardized via rarefying the feature table to the lowest
number of reads in the samples. The q2-diversity plugin was then used to calculate α- and β-
diversity metrics, namely the Shannon diversity index, Chao1 index, Good’s coverage, and
Bray–Curtis distances. The dissimilarity between microflora structures was also determined

https://www.qiime2.org
https://www.arb-silva.de
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using principal coordinate analysis (PCoA) and analysis of similarity (ANOSIM) based on
the Bray–Curtis distances. In addition, differentially abundant taxa (biomarkers) between
the groups were identified using linear discriminant analysis (LDA) effect size (LEfSe) with
an LDA threshold of >3.5 [32]. The functional profiles of the intestinal microflora were
eventually predicted using PICRUSt2 (https://github.com/picrust/picrust2/, accessed on
15 March 2022), with the STAMP package (version 2.1.3) subsequently used to statistically
analyze and visualize the results.

2.5. Statistical Analysis

The value of each variable was presented as the mean ± SE. SPSS (Ver 17.0) was then
used for one-way analysis of variance (ANOVA), as well as Duncan multiple range tests.
All data were firstly examined for homogeneity of variance using SPSS version 17.0. Results
with p-values < 0.05 were considered to be statistically significant.

3. Results
3.1. Survival Rate, Histological Structure of Intestinal Tissues

In the present study, the survival of E. carinicauda was significantly reduced in pH 7.4
and pH 7.0 compared to control pH 8.1 (Figure S1 Supplementary Materials). This work
studied the impact of acidification stress on the integrity of E. carinicauda’s intestinal tissues.
For the control group, the intestinal mucosa had a normal morphology (Figure 1A), while
for the AC74 and AC70 groups, exposure to the lower pH induced obvious pathological
alterations. In particular, deformation, the presence of cavitation bubbles, and exfoliation
from the basement membrane were observed for the epithelial cells (Figure 1B,C).
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Figure 1. Intestinal tissues of E. carinicauda that had been stained with HE after exposure to different
pH conditions for 30 days: (A) the control group (CONT), ×400; (B) the pH 7.4 group (AC74), ×400;
(C) the pH 7.0 group (AC70), ×400; (a) indicates the brush border; (b) shows the epithelium; and (c)
represents the nuclei.

3.2. Characteristics of the High-Throughput Sequencing Data

From 17 samples, a total of 2,029,062 raw reads were obtained, with subsequent
merging and quality control yielding a total of 1,787,879 raw tags (Table S1 Supplementary
Materials). Potential chimeric sequences were then removed with vsearch (2.16.0), resulting
in an average number of 94,456 clean tags per sample (a total of 1,605,753 clean sequences).
Following data filtering, 4657 OTUs were identified, of which 769 were common to the
three groups. The results also showed that the control, AC74, and AC70 groups had 941,
1070, and 987 unique OTUs, respectively (Figure 2A). In addition, rarefaction curves based
on OTU numbers were close to the horizontal state, suggesting that the sequencing data for
each sample sufficiently reflected intact bacterial communities (Figure 2B). For all samples,
the Good’s coverage index was 0.9989, thereby suggesting an adequate sequencing depth.

https://github.com/picrust/picrust2/
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3.3. Diversity of the Intestinal Microflora

α-diversity metrics, reflecting the abundance and diversity of microbial populations,
were calculated for each group to determine how E. carinicauda’s intestinal microflora was
affected by OA stress. In this case, the control, AC74, and AC70 groups had a Chao1
index of 631.691, 717.876, and 758.405, respectively, while their Shannon index was 5.262,
6.293, and 6.584, respectively (Table 1). However, even though the two indices varied
between the three groups, they were not significantly different. Furthermore, the PCoA
plot indicated that exposure to OA stress induced significant changes to the intestinal
microflora’s structure (Figure 3).

Table 1. α-diversity metrics of the intestinal microflora for the three groups (CONT, AC74, and
AC70).

Alpha
Diversity

Mean Standard Deviation
Significance

CONT AC74 AC70 CONT AC74 AC70

Chao 1 631.691 717.876 758.405 168.187 170.615 375.091 p = 0.686
Shannon 5.262 6.293 6.584 0.768 0.584 1.491 p = 0.125
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3.4. Community Structures of the Intestinal Microflora

For all groups (i.e., control and acidification), the intestinal microflora consisted of
Proteobacteria, Firmicutes, Actinobacteriota, and Bacteroidota as the dominant phyla
(Figure 4). In comparison with the control, AC74 and AC70 had a significantly higher
relative abundance of Actinobacteriota (Figure 5A). On the other hand, there was a decrease
in the abundance of Proteobacteria in an OA stress-dependent manner (Figure 5B).
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At the genus level, Sphingomonas, Photobacterium, and Lactococcus were dominant in
the three groups (Figure 6). More specifically, the AC74 and AC70 groups were significantly
enriched in Photobacterium compared with the control. In contrast, OA stress significantly
decreased the relative abundance of Sphingomonas from 15.06% for the control to 0.13%
and 1.77% for AC74 and AC70, respectively. In a similar way, the lower pH decreased the
relative abundance of Lactococcus, with relative abundances of 14.89%, 8.41%, and 6.90%
for the control, AC74, and AC70 groups, respectively.
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LEfSe analysis using an LDA threshold of >3.5 identified 34 differentially abundant
(biomarker) taxa between the three groups (Figure 7). Six of these were enriched in the
control, with Sphingomonadaceae and Chitinophagales being the most significant ones.
Similarly, for the AC74 group, 22 biomarker taxa were found, with the top 5 including
Babeliales, Dependentiae, Babeliae, Vermiphilaceae, and Sulfitobacter. Finally, the AC70
group had six differentially abundant taxa, namely Actinobacteriota, Micrococcales, Beijer-
inckiaceae, Methylobacterium, Flavobacteriales, and Myxococcota.
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3.5. Functional Prediction of the Intestinal Microflora

PICRUSt2 analysis indicated that 15 MetaCyc pathways were significantly different
between the control and AC74 groups (p < 0.05) (Figure 8A). In particular, the pathways
associated with environmental information processing, genetic information processing,
metabolism, amino acid metabolism, energy metabolism, and lysine biosynthesis were
enriched in the AC74 group compared with the control, while those associated with
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metabolism, arginine and proline metabolism, carbohydrate metabolism, pentose and
glucuronate interconversions were blocked. There were also two pathways that differed
significantly between the control and AC70 groups (p < 0.05) (Figure 8B), with the latter en-
riched in metabolism, naphthalene degradation, metabolism of terpenoids, and polyketides,
as well as pathways related to tetracycline biosynthesis.
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4. Discussion

The study of gut microbiota has attracted significant interest in recent years, as it influ-
ences the ability of marine organisms to adapt to environmental conditions. Crustaceans,
being calcifying organisms, are especially susceptible to the effects of ocean acidification.
However, it is still unclear how their gut microbiota responds to stress induced by ocean
acidification. Therefore, using a high-throughput sequencing approach, this work seeks to
determine how E. carinicauda’s intestinal microflora is affected by ocean acidification stress.

The ability of shrimp to absorb nutrients is largely dependent on their intestinal epithe-
lium and microvilli. Thus, the structural integrity of the intestinal mucosa is crucial for their
health [33]. However, it has been reported that environmental stress could damage that
mucosal layer in the intestine [33,34], with previous studies showing obvious damage to the
intestinal mucosal epithelial cells of Litopenaeus vannamei after high and low pH stress [35].
Similarly, the current work showed clear pathological damage to the intestinal mucosa of
the AC74 and AC70s groups after exposure to acidified seawater, hence indicating that
ocean acidification could disrupt both the structural integrity and the digestive functions
of the intestine.

For aquatic animals, environmental stressors can alter the diversity of their intestinal
microbial flora, a feature that is closely related to their health [36,37]. For instance, it
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has been reported that an increase in water temperature can significantly decrease the
α-diversity of intestinal microbial communities in mussels [38]. Similarly, in the case of
Macrobrachium nipponense, the α-diversity decreased after exposure to hypoxic stress for
four weeks [39]. However, in this study, the groups (i.e., control and acidification) did not
differ significantly in terms of their α-diversity metrics, with similar results reported for
the Pacific oyster Crassostrea gigas [15]. On the other hand, β-diversity analysis confirmed
obvious differences in the structure of the intestinal microflora for E. carinicauda reared
at pH 7.4 and 7.0. Increasing evidence shows that crustaceans could be more susceptible
to pathogenic infections when their intestinal flora is disrupted. Therefore, the dysbiosis
observed in E. carinicauda’s intestinal microflora after exposure to ocean acidification may
facilitate the proliferation of opportunistic pathogens and compromise their health.

This work also found that the control and acidification groups differed significantly
in terms of the intestinal microflora composition. Specifically, the relative abundance of
Proteobacteria and the Firmicutes/Bacteroides ratio decreased with increasing acidification
stress. Proteobacteria typically dominate the intestinal flora of marine shrimp [40,41], and
studies have shown that a decrease in their relative abundance is often correlated with an
imbalanced or unstable intestinal flora. Therefore, Proteobacteria are often less abundant in
the intestine of shrimp infected by pathogens or experiencing slow growth [42,43]. Such
decrease in the abundance of Proteobacteria may also hinder the absorption of nutrients in
E. carinicauda, thus hampering the latter’s ability to uptake nutrients under acidification
stress. The Firmicutes/Bacteroides ratio is considered to be significantly correlated to
the composition of the intestinal flora. For instance, it has been reported that the relative
abundance of Bacteroidetes and Firmicutes in shrimp intestine is not related to carbohydrate
degradation efficiency. However, a higher ratio of Firmicutes to Bacteroides translates
into enhanced intestinal transport and ability to digest nutrients [44], with this condition
being easily influenced by the culture environment and the nutritional composition of the
feed [45]. In this study, the acidification groups had a lower Firmicutes/Bacteroides ratio,
which suggests a reduced ability for intestinal transport and digestion in E. carinicauda
under acidification stress.

At the genus level, E. carinicauda’s intestine was dominated by Photobacterium and Sph-
ingomonas, as previously reported in the case of L. vannamei [46] and Panulirus Homarus [47].
Photobacterium is a marine bacterium of the Vibrio family, and while some members of this
genus are known to be pathogenic [48], other species have more symbiotic relationships
with their hosts, which include fish and crustaceans [49]. It was previously reported that the
abundance of luminescent bacteria in the intestines of Nile tilapia and L. vannamei increased
after salinity stress [50]. Similarly, the current work observed an increase in the abundance
of Photobacterium after exposure to acidified seawater, which indicates that Photobacterium
was a symbiotic bacterium but pathogenic under the experimental conditions. Liu et al.
(2016) [51] investigated two pathogenic Photobacterium strains isolated from E. carinicauda,
with both being responsible for mortality in E. carnicauda and L. vannamei. Their results
also suggested that Photobacterium was a common shrimp pathogen, in a similar way to
Vibrio parahaemolyticus and V. alginolyticus. The current results showed an increase in the
abundance of Photobacterium with increasing ocean acidification stress, which indicates
that such stress could heighten the likelihood of shrimp infection through opportunistic
pathogens. Sphingomonas, a non-spore-forming Gram-negative bacterium, is ubiquitous in
nature and is considered to be a conditional pathogen that may cause human infections [52].
Therefore, the observed abundance of these genera indicates that ocean acidification may
increase the chances of opportunistic bacteria or pathogenic bacteria adhering to or pene-
trating the damaged intestinal epithelium of shrimp, thus damaging the latter’s intestinal
immunity. These results also showed that the acidification of oceans can decrease the
relative abundance of probiotics, hence affecting the growth of shrimp while promoting
the proliferation of pathogenic species in shrimp intestines.

Changes in E. carinicauda’s intestinal microflora composition in response to ocean
acidification stress were also associated with functional changes. The predicted func-
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tions revealed that, for the AC74 group, metabolism, amino acid metabolism, and en-
ergy metabolism were the main pathways to be significantly enriched, which indicated
that ocean acidification stress induced a rapid proliferation of the intestinal microflora.
An enrichment of similar pathways involved in the proliferation of microflora, namely
metabolism, naphthalene degradation, metabolism of terpenoids and polyketides, and
tetracycline biosynthesis pathway, were also noted for the AC70 group. The increased
consumption of nutrients as a result of microbial proliferation may eventually lead to host
malnutrition [15]. According to previous reports, environmental mutations and exposure
to environmental pollutants may also significantly alter the intestinal microbiota of aquatic
animals [34,50,53–55]; thus, inducing inflammation and immune disorders in the host [56].

It should be noted that, in the AC74 group, pathways related to arginine and proline
metabolism, carbohydrate Metabolism, and glycolysis were significantly inhibited. In
particular, the lower catabolism of carbohydrates via the intestinal microflora could provide
the host with an additional energy source for coping with the ocean acidification stress [27].
However, enhanced naphthalene degradation was also noted for the AC70 group, which
indicated that, under ocean acidification stress, the microflora would consume the energy
source within E. carinicauda’s intestine more rapidly. This, in turn, would negatively impact
the health of E. carinicauda.

5. Conclusions

A decrease in seawater pH damaged the morphological structure of E. carinicauda’s
intestine, resulting in a digestive disorder. The lack of important functional phyla, such as
Proteobacteria, may contribute to an imbalance in the intestinal flora, thereby adversely
affecting the absorption of nutrients. Additionally, the excessive growth of potential
pathogens and the resulting nutrient consumption may cause E. carinicauda to be more
susceptible to diseases. Finally, with more severe ocean acidification stress, the energy
demand of the intestinal flora may increase, leading to a potential energy deficit in E.
carinicauda, thus posing significant challenges to its overall health.

Supplementary Materials: The following supporting information can be downloaded at: https://
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(pH7.4 and 7.0).
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