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Simple Summary: In the broiler farming industry, accurately weighing broilers is essential. Camera-
based weighing systems offer a solution without requiring expensive platform weighers. However,
existing computer vision methods for estimating broiler weight are limited to young broilers and
become less accurate as broilers age due to increased density and weight imbalance. To tackle this, a
new approach is introduced in this paper. It uses a segmentation network (Mask R-CNN) with depth
images captured by a 3D camera to isolate broilers. Artificial and learned features are combined using
a feature fusion module, and these features are used to estimate broiler weight through gradient
boosting decision trees (GBDT). The method excels in accurately estimating the weight of individual
broilers within complex scenes and holds promise for enhancing broiler weight estimation methods.

Abstract: Broiler weighing is essential in the broiler farming industry. Camera-based systems can
economically weigh various broiler types without expensive platforms. However, existing computer
vision methods for weight estimation are less mature, as they focus on young broilers. In effect,
the estimation error increases with the age of the broiler. To tackle this, this paper presents a novel
framework. First, it employs Mask R-CNN for instance segmentation of depth images captured by
3D cameras. Next, once the images of either a single broiler or multiple broilers are segmented, the
extended artificial features and the learned features extracted by Customized Resnet50 (C-Resnet50)
are fused by a feature fusion module. Finally, the fused features are adopted to estimate the body
weight of each broiler employing gradient boosting decision tree (GBDT). By integrating diverse
features with GBTD, the proposed framework can effectively obtain the broiler instance among many
depth images of multiple broilers in the visual field despite the complex background. Experimental
results show that this framework significantly boosts accuracy and robustness. With an MAE of
0.093 kg and an R? of 0.707 in a test set of 240 63-day-old bantam chicken images, it outperforms
other methods.

Keywords: broiler; depth image; instance segmentation; weight estimation; gradient boosting
decision tree

1. Introduction

It is economically important to obtain the weight information of broilers in chicken
farms, as weight is a crucial indicator of broiler growth. In intelligent poultry farms,
broiler weight is closely related to broiler yield, which most directly reflects their growth.
Meanwhile, it is essential to monitor, record, and predict broilers’ body weight for rational
intervention in their feed intake and health management, so that the optimal market timing
can be determined. In addition, broiler weight information can be used to fit the growth
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curve, reveal the growth pattern of broilers, and estimate the weight uniformity for effi-
cient flock management. Correspondingly, broiler weight information is an indispensable
statistic in optimizing feed-to-meat ratio, selecting proper feed, and facilitating disease pre-
vention and control during the breeding process. Therefore, it is vital to estimate the weight
of every individual broiler in a quick and harmless way. Based on different approaches to
collection and measurement, broiler weighing can be roughly divided into two categories:
traditional methods and computer vision-based methods.

Traditional methods utilize direct manual weighing, during which a single broiler
is repeatedly picked and placed on hanging scales, electronic scales, floor scales, or body
weight boxes, and the average value obtained from the electronic scale is the body weight
of a single broiler. Simple as they may appear, the traditional methods are both time-
consuming and laborious. Moreover, some traditional weight prediction methods are
based on the manual collection of morphometric measurements, which often involves
many features including beak length, body length, keel length, thoracic circumference, toe
length, body girth, shank length, back length, shank circumference, and wing length. These
morphometric measurement data have to be manually selected and then used as features
for traditional regression models or machine learning models such as Random Forest (RF)
and Classification and Regression Tree (CRT) [1]. The manual selection process not only
takes a long time but also increases the broiler’s stress reaction, making them languid in
the subsequent breeding environment due to close contact with humans in weighing. In
severe cases, the broiler will even be emotionally disturbed. Therefore, traditional methods
are not conducive to animal welfare [2-5].

Computer vision-based methods applied in broiler farming can be traced back to
2003. De Wet et al. [6] explored the surface area and periphery of the broilers as weight
descriptors. Mollah et al. [7] developed a linear equation to predict broilers” weights
from their body surface area pixels during the 42-day rearing period. Mortensen et al. [8]
used 3D computer vision and 1D, 2D, and 3D features to predict broiler chicken weight.
Likewise, Amraei et al. [9]; Amraei et al. [10]; and Amraei et al. [11] estimated broiler
chicken weight using 2D features with SVR, ANN methods, and transfer function model,
respectively. Wang et al. [12] extracted nine features for backpropagation neural network
model construction. These studies suggest that camera-based weighing of broilers is
indeed feasible. The computer vision-based methods, which utilize cameras to capture
broiler pictures to estimate body weight, are a class of indirect methods characterized by a
unified idea.

To realize data acquisition, a top view image of the broiler is collected by a 2D or 3D
camera [13]. Using a 2D SAMSUNG digital camera (SM-N9005, Korea), Amraei et al. [9],
Amraei et al. [10], and Amraei et al. [11] captured chicken broiler images in their research,
while Mortensen et al. [8] and Wang et al. [12] employed Microsoft Kinect depth cameras
to collect 3D image data for weight estimation of free-cage broilers.

Generally speaking, a computer vision-based method consists of three stages: the
image segmentation stage, the feature extraction stage, and the weight estimation stage.
First, in the image segmentation stage, Mortensen et al. [8] used the marker-based wa-
tershed segmentation technique to partition the broiler depth image with clean and clear
background into several parts. Wang et al. [12] applied a threshold-based algorithm to sep-
arate the target broiler from depth image with a single broiler. Similarly, Amraei et al. [9],
Amraei et al. [10], and Amraei et al. [11] directly adopted threshold-based algorithms
on RGB images to obtain broiler instances. But this method will not work if the broiler
chickens do not have white feathers. In brief, none of these segmentation methods can
perfectly solve the problems of image depth with complex backgrounds and the inaccurate
segmentation of multiple broilers images. Furthermore, it is difficult to keep a balance
between segmentation effect and processing efficiency.

Second, in the feature extraction stage, Mortensen et al. [8] extracted thirteen features,
including one-dimensional, two-dimensional, and three-dimensional ones from the target
image and depth image, while Wang et al. [12] extracted nine features and Amraei et al. [10]
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extracted six features, respectively. These artificial features, extracted from the target
broiler image with its head image removed, usually including area, perimeter, eccentricity,
major axis length, and minor axis length, cause information loss. And there exists another
problem when age is used as a one-dimensional feature to estimate a broiler’s weight. In
practice, the high degree of similarity in body weight and the presence of outliers make it
more challenging to estimate the weight of a vast number of broiler chickens of the same
age. In addition, a low number of features will greatly increase the difficulty of broiler
weight estimation and the complexity of the model.

Third, in the body weight estimation stage, linear and non-linear regression equations
were used to fit between body weight and image characteristics [6]. The same technique
was applied by Mollah et al. [7], who compared multivariate linear regression, Artificial
Neural Networks (ANN), and Bayesian Artificial Neural Networks for weight estima-
tion of the broiler flock aged from 24 to 34 days, with positive performance achieved.
Amraei et al. [9,10] tried three models: support vector regression (SVR) [10], ANN with a
(1-15-1) topology [9], and Transform Function [11], obtaining desirable results on fitting the
body weight of broiler chickens aged from 1 to 42 days, with the best R? being 0.98. More-
over, Wang et al. [12] applied ANN with a (1-19-1) topology trained by a backpropagation
algorithm (BP) to estimate the body weight of broiler chickens aged from 3 to 30 days and
gained excellent results, with the R? being 0.9942 and RMSE being 0.048. However, the
above-mentioned studies have mainly focused on the measurement of the body weight of
young broilers. The body weight measurement of broilers older than 42 days has not been
addressed, let alone of those which are raised for 60 days, 90 days, or even 120 days. The
results of existing research indicate that when estimating the body weight of broiler chick-
ens, the older the poultry become, the more errors arise in weight estimation because the
chicken flocks grow more unevenly and the broiler house tends to be more crowded [8-12].

To tackle the above problems, we propose a framework based on multi-feature fusion
and a gradient boosting decision tree, which is referred to as MFF-GBDT, for automatically
and accurately estimating the body weight of broiler chickens with great day age. In
comparison, existing approaches are not so friendly to the body weight estimation of
older broiler chickens as they require some level of manual operation in image and feature
selection, image segmentation, and morphometric measurement extraction.

The proposed framework is composed of three modules: an instance segmentation
module, a feature fusion module, and a weight estimation module. In the first module,
the depth image of a single broiler or multiple broilers will be used as input of the Mask
R-CNN [14] to segment each broiler instance accurately and efficiently. Once the broiler
instance is segmented by the instance segmentation module, it is extracted and fused
with artificial and learned features from the target image and depth distance image in the
second module. The third module adopts the fused features and the gradient boosting
decision tree (GBDT) algorithm to estimate the body weight of broiler chickens. After the
model is trained, the weight can be automatically obtained by inputting the image data.
Encouragingly, the proposed framework performed well in our dataset with 200 bantam
chickens (63-day-old).

The main contributions of our work are as follows: (i) The proposed framework can au-
tomatically and accurately estimate the body weight of older broiler chickens, outperform-
ing the advanced ANN method, with an MAE of 0.093034 kg and an R? of 0.706968 achieved
in the test set for 63-day-old bantam chickens. (ii) We extracted new artificial features and
designed a method of fusing learned features and artificial features, which can effectively
reduce the error of weight estimation. (iii) A depth image dataset was established for the
weight estimation of broiler chickens with great day age. What is more, the improved
method can be universally applied to the weight estimation of other poultry.



Animals 2023, 13, 3721

4 0f22

2. Materials and Methods
2.1. Image and Weight Data Collection

We used a “Intel RealSense D435i” depth camera to collect the raw data from 63-day-
old broiler chickens in Feilei Village, Leizhu Town, Xinxing County, Guangdong Province,
from 4 February to 6 February 2021. The image data of a single broiler were collected
from 200 bantam broiler chickens, and the image data of multiple broilers were collected
from 286 bantam broiler chickens. A total of 1303 pseudo-color images and depth distance
images were collected. Pseudocolor RGB images were mapped from depth images using
the JET color mapping function, one of the most commonly used color mapping algorithms,
which has a high contrast to effectively highlight broilers in the image. Therefore, unlike
some research which selects the optimal color space method for different segmentation
problems [15,16], we used a simple RGB color space for research. The partial data of
single broiler images and multiple broiler images are shown in Figure 1. Notably, all
animal procedures in this present study were approved by the South China Agricultural
University’s Experimental Animal Ethics Committee (Protocol #2020c052).

Figure 1. The partial data of a single broiler image and multiple broilers images.

The image acquisition method of a single broiler is shown in Figure 2. First, we
fixed a depth camera on the top of an electronic scale (about 1 m above the ground) to
capture the depth images of broilers vertically, one chicken at a time. While weighing the
broiler, 5 or 6 images for each chicken were acquired. The depth image had a resolution of
1280 x 720 pixels, and 1198 pseudo-color images and depth distance images were collected
in total.

On the other hand, to collect the depth images of multiple broilers, we held a depth
camera and walked randomly in the net-raised chicken house, which is a more complex
environment. At a height of about 1 m, we took pictures from the top when 2 to 3 chickens
were in the field of view. After the broilers were photographed, each chicken was weighed
individually and its weight information was recorded. In this way, 105 pseudo-color
images (depth images) and depth distance images (distance matrix saved in Z16 format)
with complex background were collected. Weight data were necessary for training the
model in the experiment, so the broilers were photographed and weighed in the training
stage. After the model training was completed, only the images and videos of broiler
chickens were needed in real application through a camera set in a fixed height.

The histogram of the weight frequency distribution of 200 broiler chickens in a single
broiler image set is shown in Figure 3. The mean weight was 1.598750 kg; the standard
deviation was 0.276945; the maximum weight was 2.35 kg; and the minimum weight was
0.87 kg. Due to individual differences, broilers of the same age varied in body weight. We
found that 66.61% of broilers weighed between [1.4, 1.9] kg, 22.45% of them weighed less
than 1.4 kg, and 10.93% of them weighed more than 1.9 kg. This requires the model to
be accurate enough to predict different weight levels of broilers of the same age, which is
more difficult compared with the weight estimation of broilers of different ages.
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Figure 2. Schematic diagram of a single broiler image shooting.
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Figure 3. Body weight distribution histogram of 200 broiler chickens.

2.2. Overview of the Proposed Framework

In order to accurately estimate the body weight of broiler chickens with great day
age, a framework was constructed based on multi-feature fusion and a gradient boosting
decision tree (MFF-GBDT), as shown in Figure 4. This proposed framework comprises three
modules: (1) instance segmentation module (the preprocessing stage): its main function is
to segment the collected bird’s eye-depth images of a single broiler or multiple broilers via
a pre-trained instance segmentation network; (2) feature fusion module (the second stage):
each instance image from the first stage is input to automatically extract and fuse artificial
together with learned features; (3) weight estimation module: the GBDT model is trained
by the fused features to estimate the body weight of each broiler chicken.
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Figure 4. Flow chart of the weight estimation method of broiler chickens.

2.3. Broiler Instance Segmentation Based on Mask R-CNN

For the purpose of obtaining the target image of a single broiler, we used the su-
perior Mask R-CNN model introduced by [14] to perform instance segmentation on the
collected a single broiler image and multiple broiler images. The instance segmentation
model can solve the segmentation problem caused by images with multiple broilers and
complex background. In addition, this model can well balance the segmentation effect and
segmentation efficiency.

Mask R-CNN [14] is a high-speed, high-accuracy algorithm that combines the classic
target detection algorithm, Faster R-CNN [17], and the classic semantic segmentation algo-
rithm, fully convolutional network (FCN) [18]. Faster R-CNN can quickly and accurately
complete the function of target detection, while FCN can precisely perform the function of
semantic segmentation. The Mask R-CNN structure diagram is shown in Figure 5, includ-
ing the convolutional neural network (CNN), RPN (region proposal network), RolAlign,
class regression branch, bounding box (bbox) branch, and FCN mask branch. First, the
convolution operation is performed on the depth image of broiler chickens to extract and
fuse features in the CNN module. Within this framework, Resnet50 [19] and the feature
pyramid network (FPN) are specifically used in the CNN module. Because Resnet50 is
faster than Resnet101 and the semantic information of depth images is not complicated,
there is no need to use a deeper feature extraction network. The RPN module is used to
propose the candidate bbox of broilers, which can extract the candidate bbox with great
efficiency based on anchors of different sizes and scales. Furthermore, for the pixel devi-
ation problem of Rol pooling in Faster R-CNN, Mask R-CNN provides a corresponding
RolAlign strategy which can gain fixed-size feature maps of the bbox in various sizes
without losing information. The class and bbox branches with multiple linear layers are
harnessed to predict the classification and position deviation in the box. Finally, the mask
branch composed of all convolutional layers can make accurate pixel mask predictions for
each instance object.

Specifically, we used the Mask R-CNN model and interface implemented in the
torchvision 0.8.1 library provided by pytorch to conduct a series of experiments. The model
was pre-trained on the MSCOCO [20] dataset for transfer learning. More experimental
settings are described in detail in Section 3.1. The segmentation model trained on the
mixed images of a single broiler and multiple broilers was used to segment all the target
chicken images in the image dataset with a single broiler. A total of 1198 target images
were obtained as the input for the next stage, namely the feature extraction module.
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Figure 5. Instance segmentation module and architecture of Mask R-CNN.

2.4. Extraction and Fusion of Multi-Feature

In this section, we propose a method which combines artificial features with learned
features, with the former based on manual design and extraction of 2D and 3D features,
and the latter on convolutional extraction. With regard to the method of estimating the
broiler weight based on image features [8-11,21], extracting features from broiler images is
crucial as the quality of the extracted features will directly affect the accuracy of weight
estimation. With the features appropriately selected, even if the hyperparameters are not
optimal, the performance of the model is still impressive, so there is no need to spend too
much time in finding the “best” parameters. This has greatly reduced the complexity of the
model and made it simpler.

In the past, computer vision-based estimation of broiler weight used artificial features
only. At present, we propose to utilise the learned features extracted from convolutional
neural networks (CNN) which have performed strongly in the field of computer vision, such
as object detection, image recognition, classification among others [22-28]. Following years
of development and verification, CNN has showcased irrefutable superior performance in
feature extraction. With richer features extracted by CNN, objects can be depicted in more
detail. However, even if artificial features are frequently designed and desirable results
have been attained in weight estimation, these features are not as comprehensive as they
appear to be. After all, they are designed and extracted manually, and are constrained by
a specialized dataset. Therefore, in order to balance the performance and universality in
estimating broiler weight, we integrated learned features extracted by CNN with traditional
artificial features designed by hand to mutually enhance functionality.

We adopted two methods to enrich the features used in weight estimation. One
method extracted 16 new artificial features, plus 9 existing features and obtained a total
of 25 artificial features. The other method used a combination of 2048 learned features
extracted by CNN. The 25 artificial features were extracted by using image processing
library functions of OpenCV in python language, while the learned features were extracted
by Resnet50 [19] pre-trained with broiler weight regression, and 2048-dimensional feature
vectors were extracted for each instance. After concatenating the learned feature and the
artificial feature, a 2073-dimensional fused feature was obtained, as shown in Figure 6. In
practice, we acquired the fused features on a set of instance images with size of batch-size
(B) simultaneously.
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Figure 6. Fusion of artificial and learned features.

2.4.1. Feature Synthesis and Construction Based on 2D and 3D Information

Regarding the design and selection of artificial features, some existing features are
inherited, such as projected area, contour perimeter, eccentricity, major axis length, minor
axis length, convex hull area, width of the broiler, radius of largest inscribed circle, approxi-
mate volume, and height of the broiler. Nevertheless, some of the existing features have a
high degree of similarity and, consequently, are computationally complex or difficult to
extract. For instance, the back width is similar to the width of the broiler; convex volume is
similar to volume; and surface area and convex surface area are similar to the projected area.
Thus, these features will be removed or replaced in this study. Moreover, as mentioned
previously, extracting features from the target broiler image with the head image removed
causes information loss. Therefore, after acquiring the target image, we directly extracted
features from the corresponding mask image and depth distance image without removing
the head image.

In order to address the problem of insufficient reliable features, we extracted six
new 2D geometric features based on the target image obtained by segmentation: the
area and perimeter of the approximate contour, the perimeter of the convex hull, the
maximum convexity defect which is the local maximum deviation of hull from contour, the
approximate distance from hull to the red point in Figure 7, the sum of convexity defects,
and the diameter of a circle equaled to the contour area. These features can describe broilers
in different poses to a certain extent. Through feature synthesis and construction methods,
two new 2D features were added, including the ratio of contour area to boundary rectangle
area and the ratio of contour area to convex hull area. From the collected depth distance
images, we extracted six new 3D statistical features that are simple and easy to obtain:
maximum depth, minimum depth, average depth, depth range, depth standard deviation,
and depth sum. With the aid of a feature construction method, two 3D features were added:
one is the distance between the minimum depth and the average depth, and the other is
the distance between the maximum depth and the average depth. The extracted features,
both old and new, totalled 25. Table 1 presents the detailed features and identifiers. Among
them, features 9 to 16 and features 18 to 25 are newly introduced. Features (1-16) represent
2D characteristics extracted from the target image, while features (17-25) correspond to
3D attributes extracted from the depth distance image. In addition, we also designed
experiments to verify the effectiveness and importance of the proposed features. For the
details of the experiment, see Section 3.2.1.
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Figure 7. Visualizing geometric properties.

Table 1. The extracted artificial features and identifiers.

Feature
1. Projected area 14. Maximum convexity defect
2. Contour perimeter 15. Sum of the convexity defects
3. Width of the broiler 16. Diameter of a circle equaled to the contour area
4. Height of the broiler 17. Approximate volume
5. Convex hull area 18. Maximum depth
6. Minor axis length 19. Minimum depth
7. Major axis length 20. Average depth
8. Eccentricity 21. Depth range
9. Convex hull perimeter 22. Depth standard deviation
10. Approximate contour area 23. Depth sum
11. Approximate contour perimeter 24. Distance between the minimum depth and theaverage depth
12. Ratio of contour area to boundary rectangular area 25. Distance between the maximum depth and the average depth

13. Ratio of contour area to convex hull area

The boundary rectangular box, minimum fitting rectangular box, fitted ellipse, convex
hull, approximate outline, and farthest point from hull are shown in Figure 7. Specifically,
the yellow box is the boundary rectangular box; the white box is the minimum fitting
rectangular box; the red ellipse is the fitted ellipse; the green line is the convex hull; the
cyan line is the ap-proximate outline; and the red points in contour are the farthest point
from hull. The projected area (Area) is calculated by Green’s Formula (1), where L is the
closed contour curve, and D is the closed area enclosed by L. The approximate contour
is calculated by the Douglas—Peucker algorithm with the epsilon parameter equaled to
0.01 times of the contour length.
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The maximum approximate convexity defect is formulated as
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where 7 is the number of convexity defects, (x;, y;) is the coordinate of the ith farthest
point (red point), and A;x + By + C is the approximate straight line (green line) of the ith
convexity defect.

The 3D point cloud image rendered from the depth distance image is shown in Figure 8.
Since the shooting height distance is mostly fixed, the value of each pixel in depth distance
image represents the distance from the lens plane to the point. The generated valley-shaped
depth distance image of chickens are shown in Figures 8 and 9a. From the depth distance
image, we extracted the approximate volume of chicken and depth statistical features,
including maximum depth, minimum depth, average depth, depth range, depth standard
deviation, and depth sum. The approximate volume in the 3D features was the volume of
the curved cylinder subtracting the volume of the curved cylinder surrounded by the valley-
shaped curved surface. The result obtained is only an approximate volume, as shown in the
green part of Figure 9b. The bottom area of the curved cylinder is the projected area in 2D
feature, and the highest value is the maximum value of the edge, which is approximately
the distance from the camera to the ground. The volume calculation formula is as follows:

Area x max{D(xp,y,)} — Z;n:1 D(xp,yp) )

where Area is the projected area; m is the number of target pixels; D is the depth distance;
and (xp yp) represents the pth pixel.

Figure 8. 3D point cloud map.
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(a) (b)

Figure 9. (a) 3D distance bar. (b) Schematic diagram of volume.

2.4.2. Learned Features Extracted with C-Resnet50

In the proposed framework, we used C-Resnet50 to extract learned features instead
of traditional ResNet50, where the fully connected layer is deleted. In order to make the
learned features extracted by Resnet50 more applicable for weight prediction tasks instead
of conventional classification or detection tasks, we made a small modification in ResNet50
to construct C-Resnet50 for weight regression training.

The original ResNet50 includes a fully connected layer and 49 convolutional layers. At
the primary layer, ResNet50 utilizes a convolutional layer with a 3 x 3 filter size with a stride
of 2 and a max pooling layer with a 3 x 3 filter size with a stride of 2 for downsampling.
And then the image data are continuously convoluted by residual blocks in the following
4 stages, which are generally composed of 1 x 1 convolutions, 3 x 3 convolutions, and
1 x 1 convolutions. The number of residual blocks in the 4 stages are {3, 4, 6, 3}, respectively.
After passing through the adaptive average pooling and the flatten operation, the size of
the image pixel matrix is changed to batch-size x 2048. We extended the original ResNet50
with a fully connected (FC) layer for body weight regression training. The structure of
C-Resnet50 with the extended FC layer is shown in Table 2. Each conv layer is followed
by a BN and a ReLU layer. Residual operations are performed in each block of each stage.
Downsampling is performed by the convolution in parallel with the first convolution of
stages 2 to 5 with a stride of 2. To be specific, in order to extract weight-related features,
the last FC layer of Resnet50 was extended to 3 FC layers, whose structures are (2048-1024-
512-1). After the training was completed, we retained the model parameters and used the
backbone of C-Resnet50 to extract learned features.

Table 2. Structure of C-Resnet50 with extended FC layer.

Stages 0-1 Stages 2-3 Stages 4-5
. Conv(1 x 1,128) Conv(1 x 1,512)
Conv(7 x 7,64, stride 2) x1 Conv(3 x 3,128) x4 Conv(3 x 3,512) «3

Max pool(stride 2)

Conv(1 x 1,512) Conv(1 x 1,2048)

Conv(1l x 1,64)
Conv(3 x 3,64)
Conv(1l x 1,256)

Average pool, flatten
FC_0 (1024)
FC_1(512)
FC_2(1)

Conv(1l x 1,256)
x3 Conv(3 x 3,256) X6
Conv(1l x 1,1024)

x1
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2.5. Broiler Weight Estimation Based on Gradient Boosting Decision Tree

The 25 artificial features extracted from the target image and the 2048 learned features
extracted by C-Resnet50 are numerical features. To efficiently use the features for quick and
accurate weight estimation of broiler chickens, we used the gradient boosting decision tree
(GBDT) for modeling. The weight estimation experiment of broilers adopted the LightGBM
model [29] and the XGBoost model [30], which implement the GBDT algorithm for training
and prediction. The specific design of the experiment is shown in Section 3.2.

LightGBM is a gradient boosting framework that uses a tree-based learning algorithm.
It is designed to be distributed and efficient, with faster training speed, greater efficiency,
lower memory usage, and higher accuracy, which supports parallel, distributed, and GPU
learning and is capable of handling large-scale data. XGBoost, as an optimized distributed
gradient boosting library designed to be highly efficient, flexible, and portable, implements
machine learning algorithms under the gradient boosting framework, providing a parallel
tree boosting (also known as GBDT, GBM) that solves many data science problems in a fast
and precise way.

The GBDT is an iterative decision tree algorithm in which each tree is fitted with
a negative gradient. Trained with the extracted features, the sum of the conclusions of
all trees in the algorithm is exactly the body weight of broiler chickens. Feature data
and weight data are the components of the training sample. The whole training set
S = {Xum, Ym}), where X, is the feature data and Y,, is the weight data vector. m rep-
resents the number of samples and indicates the dimension of feature. In this study,
m = 1198. When using only artificial features, the dimension of n is 25. When just using
learned features, the dimension of #n is 2048. With both artificial features and learned
features utilized, the dimension of n is 2073. The training set S was used to construct the
gradient boosting regression tree algorithm, with Fx(x) containing K regression decision
trees. The pseudo-code of GBDT training with fusion features for broiler weight estimation
is shown in Algorithm 1. A more detailed discussion is included in Appendix B.

Algorithm 1 GBDT training with fusion features for broiler weight estimation

INPUT: S ={Xyun, Yu }: Training set, X;;; is fusion features with 2073 dimension, Y,
is body weight
K: The number of regression decision trees
p: The learning rate
OUTPUT: Fx(x): Trained gradient boosting regression tree
1. Set squared loss function: LYy, f(Xmn)) = %(Ym,f(Xm,,))2
2. Initializ fy(X) = Y, where Y is the average weight, and m represents the number of samples.
3. for each tree k in K do:
4. Calculate the negative gradient according to the loss function.
_[PL o f(Xinn)) Y — fey (Xomn)
Of Knn) 1 00— 1 %)
Establish a binary regression decision tree with | leaf region Rj.
Calculate the predicted weight Cj; of each Rj.
N
Cjx = argmin ) LY, fro1(Xmn) +¢) = avg Yy
¢ Xun€Rk X €R i
7. Obtain the prediction of the kth regression decision tree and update result.

(%) = fir(X) +p,>§1 Cul(X € Ry)
p:

5
Ym =

AN

8. end for

2.6. Experimental Settings and Evaluation Metrics

All experiments, including the following instance segmentation experiments and
weight estimation experiments, were implemented on a laptop computer. The CPU config-
uration was an Intel (R) Core (TM) i7-10750H CPU @ 2.60 GHz, and a GPU GeForce GTX
1660 Ti was used.
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(a) Depth images

In the instance segmentation experiment, two evaluation metrics were selected: the
average precision (Average Precision, AP) with IoU thresholds of 0.5 and 0.75 and the
average recall (Average Recall, AR) under 10 IoU thresholds (0.50:0.05:0.95). The annotation
data required for training were manually annotated using OpenCV’s open source CVAT
software [31]. Collectively, 100 images with a single broiler and 105 images with multiple
broilers were annotated, respectively. Examples of the depth images, annotation images,
target images, and target mask images are shown in Figure 10. All randomly shuffled
depth images and target images were used for training and testing, with 70% of them as
the training set and 30% of them as the test set. The network was trained for 50 epochs with
an initial learning rate of 0.001, a batch-size of 1, and a SGD optimizer. See the source code
for more detailed experimental settings: https:/ /github.com/GoldfishFive/MFF-GBDT
(accessed on 29 August 2023).

o -] -

(b) Annotation images (c) Target images (d) Target mask images

Figure 10. Different types of images.

We trained the C-Resnet50 for 100 epochs with a batch-size of 8, a learning rate of
0.001, and a fixed momentum of 0.9 with SGD optimizer. All parameters of C-Resnet50
were randomly initialized and learned.

The results of the weight estimation experiment were measured by the mean absolute
error (MAE), the mean square error (MSE), the root mean square error (RMSE), and the
coefficient of determination (R?) evaluation metrics, which are formulated as follows.

MAE = Dyz 7il 5)
MSE = 1Y (yi — ;) ©)
i=1
RMSE = |3 (i~ ;) 7)
i=1
— Z (yl 3/1 (8)
]/1 yz)

Here, y; is the actual body weight value (in kg); 7; is the estimated value of the model;
¥, is the average value of GT (in kg); and 7 is the number of samples.

3. Results
3.1. Results of Broiler Instance Segmentation

In order to verify the segmentation effect of the instance segmentation model Mask
R-CNN on the data of images with single broiler and multiple broilers, respectively, three
groups of depth images (single broiler, multiple broilers, both single broiler and multiple
broilers) were used for training and testing. The number of depth images in each group
was 100, 105, and 205, respectively.

Table 3 shows the segmentation results of Mask RCNN trained with different types of
data in the test set, in which AP refers to “ Average Precision”, AR refers to “Average Recall”,
and AP@.5IoU refers to the AP at IoU = 0.5. Among the results of the three experiments,
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indicators of AP@.5loU and AP@.75IoU were close or equal to 1. Even for AP@.95IoU, the
indicator was 0.861 in the segmentation test of mixed images. The segmentation effect of
single broiler images was optimal, followed by that of multi-broiler images and mixed
images, indicating that the result of segmentation network was close to completely correct
image target classification. The average recall rate (AR) was about 0.9, which signifies
that the model can segment the desired target well. For the target to be segmented, the
mask must have a higher degree of correspondence with the pixels of the actual target. In
general, the research outcome shows that the instance segmentation network performs
well in segmenting and generalizing the data of images with a single broiler or multiple
broilers in a complex background. Figure 11 illustrates the qualitative results of broiler
instance segmentation on the test split. Compared with the data instance segmentation
of images with a single broiler, the efficiency of segmentation and extraction of the target
image increases by N times for the data instance segmentation of multiple broilers, where
N is the number of broilers in an image with multiple broilers.

Table 3. The segmentation performance of different types of data on Mask RCNN in test set.

Training Data AP@.5I0U AP@.75I0U AP@.9510U AR
Images with a single broiler 1.000 1.000 0.894 0.900
Images with multiple broilers 1.000 0.993 0.872 0.881
Mixed images 0.996 0.989 0.861 0.872

Figure 11. Qualitative results of broiler instance segmentation on test split. Two examples of
multiple broilers (row 1 and row 2) with depth images (col.1) and segmentation results (col.2—col.4).
Two examples of a single broiler (row 3) with depth images (col.1 and col.3) and segmentation results
(col.2 and col.4).

3.2. Feature Analysis, Fusion and Weight Estimation
3.2.1. Artificial Feature Analysis

To verify that the proposed features (feature numbers 9-16, 18-25 in Table 1) are
beneficial for weight estimation, we performed multiple contrastive experiments. First, we
used all the artificial features, including the existing and proposed features, and designed
a contrastive experiment to select a more outstanding model between the GBDT model
and the ANN model and, in terms of effects, a fair comparison between the proposed
features and the existing features could be made. The results are displayed in Table 4,
where ‘Normalization’ refers to the normalization of all features. “AF’ denotes all artifi-
cial features. “ANN_1’ represents an artificial neural network with a (25-19-1) topology;
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similarly, "ANN_2" has a (25-64-32-1) topology, and ‘ANN_3’ features a (25-1024-512-1)
topology. The optimal results are highlighted in bold.

Table 4. Results acquired from all artificial features in different models in the test set, and the optimal
results are highlighted in bold.

Feature + Model Normalization @ MAE | MSE | RMSE | R2 1
AF + ANN_1 v 0.144367 0.037025 0.192419 0.014636
AF + ANN_2 Vv 0.141981 0.036193 0.190245 0.074835
AF + ANN_3 Vv 0.139806 0.034603 0.186019 0.295418

AF + LGBM 0.129030 0.029747 0.172475 0.555427
AF + LGBM Vv 0.130942 0.030435 0.174458 0.545145
AF + XGB 0.130452 0.029916 0.172962 0.552913
AF + XGB v 0.130262 0.029699 0.172333 0.556155

Different architectures of ANN (ANN_1, ANN_2, ANN_3) are shown in Table 5.
ANN_1 indicates artificial neural network used by [8] with a (25-19-1) topology, while
ANN_2 has a (25-64-32-1) topology, and ANN_3 a (25-1024-512-1) topology. For ANN
training, we employed a stochastic gradient descent optimizer for 200 epochs. A batch-size
of 8, an initial learning rate of 0.001, a loss function of L1 loss, and a weight decay with 0.05
were used.

Table 5. Architectures of ANN_1, ANN_2, and ANN_3.

ANN_1 ANN_2 ANN_3
FC_layer_0 (input,19) FC_layer_0 (input, 64) FC_layer_0 (input, 1024)
ReLU_0 ReLU_0 LayerNorm (1024)
FC_layer_1 (19, 1) FC_layer_1 (64, 32) ReLU_0
ReLU_1 FC_layer_1 (1024, 512)
FC_layer_2 (32, 1) LayerNorm (512)
ReLU_1

FC_layer_2 (512, 1)

Two library functions (LGBM and XGB) were implemented the GBDT algorithm. We
used LGBM python package with version 3.3.0 from the GitHub repository of
Microsoft et al. [32] and the XGB package with version 1.3.3 from Dmlc et al. [33]. Both mod-
els kept identical hyperparameters in all experiments: for LGBM training, an n_estimators
of 4000 and a learning rate of 0.1 were used. Other parameters were set as num_leaves = 15,
max_depth =5, min_child_samples = 15, min_child_weight = 0.01, subsample = 0.8, and col-
sample_bytree = 1. For the XGB training, we trained the models with an n_estimators of 2000
and a learning rate of 0.1. Other parameters were set as max_depth = 5, learning_rate = 0.1,
objective = ‘reg:linear’, min_child_weight = 1, max_delta_step = 0, subsample = 0.8,
colsample_bytree = 0.7, colsample_bylevel = 1, reg_alpha = 0, reg_lambda = 1, and
scale_pos_weight = 1.

As shown in Table 4, when modeling all the artificial features, ANN_3 obtained an
MAE of 0.139806 kg and an R? of 0.295418, indicating that ANN_3 performed better than
ANN_1 and ANN_2, because it obtained an MAE 0.002175 kg-0.004561 kg lower and an
R? 0.220583-0.280782 higher than those in ANN_1 and ANN_2. The result reveals that
a wider and deeper ANN can better estimate body weight when using more features.
However, the combination of AF and GBDT (LGBM/XGB) outperformed the combination
of AF and ANN_3, with an MAE about 0.010 kg smaller and an R? about +0.26 higher
than the latter combination. It is illustrated that the machine learning GBDT algorithm
is superior to the artificial neural network (ANN) in estimating the weight of broiler
chickens of the same day age when artificial features are used. Moreover, compared with
the approach of directly entering the extracted features into the model for training and
learning, normalizing features in advance can achieve more satisfactory performance when
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using XGB for modeling, but the difference is insignificant. The test set with a broiler body
weight ranging from 0.85 kg to 2.35 kg was divided into 5 groups, and the mean absolute
error was calculated separately for visualization. The difference between each group was
0.3 kg, and the number of images in each group was 16, 45, 108, 61, and 10, respectively.
The MAE results are shown in Figure 12. The MAE of the first weight class was around
0.2 kg, and the MAE of the medium weight class was around 0.13 kg, which suggests that
the model estimated heavier broilers with better performance. The last weight class with a
small number of samples for training had an MAE of around 0.3 kg in test set.

MAE bar of different models

0.35

N ANN_1

N ANN_2
0. 30 1 B ANN3

I 1.GBM o/ normal
0. 25 4 I 1.GBM w/ normal

Bl XGB o/ normal

|

XGB w/ normal

0 1 2 3 4
Broiler weight classes

Figure 12. Mean absolute error of estimated body weight in different models for broiler chickens in
5 weight classes in the test set.

With the GBDT algorithm selected, we evaluated the performance of using different
features to estimate the broiler weight. Table 6 lists the results of XGB and LGBM on the
existing features, the proposed features, and the artificial features. The existing features
comprise feature numbers 1 to 8 and 17, as listed in Table 1. The proposed features consist of
feature numbers 9 to 16 and 18 to 25, also from Table 1. Lastly, the artificial features encom-
pass feature numbers 1 to 25 from Table 1. The features proposed by us consistently bought
+0.18-0.20 R? gains over existing features, with a lower MAE (0.028619 kg—-0.030131 kg).
This proves that the proposed artificial features are more reliable and stable when estimating
the broiler weight of broiler chickens of great day age. Moreover, a further improvement in
performance can be observed when all features are used, providing an MAE of 0.129030 kg
and an R? of 0.555427. In comparison with the proposed features used alone, the use of
proposed features achieved an R? +0.015686 higher under XGB and +0.003315 higher under
LGBM. The improved performance can be attributed to the construction and synthesis
of new artificial features, which have provided a more detailed and richer appearance to
features of the target broiler.
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Table 6. Comparison of different features for body weight estimation in the test set, and the optimal
results are highlighted in bold.

Model Feature MAE | MSE | RMSE | R2 1
Existing features 0.159492 0.043444 0.208432 0.350732
XGB Proposed features 0.130873 0.030965 0.175970 0.537227
Artificial features 0.130452 0.029916 0.172962 0.552913
Existing features 0.159246 0.043391 0.208305 0.351526
LGBM Proposed features 0.129115 0.029969 0.173117 0.552112
Artificial features 0.129030 0.029747 0.172475 0.555427

3.2.2. Ablation Study of Multi-Feature

Table 7 shows the performance in test set of different models with learned features
alone and with both artificial and learned features as input. According to the results, an
MAE of 0.103644 kg could be achieved by employing the learned features and the artificial
neural network ANN_3 to perform a regression prediction of weight. Meanwhile, the error
margin was smaller (0.036162 kg, 0.103644 kg vs. 0.139806 kg), and the R? was higher
(0.433728, 0.729146 vs. 0.295418) compared with using artificial features modeling alone
(see Table 4, AF + ANN 3). Moreover, it can be seen that using the ML method GBDT instead
of ANN to model the extracted learned features by Resnet50 we could achieve an even smaller
MAE (0.004937 kg-0.009492 kg). The results of XGB and LGBM were 0.013770 kg-0.014094 kg
(MAE) smaller and 0.053760-0.054201 (R?) higher than ANN_3 when using both artificial
and learned features. As shown in Figure 13, it can be observed that under the proposed
MFF-GBDT framework, improved performance is achieved by combining different feature
components with weight estimation for the broilers of great day age. Figure 13 depicts
the MAE and R? plots of our proposed framework with different feature combinations in
the test set, using LGBM, XGB, and ANN_3. These feature combinations include existing
features (EF), proposed features (PF), artificial features (AF), learned features (LF), and
artificial and learned features (AF and LF).

R-squared plot of different features

0.7 .><"

L 0.6

’ v/
® [y

\ 05

.| o4
—e— LGBM \_— —e— LGBM

XGB G XGB
—=— ANN_3 .| o3 | —=— ANN_3
EF PF AF LF  AF&LF EF PF AF LF  AF&LF
Feature Feature

Figure 13. Impact of feature combinations on performance.
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Table 7. Performance of different models in the test set with learned features alone and with both
artificial and learned features as input, and the optimal results are highlighted in bold.

Feature Model MAE | MSE | RMSE | R? ¢
ANN_3 0.103644 0.020305 0.142496 0.729146
Learned features XGB (Ours) 0.094152 0.019622 0.140077 0.706757
LGBM (Ours) 0.098707 0.020585 0.143475 0.692357
Artificial and ANN_3 0.107128 0.023234 0.152428 0.652767
learned features XGB (Ours) 0.093358 0.019637 0.140132 0.706527
(Ours) LGBM (Ours) 0.093034 0.019608 0.140027 0.706968

4. Discussion

It is economically important to obtain the weight information of broilers in chicken
farms, as weight is a crucial indicator of the broiler growth. Traditional manual weight
estimation methods are not only time-consuming and labor-intensive but also have the
potential to induce stress reactions in broiler chickens [2-5]. Furthermore, existing research
has predominantly focused on weight measurements for young broiler chickens, with little
attention given to broilers aged 42 days or older. Existing research findings suggest that
as broiler chickens grow older, the weight estimation error increases. This is due to the
less uniform growth of the chicken population and the increased crowding within broiler
houses [8-12].

We address these challenges. Firstly, we have introduced the MFF-GBDT framework,
which is capable of non-invasively, efficiently, and accurately estimating the weight of
broiler chickens. Moreover, it performs exceptionally well with older broiler chickens,
achieving a low MAE of 0.093034 kg and an R? value of 0.706968. This framework is
currently being implemented in practical application within the industry. Secondly, for
high-value broiler chickens, the framework utilizes depth cameras for image capture,
followed by a unique feature fusion method that integrates artificial 2D and depth 3D
features. This integration effectively reduces weight estimation errors. Thirdly, we have
made our code open-source and provided a depth image dataset that we created ourselves
(https:/ /github.com/GoldfishFive/ MFE-GBDT (accessed on 29 August 2023)). This dataset
is suitable for estimating the weight of older chickens. Additionally, our image capture
devices can easily be transformed into portable handheld devices for practical applications.
Furthermore, the improvements we made can be universally applied to weight estimation
for various other poultry species.

One limitation of the present study is that our dataset has not included broiler chickens
of significant age, such as 120-day-old broilers. Another limitation is that manual data
collection is still required in the early stage for subsequent model training. In the future,
we will consider creating depth image datasets with a variety of day age groups for
broiler weight estimation. Meanwhile, due to the abnormal weight estimation caused
by the posture of the broiler, an additional detection module can be considered in the
preprocessing stage. In order to more accurately estimate the weight of broiler chickens of
older day age, we will make an attempt to use multi-camera data for weight estimation in
our future work.

Despite these limitations, future work will aim to address these issues and explore
multi-camera data for more accurate weight estimation. The proposed method holds
promise for wider applications in intelligent agriculture, extending to various poultry
species beyond broilers.

5. Conclusions

In this paper, we present MFF-GBDT, a simple, effective, and accurate method for
broiler weight estimation, which contains an instance segmentation module, a feature
fusion module, and a weight estimation module. The instance segmentation module
can aptly address the problem concerning depth images with complex background and
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accurate segmentation of multiple broilers, leading to both high efficiency and ameliorated
performance. In the feature fusion module, some new and effective artificial features are
proposed. A method of fusing artificial features and learned features is designed, which
can effectively reduce the error in estimating the weight of broiler chickens of great day age.
MFF-GBDT employs gradient boosting decision tree (GBDT)-integrated fusion features for
broiler weight estimation, achieving an MAE of 0.093034 kg, an MSE of 0.019608, an RMSE
of 0.140027, and an R? of 0.706968 in the test set of 63-day-old bantam chickens, which
were 0.046772 kg smaller (MAE) and 0.41155 higher (R?) than the advanced approach ANN
which did not use our proposed new artificial features and learned features. Hopefully our
method can serve as a solid baseline for further research of poultry weight estimation.

We are willing to promote our method for a wider application (e.g., intelligent breed-
ing, breeding management, and health assessment) in the field of intelligent agriculture.
Regarding the potential application of this method in the intelligent poultry industry, our
method can be readily transferred to the body weight measurement of similar poultry such
as ducks, geese, turkeys, quails, and other livestock.
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Nomenclature

cv Computer vision

GBDT Gradient boosting decision tree
LGBM Light gradient boosting machine
XGB Extreme gradient boosting

FC Fully connected

ANN Artificial neural network

CNN Convolutional neural network
R-CNN Region convolutional neural network
RPN Region proposal network

FPN Feature pyramid network

Rol Region of interest

ML Machine learning

FCN Fully convolutional network

2D Two-dimensional

3D Three-dimensional

AP Average precision

AR Average recall

MAE Mean absolute error

MSE Mean square error
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RMSE Root mean square error

R? Coefficient of determination
EF Existing feature

PF Proposed feature

AF Artificial feature

LF Learned feature

Appendix A. Calculation of the Projected Area

Suppose the coordinate of the i-th point P; on the curve L is (X;, y;), and the coordinates

of the i + 1-th point P; . 1 is (Xj1+1, Vi+1), then the parameter formula of the line segment
P;P;. 1 is as follows

Area = Z

1+l

x=x;+ (xi—1 —x;)t
Al
{y=yi+(yi+1—yi)f (AD

The formula for calculating the projectedarea is as follows

Z Xi + Xit1) (Yit1 — Vi) (A2)
i=1

n 1 1
dy =Y [ i+ (i = 50D i — vt =
i=170

Appendix B

The process of constructing the gradient boosting regression tree Fx(x) containing

K regression decision trees is as follows:

1.

For the regression model, use the squared loss function:

1
Ly f(x:)) = 5 (i f(x:))? (A3)
Initialize fo(x) = Y, where ¥ is the average weight, and x; is the ith sample.

From 1 to K, for the kth round, calculate the negative gradient according to the loss
function ;i:
S [auxf,f(xi))]

’ of i) L s=hs 0

Based on the feature dataset, the negative gradient value, the number of leaf nodes
J limited by each tree and the limited height D of the tree, etc., a binary regression
decision tree is established using the CART algorithm, and the negative gradient is
fitted to obtain | leaf regions Rj.

=i — fr1(x:) (A4)

Calculate the predicted weight Cjy of each Rj:

Cjx = argmin Z L(y;, fr_1(x;) +¢) = avg ?i (A5)

¢ XI‘ER]')( XiER]'k

Update the regression tree, that is, add the predicted weight on the new tree:

J
fi(®) = fie1(x) +0) - CirI(x € Ry) (A6)
=

where p is the learning rate and the function I (x €R ]-k) means that if x is in Ry area,
the result of the function is 1, otherwise it is 0.

Repeat Steps (2) to (5) until K regression decision trees Fx(x) are established:

—pZZ el (x € Rir) (A7)
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For Step (3) in the process above, the specific process of using the CART algorithm to
establish a binary regression decision tree is as follows:

1.  Traverse n features. For each continuous feature j, traverse all its split points.

2. The left area R; and the right area R, are split by the segmentation point s of the
segmentationfeature j. After the traversal is completed, the binary group (j, s) that
minimizes the sum of the loss functions in the left area R; and the right area R; is
obtained.

—

argmin |min ) | (;Z — 61)2 +min Y (yi— 02)2 (A8)

Gs) [ meri(s) ? xER(js)
Divide the area with the selected two-tuple (j, s) and continue to invoke the above

steps for the two sub-areas. Divide the input space into specified areas and generate a
binary regression decision tree.
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