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Simple Summary: Custard apple (Annona squamosa) leaf extract (ASLE) is a phenolic-rich substance
and considered a non-conventional feed additive. The present study aimed to evaluate the effect
of ASLE dietary supplementation in the diet of Nile tilapia on growth performance, physiological
status, and stress resistance. The results revealed that dietary ASLE, up to a 20 g/kg diet, improved
growth and feed utilization. ASLE improved the hematological parameters, vital organ functions, and
redox status in the fish. Furthermore, increasing ASLE dietary levels improved fish resistance against
Aeromonas sobria challenge. Therefore, ASLE could be a potential feed additive in Nile tilapia diets.

Abstract: Plant extracts are a phytochemically-rich alternative to antibiotic and synthetic feed ad-
ditives, with high systemic bioactivity in animals. The present study aimed to evaluate the effect
of a hydroalcoholic extract of custard apple (Annona squamosa) leaf (ASLE) on the growth, hemato-
biochemical parameters, digestive enzyme activities, redox status, nonspecific immune response,
and cold and bacterial infection tolerance in Nile tilapia (Oreochromis niloticus). A total of 300 Nile
tilapia fingerlings (11.87 ± 0.48 g) were fed ASLE-supplemented diets at increasing levels of 0, 5,
10, 15, and 20 g/kg for 60 days. At the end of the feeding period, the fish were experimentally
challenged with cold water stress or Aeromonas sobria, and mortalities were recorded for 10 days.
The results revealed that the growth performance and feed conversion ratio were significantly im-
proved with an increasing level of ASLE supplementation. The hematologic profile and hepato-renal
functions were retained within a healthy range in the various groups supplemented with an ASLE
diet. Antioxidant status was significantly improved in the serum of fish fed ASLE-supplemented
diets, in terms of superoxide dismutase (SOD), catalase (CAT) activities, reduced glutathione, and
total antioxidant capacity. Meanwhile, the myeloperoxidase (MPO) and malondialdehyde (MDA)
levels decreased significantly. Similarly, there was a noticeable improvement in the hepatic CAT
and SOD activities and a reduction of hepatic MDA. Marked improvements in lysozyme activity,
nitric oxide production, complement3 level, and phagocytic activity were recorded in groups fed
ASLE-supplemented diets, which peaked with the 20 g ASLE/kg diet. Moreover, the serum glucose
and cortisol levels significantly declined in groups fed ASLE at levels of 15–20 g/kg compared to the
other groups. Supplementation with ASLE increased the activities of protease, lipase, and α-amylase.
ASLE supplementation at a concentration of 10–20 g/kg diet enhanced the resistance of Nile tilapia
to A. sobria infection. According to this study, ASLE supplementation enhanced the antioxidant
balance, non-specific immune response, physiological status, resistance against infection, and growth
performance of Nile tilapia at supplementation levels of 10–20 g/kg diet.
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1. Introduction

Aquaculture plays, and will continue to play, a crucial role in expanding global
fish production to meet the growing demand for aquatic products [1]. The most widely
cultivated freshwater aquaculture species is tilapia (Oreochromis sp.), and it is anticipated
that production will continue to increase to meet the increasing demand for fish from a
population that is expanding [2,3]. Due to its fast growth, high feed utilization, natural
spawning, and good edible characteristics, it is the first species raised in Egypt and the
third in the world [4]. However, the expansion of aquaculture has created a number of
issues, such as low growth, poor health, and increased susceptibility to infectious diseases.
These diseases, including bacterial diseases, are opportunistic and can have a significant
negative economic impact on freshwater and marine aquaculture [5,6].

In addition, rapid climate change possess a significant threat to ecosystems and living
things, notably fish as ecthothermic animals, for which water temperature is an important
environmental factor. Moreover, fish are regularly exposed to a variety of stresses in their
intense production system [7]. Conditions of temperature stress may result in disruption of
the physiological balance of the organism and subsequently hinder growth and survival [8].
Therefore, a significant challenge is faced by fish farmers and the aquaculture industry to
enhance culture performance and combat stress.

The use of conventional medications and vaccines for disease prevention and treat-
ment of disease comes with significant drawbacks [9]. In addition, the use of antibiotics in
aquaculture to treat and prevent bacterial infections may result in bacteria that are resistant
to the antibiotics or the presence of antibiotic residues in fish raised for human consump-
tion [10]. As a result, there is a crucial need to create safe solutions, as affordable alternatives
to conventional methods of disease control, to maintain an eco-friendly aquaculture. Over
time, there has been significant progress in fish nutrition, which has led to the creation of
specialized feed formulations and novel, balanced commercial diets that support optimum
growth and the production of high-quality, healthy fish [11]. Various efforts have been
made to use medical and aromatic herbs as feed additives, which are innovative approaches
to reducing disease risk, as well as boosting the immune system during exposure to stres-
sors such as rough handling, transport, cold temperature, and poor water quality for reared
fish [12–14]. Among these herbs is Custard Apple, Annona squamosa, which is a member
of the Annonaceae family and a species of Annona, which is known mainly for its edible
fruits [15]. Various parts of A. squamosa are used in folkloric medicine to treat a variety
of diseases [16]. Numerous active chemicals with various pharmacological properties,
including anti-inflammatory and anti-tumor actions, were identified in phytochemical
analyses [17]. It is used as an anti-inflammatory, anti-diabetic, hepatoprotective, cytotoxic,
genetoxic, antitumor, and anti-lice agent [18]. The leaves of Custard apple contain a consid-
erable amount of phenol-based compounds, mainly alkaloids and flavonoids [19,20]. Leaf
extracts produced with various solvents were shown to have antibacterial action and they
also included sterols, flavonoids, and tannins [21]. Custard apple (Annona squamosa) leaf
extract (ASLE) has health-promoting effects and can be used as a potential active ingredient
in drugs and functional foods [19]. ASLE had immunostimulatory effects in Catfish [15]
and increased resistance to Aeromonas hydrophila [22]. In addition, studies on other animal
species and invitro experiments showed anticancer, antidiabetic, antioxidant, antimicrobial,
antiobesity, lipid-lowering, and hepatoprotective functions [19,23].

Hence, it appears that ASLE could be beneficial for boosting immune status and
lessening the susceptibility of fish to pathogens. However, its use as a dietary supplement in
aquaculture has not been fully explored. Therefore, the objective of the current investigation
was to evaluate the effect of dietary supplementation with various concentrations of ASLE
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in O. niloticus diets on growth, and antioxidant and immunological biomarkers, as well as
to evaluate its effect on health status indicators using certain haematobiochemical indices,
cold stress tolerance, and resistance to A. sobria infection in Nile tilapia.

2. Material and Methods
2.1. Plant Collection and Preparation

The leaves of A. squamosa were collected from local gardens in Sharkia, Egypt, then
identified and authenticated by a botanist in the Faculty of Agriculture, Zagazig University,
Egypt. The leaves were properly cleaned with distilled water after being washed with
tap water, then dried at 45 ◦C. In an electronic grinder, the plant material was crushed
and ground into a fine powder before being stored in an airtight plastic container for
further utilization. The leaves extracts were obtained as follows: in a shaking water bath
at room temperature for 30 min, 6 g of plant powder was extracted using 100 mL of
ethanol:distilled water (1:1). The extract supernatants were collected and filtered using
Whatman paper after centrifugation for 15 min at 3000 rpm. The solvent was finally
evaporated by vacuum evaporation through a rotary evaporator. The dried extract was
maintained in a refrigerator at 4 ◦C [24]. The bioactive components present in ASLE
used in the present study were identified through gas chromatography-mass spectroscopy
(GC–MS) analysis [25]. The dominant compounds were sodium benzoate (27.50%), 4,4-Tert-
Butylcalix (4) arene (12.34%), 4,4-Dimethylcholesterol (10.30%), Butyloctylpthalate (9.67%),
stigmasterol acetate (2.92%), and isoamylacetyate (2.29%).

2.2. Fish Rearing Conditions

Healthy Nile tilapia (O. niloticus) (N = 300, mean weight 11.87 ± 0.48 g) were obtained
from nursery ponds at the Central Laboratory for Aquaculture Research (CLAR), Abbassa,
Sharkia Province, Egypt. The fish were free of any history of disease or outbreaks. Prior
to the experiment, a routine check of the fish’s health was performed [26]. The fish were
kept in 80 L capacity glass aquaria and filled with chlorine-free tap water with continuous
air supply. The fish were acclimatized to the experimental conditions for 15 days prior
to the start of the experiment and fed by hand with a basal diet up to satiation. The
light–dark cycle was kept at 12 h/12 h. To maintain water parameters within the optimal
recommended levels for growth and survival during the period of the experiment, dissolved
oxygen, water temperature, and pH were monitored daily. The water temperature ranged
from 25.85 to 26.6 ◦C, dissolved oxygen was 6.3–6.9 mg/L, pH was 7.2–7.7, and ammonia
concentration was 0.20 to 0.25 mg/L. All levels were within the permitted limits for fish
aquaculture [27]. Twice a week, three quarters of the water in the aquarium was drained
along with settled fish excrement and refilled with fresh and aerated water from a holding
tank. The Institutional Animal Care and Use Committee of Egypt’s Zagazig University
accepted the experimental protocol (approval no. ZU-IACUC/2/F/284/2022).

2.3. Experimental Design and Diets

Nile tilapia were randomly divided into five quadruple groups (15 fish/replicate,
N = 60 fish/group). Five experimental diets were designed by adding the extract of the
ASLE to the formula at levels of 0 g/kg diet (control), 5 g/kg diet (0.5%), 10 g/kg diet
(1%), 15 g/kg diet (1.5%), and 20 g/kg diet (2%). The ingredients of diets were mixed
mechanically, forming pellets of 1.5 mm diameter using a pellet machine. The prepared
diets were air-dried for 24 h at room temperature and stored in a refrigerator at 4 ◦C until
use. The chemical composition and ingredients of the basal and experimental diets are
shown in Table 1.
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Table 1. Ingredients and proximate chemical analysis of the experimental diets (g/kg).

Ingredients (g kg−1)
ASLE Levels g/kg Diet

0 5 10 15 20

Hearing fish meal (65% protein and 9% fat) 110 110 110 110 110
Soybean meal (44% protein and 1.9% fat) 420 420 420 420 420

Ground corn (8% protein and 2% fat) 290 285 280 275 270
Wheat bran (12% protein and 0.2% fat) 100 100 100 100 100

Corn oil 30 30 30 30 30
Cod liver oil 20 20 20 20 20

ASLE 0 5 10 15 20
Vitamin premix 1 10 10 10 10 10
Mineral premix 2 20 20 20 20 20

Chemical analysis
Crude protein (N × 6.25) 308 305 307 308 309

Crude lipids 73 73 77 77 77
Crude fiber 53 53 55 57 57

Ash 72 72 73 74 74
Nitrogen free extract 3 494 497 488 484 483

Gross energy (kcal/kg) 4 446.03 445.57 446.78 445.70 445.86
1 Vitamin pre-mix (per kg of pre-mix): vitamin A, 88,000 IU; vitamin E, 7000 mg; vitamin D3, 2,000,000 IU; vitamin
K3, 1500 mg; biotin, 50 mg; folic acid, 700 mg; nicotinic, 20,000 mg; pantothenic acid, 7000 mg; vitamin B1,
700 mg; vitamin B2, 3500 mg; vitamin B6, 1000 mg; vitamin B12, 7 mg. 2 Mineral pre-mix (per kg of pre-mix): zinc
sulfate, 4.0 g; iron sulfate, 20 g; manganese sulfate, 5.3 g; copper sulfate, 2.7 g; calcium iodine, 0.34 g; sodium
selenite, 70 mg; cobalt sulfate, 70 mg and CaHPO4·2H2O up to 1 kg. 3 Calculated by difference (100 − protein%
+ lipids% + ash% + crude fiber %). 4 Gross energy (GE) was calculated as 5.65, 9.45 and 4.11 kcal/g for protein,
lipid and NFE, respectively (NRC, 1993).

The experimental diets were offered to the fish at a rate of 3% of their total biomass
two times per day (8:00 a.m. and 3:00 p.m.) for 60 days. In accordance with the change in
fish weight, the introduced diet % was modified every two weeks, and the uneaten diet
was collected, dried, and subtracted from the introduced feed for accurate calculation of
feed intake.

2.4. Growth Performance

The fish were sampled every two weeks, to assess growth performance using a sensi-
tive weight balance. The final weight, weight gain (%), specific growth, and feed conversion
rate were determined as follows:

Specific growth rate (SGR) = 100 × (Lin W2 − Lin W1)/days

where W2 = Weight of fish at time T2 (final), W1 = Weight of fish at time T1 (initial)

Weight gain (%) = 100 × (weight gain/initial weight)

Feed intake (FI) = Feed consumed/Number of surviving fish

Feed conversion rate (FCR) = Total feed consumed by fish (g)/Weight gain by fish (g)

Protein productive value (PER)= weight gain (g)/protein intake (g)

2.5. Sampling

At the end of the feeding experiment (60 days), blood samples were taken from four
randomly chosen fish from each aquarium (16 fish per group), after being anesthetized
with 95 mg L–1 clove oil (Oleum Cosmetics, Cairo, Egypt) [28]. From the caudal vessels,
blood was drawn in vials containing heparin for hematological parameters. Sterile syringes
without anticoagulants were used to collect other blood samples and centrifuged at 1075× g
for 20 min, to obtain serum samples and stored in a deep freezer at −20 ◦C until use. The
serum samples were used to perform the biochemical and immunological assays.
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Following blood sampling, the fish were necropsied aseptically and samples of the liver
and intestines were retrieved. These tissues were preserved on ice-cold dishes, cleansed
with ice-cold sterile saline, dried with filter paper, split, and then frozen at −20 ◦C. Follow-
ing that, 100 mg of each tissue was added to a tube containing 1 mL of a buffer (10 mM
phosphate/20 mM tris-pH 7.0) and homogenized using a Teflon homogenizer, then cen-
trifuged at 10,000× g for 5 min at 4 ◦C. The supernatants were pooled after centrifugation
and kept at −80 ◦C until use. Intestinal homogenates were used to assess the activity
of digesting enzymes, while liver homogenates were employed to identify markers of
oxidative stress.

2.6. Evaluation of Health-Related Parameters
2.6.1. Hematological Analyses

Blood parameters assayed were red blood cells (RBC) and differential white blood
(WBC) cell counts, using an improved Neubauer hemocytometer with Natt and Herrick
diluting fluid. Hemoglobin (Hb), packed cell volume (PCV), mean corpuscular volume
(MCV), and mean corpuscular hemoglobin (MCH) were immediately measured after
sampling, according to the methods described by Jain [29].

2.6.2. Hepatorenal Function Indicators and Stress Indicators

Serum total proteins and albumin were spectrophotometrically evaluated using tech-
niques described by Henry [30] and Reinhold [31], respectively. Furthermore, serum
globulins were calculated using the method of Coles [32]. Aspartate aminotransferase
(AST), alkaline phosphatase (ALP), alanine aminotransferase (ALT), creatinine, and urea
were evaluated in serum using Spinreact kits (Esteve De Bas, Girona, Spain), according
to the protocols established by Wenger et al. [33], Burtis and Ashwood [34], Murray [35],
Fossati et al. [36], and Kaplan [37], respectively. The serum glucose was estimated using col-
orimetric diagnostic kits from spectrum-bioscience (Egyptian Company for Biotechnology,
Cairo, Egypt) using the techniques of Trinder [38]. The serum cortisol level was evaluated
following the method outlined by Tunn, et al. [39].

2.6.3. Assessment of Oxidant/Antioxidant Status

Antioxidant activities in serum and liver homogenate were evaluated using colori-
metric commercial kits purchased from Biodiagnostic Co., Cairo, Egypt. Total antioxidant
capacity (TAC) was estimated in serum using colorimetric commercial kits purchased from
Bio-Diagnostic Co. (Cairo, Egypt) [40]. Catalase (CAT) activity was monitored using the
procedure of Aebi [41]. Superoxide dismutase (SOD) activity was assessed following the
protocol of Nishikimi, et al. [42]. Quantitative colorimetric glutathione dehydrogenase
(GSH) was performed according to Beutler [43]. Malondialdehyde (MDA) was monitored
using the technique of Uchiyama and Mihara [44]. The activity of myeloperoxidase (MPO)
in fish serum was measured using the approach of Kumari and Sahoo [45].

2.6.4. Non-Specific Immunological Assessment

Serum lysozyme activity was determined using the turbidimetric method [46] with
a suspension of Micrococcus lysodeikticus (Sigma-Aldrich, Burlington, MA, USA). This
test is based on the lysis of a Gram-positive bacterium that is sensitive to the lysozyme
(M. lysodeikticus). Nitric oxide (NO) and complement3 (C3) levels were determined using
ELISA kits (MyBioSource, San Diego, CA, USA), according to the manufacturer’s instruc-
tions. The phagocytic activity (%) of leucocytes was assayed in heparinized blood according
to Siwicki, et al. [47]. Phagocytic activity = (number of phagocytic cells that phagocytise
bacteria/total number of phagocytic cells counted) × 100.
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2.6.5. Digestive Enzyme Assays in the Intestine

Following the manufacturer’s instructions, commercial colorimetric kits (Biodiagnostic
Co., Cairo, Egypt) were used to measure the activity of protease, α-amylase, and lipase
enzymes in intestinal homogenates from the various groups.

2.7. Challenge with Cold Temperature Stress

After the feeding period, fish from each treatment were randomly deposited in tripli-
cates at a rate of five fish per replicate. Using a thermostat attached to the cooling system,
the fish were gradually exposed to cold water. The temperature started at 25 ◦C and was
subsequently reduced by one degree every 12 h by regulating the thermostat until reach-
ing 18 ◦C. Nile tilapia showed severe growth retardation, decreased antioxidant enzyme
activities, and immunosuppression at 18 ◦C, as described by Ibrahim, et al. [14]. The
temperature remained at 18 ◦C for 2 weeks after reaching that level. The daily fish mortality
was recorded by keeping the fish under observation.

2.8. Aeromonas Sobria Bacterial Challenge

At the end of the test period (60 days), five fish per replicate (N = 20 fish/group) were
challenged with A. sobria (previously isolated from naturally infected Nile tilapia in the
Department of Aquatic Animal Medicine, identified and confirmed to be pathogenic). At
the Department of Microbiology and Immunology, National Research Center (NRC), Dokki,
Giza, Egypt, A. sobria was identified using traditional biochemical assays and an automated
VITEK 2-C15 system for bacterial identification (BioMérieux, France), according to the
manufacturer’s instructions and as described by Scheidegger, et al. [48] and Zhou, et al. [49].
Lethal dosage (LD50) for A. sobria was first recorded. A variety of doses of live bacteria
were intraperitoneally (IP) injected into fish, and three days later, the infected fish mortality
was observed. The LD50 that induced 50% fish mortality was 2 × 108 CFU/mL. A sub-
lethal dosage was used in the bacterial challenge test. A 0.2 mL dose of suspension
cells comprising 1.5 × 107/mL cells was administered intraperitoneally (IP) to the fish
using standard MacFarland tubes. A. sobria was isolated from the dead fish to confirm
responsibility for the death of the fish. The injected bacteria were re-isolated from moribund
and recently dead fish and identified. For ten days, all groups were closely monitored, to
note any abnormal findings and daily mortality.

2.9. Statistical Analysis

A one-way analysis of variance (ANOVA) was employed to conduct statistical analysis
(SPSS version 16.0, SPSS Inc., Chicago, IL, USA). With statistical significance set at p < 0.05,
the differences between groups were compared using Tukey’s multiple comparison post
hoc test. The analysis findings are reported as means ± SE (standard error). Additionally,
SGR and FCR were used to establish a fit regression model between the levels of ASLE and
fish response.

3. Results
3.1. Growth Performance

The effect of ASLE-supplemented diets on growth performance parameters is shown
in Table 2. In general, there was a significant influence (p < 0.05) on all growth parameters.
ASLE-supplemented diets led to a significant increase (p < 0.05) in the final body weight,
weight gain (%), SGR, FI, and PER in ASLE20, followed by ASLE15, ASLE10, ASLE5, and the
control group, respectively. The FCR showed a significant reduction in ASLE20, followed by
other groups. The dose-response analysis revealed a substantial linear correlation between
the SGR and FCR responses to increased dietary supplementation of ASLE (R2 = 0.83)
(Figure 1). Fish survival was 100%, with no noticeable differences between the various
groups of fish during the feeding period (p > 0.05; Table 2), and the fish in all test groups
remained healthy during the feeding period based on their overall activity.
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Table 2. Effect of dietary supplementation with A. squamosa leaves extract (ASLE) on growth perfor-
mance and feed conversion ratio of O. niloticus for 60 days.

Items
Dietary A. squamosa Leaves Extract (ASLE) Levels (g/kg Diet) p Value

0 5 10 15 20 Treatment Linear Quadratic

Initial body weight (g) 11.87 ± 0.467 12.50 ± 0.289 12.43 ± 0.318 12.80 ± 0.321 13.07 ± 0.348 0.244 0.37 0.825
Final body weight (g) 42.07 d ± 0.348 42.73 cd ± 0.273 45.27 c ± 0.674 52.67 b ± 1.453 57.00 a ± 1.155 0.005 0.0001 0.0001

Weight gain (%) 255.39 b ± 11.40 242.14 b ± 5.83 264.28 b ± 4.14 311.41 a ± 1.10 336.37 a ± 2.89 0.001 0.0001 0.0001
Specific growth rate (%) 2.10 b ± 0.05 2.04 b ± 0.02 2.14 b ± 0.01 2.36 a ± 0.005 2.45 a ± 0.01 0.003 0.0001 0.0001

Feed intake (g) 52.17 c ± 0.441 51.17 c ± 0.441 52.70 c ± 0.379 56.00 b ± 0.577 60.00 a ± 0.577 0.001 0.0001 0.0001
Feed conversion ratio 1.723 a ± 0.019 1.687 a ± 0.012 1.600 b ± 0.006 1.400 c ± 0.026 1.360 c ± 0.012 0.08 0.0001 0.0001
Protein efficiency ratio 1.88 c ± 0.02 1.94 bc ± 0.01 2.03 b ± 0.01 2.31 a ± 0.04 2.37 a ± 0.02 0.0001 0.0001 0.054

Survival % 100.0 ± 0.00 100.0 ± 0.00 100.0 ± 0.00 100.0 ± 0.00 100.0 ± 0.00 - - -

Means with different superscripts are statistically different p < 0.05 according to Tukey’s multiple range test.
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3.2. Hematological Indices

The hematological results of Nile tilapia fed with various ASLE levels are shown
in Table 3. ASLE-fortified fish diets showed significantly improved hematologic indices
(p < 0.05) compared to the control group. In a dose-dependent order, hematological indices,
such as RBCs, Hb, PCV%, and WBC levels were markedly increased. Furthermore, the
addition of ASLE to Nile tilapia diets considerably increased the values of lymphocytes,
heterophils, eosinophils, and monocytes.

Table 3. Effects of dietary supplementation with A. squamosa leaves extract (ASLE) on hematological
indices of O. niloticus for 60 days.

Items
Dietary A. squamosa Leaves Extract (ASLE) Levels (g/kg Diet) p Value

0 5 10 15 20 Treatment Linear Quadratic

RBCs (106/mm3) 2.383 b ± 0.12 2.477 b ± 0.09 2.650 ab ± 0.09 2.760 a ± 0.07 2.917 a ± 0.04 0.008 0.001 0.846
Hb (gm/dL) 7.327 d ± 0.043 7.423 cd ± 0.038 7.573 c ± 0.043 7.740 b ± 0.074 7.970 a ± 0.038 0.000 0.000 0.154

PCV (%) 21.98 d ± 0.130 22.27 cd ± 0.113 22.72 c ± 0.130 23.22 b ± 0.221 23.91 a ± 0.114 0.000 0.000 0.154
MCV (fl) 92.60 ± 3.921 90.13 ± 2.900 85.88 ± 2.323 84.19 ± 1.263 81.99 ± 0.760 0.072 0.006 0.748
MCH (%) 30.87 ± 1.306 30.04 ± 0.966 28.63 ± 0.774 28.06 ± 0.421 27.33 ± 0.253 0.071 0.006 0.747

WBCs (103/mm3) 5.357 d ± 0.030 5.403 d ± 0.049 5.553 c ± 0.047 5.877 b ± 0.043 6.043 a ± 0.049 0.000 0.000 0.031
Lymphocytes

(103/mm3) 2.943 c ± 0.018 2.953 c ± 0.019 3.017 b ± 0.020 3.130 a ± 0.012 3.183 a ± 0.020 0.000 0.000 0.069

Heterophils (103/mm3) 1.433 c ± 0.018 1.453 bc ± 0.027 1.503 b ± 0.015 1.590 a ± 0.012 1.633 a ± 0.009 0.000 0.000 0.224
Eosinophils (103/mm3) 0.330 d ± 0.006 0.357 d ± 0.009 0.393 c ± 0.015 0.470 b ± 0.012 0.510 a ± 0.012 0.000 0.000 0.132
Monocytes (103/mm3) 0.650 c ± 0.006 0.640 c ± 0.006 0.640 c ± 0.006 0.687 b ± 0.009 0.717 a ± 0.009 0.000 0.000 0.001

Means with different superscripts are statistically different p < 0.05 according to Tukey’s multiple range test.
RBCs: red blood cells; Hb: hemoglobin; PCV: packed cell volume; MCV: mean corpuscular volume; MCH: mean
corpuscular hemoglobin; WBCs: white blood cells.

3.3. Hepatorenal Function and Stress Indicators

The serum total protein, albumin, and globulin are given in Table 4, which were
enhanced (p < 0.05) in the ASLE20 and ASLE15 groups compared to the other groups. In
the same table, the activities of ALT, AST, and ALP activities show a significant reduction
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(p < 0.05) with increasing ASLE concentration. Furthermore, the serum urea and creatinine
levels were significantly decreased by increasing the ASLE level in the diets, and their
lowest values were reported in the 20 ASLE g/kg diet, while the highest values were
observed with the control diet. The effects of dietary ASLE on the stress indicators of
Nile tilapia are illustrated in Table 4. Serum glucose and cortisol levels were significantly
(p < 0.05) decreased in fish fed diets enriched with ASLE20 compared with the other groups.

Table 4. Effect of dietary supplementation with A. squamosa leaf extract (ASLE) on serum hepatic and
renal function, as well as stress indicators of O. niloticus for 60 days.

Items
Dietary A. squamosa Leaf Extract (ASLE) Level (g/kg Diet) p Value

0 5 10 15 20 Treatment Linear Quadratic

Total proteins (g/dL) 5.300 c ± 0.161 5.473 c ± 0.159 6.183 b ± 0.073 6.600 a ± 0.115 6.967 a ± 0.073 0.001 0.001 0.843
Albumin (g/dL) 2.320 d ± 0.062 2.290 d ± 0.038 2.640 c ± 0.049 2.883 b ± 0.073 3.090 a ± 0.042 0.001 0.001 0.102
Globulin (g/dL) 2.980 c ± 0.117 3.183 c ± 0.148 3.543 b ± 0.023 3.717 ab ± 0.044 3.877 a ± 0.032 0.001 0.001 0.428

ALT (U/L) 12.21 a ± 0.653 12.19 a ± 0.641 11.08 ab ± 0.159 10.78 ab ± 0.280 10.12 b ± 0.093 0.026 0.002 0.773
AST (U/L) 27.70 a ± 0.321 27.63 a ± 0.291 27.02 ab ± 0.073 26.85 b ± 0.132 26.72 b ± 0.117 0.023 0.002 0.698
ALP (IU/L) 24.27 a ± 0.088 24.19 a ± 0.058 24.08 ab ± 0.060 23.87 b ± 0.104 23.61 c ± 0.059 0.001 0.001 0.132

Urea (mg/dL) 2.767 a ± 0.027 2.760 a ± 0.023 2.687 ab ± 0.032 2.590 b ± 0.026 2.220 c ± 0.057 0.001 0.001 0.001
Creatinine (mg/dL) 0.447 a ± 0.012 0.440 a ± 0.006 0.423 a ± 0.009 0.357 b ± 0.015 0.317 c ± 0.012 0.001 0.001 0.018

Cortisol (ng/L) 53.53 a ± 0.906 52.27 a ± 0.657 51.40 a ± 0.737 46.27 b ± 1.105 43.17 c ± 0.441 0.001 0.001 0.024
Glucose (mg/dL) 75.43 a ± 1.260 74.53 a ± 1.017 73.07 a ± 1.090 68.40 b ± 1.127 63.33 c ± 0.982 0.001 0.001 0.019

Means with different superscripts are statistically different p < 0.05 according to Tukey’s multiple range test. ALT:
Alanine aminotransferase. AST: Aspartate aminotransferase. ALP: Alkaline phosphatase.

3.4. The Activity of Antioxidant Enzymes

Dietary ASLE20 supplementation resulted in a significant improvement (p < 0.05) in
the serum levels of CAT, SOD, GSH, and TAC, followed by ASLE15, ASLE10, ASLE5, and the
control, respectively (Table 5). Conversely, the ASLE-supplemented diets reduced oxidative
stress, as stipulated by the gradually declining MDA and MPO levels. The ASLE20 groups
achieved the best results. The liver CAT and SOD activities were also considerably higher
in ASLE5, ASLE10, and ASLE15 than in the other groups, although the concentration of
MDA showed the reverse tendency (Table 5).

Table 5. Effect of dietary supplementation with A. squamosa leaf extract (ASLE) on the serum and
liver homogenate oxidative/anti-oxidative status of Oreochromis niloticus for 60 days, as well as its
mortality rate after cold challenge for 14 days.

Items
Dietary A. squamosa Leaf Extract (ASLE) Levels (g/kg Diet) p Value

0 5 10 15 20 Treatment Linear Quadratic

Serum

TAC (mM/L) 1.623 c ± 0.050 1.847 c ± 0.032 2.070 c ± 0.117 3.160 b ± 0.181 4.350 a ± 0.465 0.001 0.001 0.009
CAT (U/L) 69.60 d ± 1.900 74.73 cd ± 0.561 77.90 c ± 0.693 89.83 b ± 2.429 97.90 a ± 1.908 0.001 0.001 0.041

SOD (U/mL) 6.100 c ± 0.569 6.833 c ± 0.504 7.500 c ± 0.404 9.567 b ± 0.578 13.50 a ± 0.866 0.001 0.001 0.006
GSH

(µmol/mL) 11.43 c ± 0.517 12.70 c ± 0.473 13.27 c ± 0.318 15.63 b ± 0.593 18.57 a ± 0.809 0.001 0.001 0.036

MDA
(nmol/mL) 13.23 a ± 0.722 12.33 ab ± 0.088 11.87 b ± 0.203 9.833 c ± 0.145 9.300 c ± 0.153 0.001 0.001 0.539

MPO (U/L) 63.23 a ± 0.536 62.17 a ± 0.176 61.70 a ± 0.379 53.03 b ± 1.415 45.83 c ± 1.878 0.001 0.001 0.001

Liver
homogenate

CAT
(U/g tissue) 1.76 d ± 0.04 1.85 d ± 0.04 1.98 c ± 0.03 2.16 b ± 0.03 2.35 a ± 0.03 0.001 0.001 0.093

SOD
(U/g tissue) 4.26 e ± 0.04 4.40 d ± 0.03 4.59 c ± 0.04 4.82 b ± 0.05 5.07 a ± 0.05 0.001 0.001 0.126

MDA
(nmol/g tissue) 18.47 a ± 0.93 16.40 b ± 0.72 14.27 c ± 0.62 12.6 d ± 0.46 11.13 e ± 0.19 0.001 0.001 0.498

Post-cold challenge mortality % 6.66 ± 6.66 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 - - -

Means with different superscripts are statistically different p < 0.05 according to Tukey’s multiple range test.
TAC; total antioxidant capacity; SOD: superoxide dismutase; CAT: catalase; GSH: reduced glutathione; MDA:
malondialdehyde; MPO: myeloperoxidase.

3.5. Nonspecific Immune Parameters

Nile tilapia fed ASLE-based diets had a considerably higher (p < 0.05) non-specific
immune response higher than fish fed the control diet (Figure 2). Regarding the lysozyme,
and nitric oxide, C3 activities, there were significant enhancements (p < 0.05) observed
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in fish fed ASLE20, followed by ASLE15. There was a significant increase in phagocytic
activity in a progressive manner in ASLE20, ASLE15, ASLE10, ASLE5, and the control.
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3.6. Activity of Digestive Enzymes in the Intestine

Figure 3 depicts the alterations in the Nile tilapia’s intestinal digestive enzyme activity
as a result of 60 days of ASLE dietary supplementation. In comparison to the control group,
dietary ASLE improved the release of digestive enzymes (protease, lipase, and α-amylase),
and the highest values were recorded with the 10–20 g/kg diet (p < 0.05).

3.7. Cold-Water Stress Tolerance and Challenge with A. sobria

Regarding cold stress, no significant (p > 0.05) mortality was recorded in fish under
cold stress in all ASLE-supplemented treatments (Table 5). Resistance of Nile tilapia fed on
ASLE-enriched diets for 60 days was recorded against the A. sobria challenge, in terms of
percentage cumulative mortality. The control group had the highest mortality rate (60%),
while the ASLE20-fed group had the lowest mortality rate (5%). The survival rate was
increased in the fish by increasing the level of ASLE20 (95%), where it was 85.00%, 80.00%,
and 70.00% in ASLE15, ASLE10, and ASLE5, respectively, as compared with the control
group (40.00%), as shown in Figure 4.
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4. Discussion

Aquaculture provides a viable supply of affordable and healthy protein for human
consumption and enhances human health [3]. Unfortunately, disease outbreaks continue to
be a significant obstacle preventing advanced intensification from achieving sustainable
production. Several safe and environmentally friendly compounds for modulating immune
state, improve growth performance, and prevent fish disease are being investigated in
aquaculture [50–52]. They are also used to protect aquaculture animals from external stres-
sors such as contaminated water, cold temperatures, and overcrowding [53,54]. Therefore,
our study aimed to address the potential role of ASLE in improving the health, immune,
and growth performance of Nile tilapia.

The findings of the present study demonstrated that various health indicators in
Nile tilapia could be successfully improved through ASLE dietary replacement. The
best results were found in the group of fish fed the 20 g ASLE/kg diet, as indicated by
a significant improvement in final body weight, weight gain (%), SGR, FCR, and PER
compared to fish fed the control diet. The incorporation of ASLE in the Nile tilapia diet
showed statistically significant changes, which were detected in the crude protein and ash in
a dose-dependent manner. These observations are consistent with those of Safira et al. [55],
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who investigated the effect of ASLE on Clarias batrachus growth rate. However, to our
knowledge, no study has investigated the impact of A. squamosa on tilapia species. Growth
enhancements can be linked with improvement of diet digestion and absorption, leading to
improved nutrient utilization. This supposition was verified by the high activity of digestive
enzymes observed herein. On the other hand, ASLE may reduce the number of possible
pathogens in the gastrointestinal tract (Figure 4), increase the population of beneficial
microorganisms, and/or increase the activity of microbial enzymes, all of which would
increase feed digestibility and nutrient absorption. In addition, high concentrations of
protein, fiber, carbohydrates, essential oils, vitamins, and minerals improved the nutritional
status of dietary ASLE [19]. Farag & Paré [56], El-Garhy et al. [57], El-Houseiny, et al. [58];
Toutou, et al. [59] reported superior growth performance following the feeding of certain
natural plants or plant extracts to Nile tilapia.

Physiological and stress conditions of fish can be evaluated using hematological
parameters [60]. The current study confirmed that ASLE-fed Nile tilapia demonstrated
a substantial increase in all blood indices in diets containing 20 g/kg ASLE. This finding
suggests that the incorporation of ASLE into the diet could increase the immunity and
prevent infection. A. squamosa contains a wide variety of phytochemicals, including proteins,
carbohydrates, saponins, alkaloids, flavonoids, phenolics, and glycosides [61]. As ASLE has
a higher protein level, both humans and animals can benefit from its nutritional value [62].
Furthermore, A. squamosa contains a variety of minerals, including vitamin A, C, E, B1
(thiamine), B2 (riboflavin), B3 (niacin), B9, and folic acid, that have a hematic impact.
Extracts of A. squamosa were found to contain macro and microminerals: Mg, P, Zn, Cu, and
Se [63]. To maintain general health, various minerals are necessary [64]. Similar results of
enhanced hematological indices were reported with an extract of Mitracarpus scaber leaves
being fed to Nile tilapia [65]; as well as Milk thistle and co-enzyme Q10 [58], and A. vulgaris
powder [13].

Compared to mammals, fish have a more innate immunity for defense [66]. The phago-
cytic cells (neutrophils and macrophages), which are an essential part of innate immunity,
play a crucial role in eliminating infections through a process known as phagocytosis. Ad-
ditionally, macrophages emit a potent reactive oxygen called NO to improve their capacity
to kill infections through phagocytosis [67]. Another crucial element is lysozyme, which
is produced by leucocytes engaged during the start of phagocytosis and has bactericidal
effects, by lysing bacterial cell walls [68]. In the current study, dietary ASLE significantly
enhanced the non-specific immunological defenses in Nile tilapia compared to those in
the control group in a dose-dependent manner. This may have been due to potential
biological and pharmaceutical effects, including antioxidant, antibacterial, and antiviral
impacts [23,69]. Other elements identified in ASLE that could help to improve fish im-
munity include acetogenins, alkaloids, flavonoids, phenols, saponins, tannins, glycosides,
sesquiterpenes, anthocyanins, steroids, diterpenes, terpenoids, quinones, amino acids, and
fatty acids [70,71]. To combat various diseases, polyphenolic chemicals play an important
role in the control of a number of physiological and biochemical factors, including enzyme
activity, cell differentiation, signal transduction mechanisms, and cellular redox poten-
tial [72]. Similar immunomodulatory actions were recorded in Nile tilapia with various
herbal dietary additions [13,58].

Numerous crucial biological components, such as DNA and proteins, can be destroyed
by oxidative stress. The body has a defense mechanism against oxidative damage to the
tissues [73]. CAT and SOD are antioxidant enzymes that can eliminate reactive oxygen free
radicals. Glutathione is a non-enzymatic antioxidant that can also counteract these radicals
through enzymatic reactions. In the current study, significant increases over the control
values were noted in serum antioxidant enzyme activities, including CAT, SOD, GSH, and
TAC, as well as a reduction in the MDA content in the serum of fish fed ASLE-supplemented
diets. The results also confirmed an improvement in the liver contents of CAT and SOD,
with significant decreases in the level of MDA in ASLE-fed groups compared to the control.
The leucocyte-produced MPO enzyme is a component of the innate immune system. As



Animals 2023, 13, 746 12 of 17

a physiological catalyst for lipid peroxidation, this enzyme produces ROS, which in turn
affects the inflammatory response [74]. In this investigation, feeding on ASLE-supplied
diets resulted in a reduction in serum MPO activity. This result may have been related
to the anti-inflammatory effect of A. squamosa, which is related to a number of chemical
compounds, including phenolics, annonaceous acetogenins, saponins, flavonoids, alkaloids,
glycosides, alkaloids, steroids, and terpenoids, or due to cyclooxygenase enzyme activity
inhibition, which is involved in the inflammation process [56]. The antioxidant properties
of ASLE may be attributed to A. squamosa containing flavanoids, coumarins, alkaloids,
and terpenoids [19,75,76]. Several authors have shown a significant link between fruit
phenolic concentrations and antioxidant capability [18,77]. In Nile tilapia fed A. vulgaris,
Silybum marianum exerted antioxidant efficacy and consequently protected tissues from
oxidative stress, as stated by Mansour, et al. [13]; Khalil, et al. [78], respectively.

In this study, fish fed ASLE-supplemented diets had higher levels of total serum
proteins and globulin. This finding suggests that ASLE can boost protective proteins,
which can then activate the immune system. High levels of blood protein, particularly
globulins, are a good predictor of enhanced liver function and innate immune response [79].
Moreover, the enhancement of serum total protein and globulin may have been due to the
fact that ASLE contains a high amount of proteins and amino acids [80]. Similar results
were observed in Nile tilapia fed diets supplemented with A. vulgaris [13].

Compounds that serve as antioxidants, lipid peroxidation inhibitors, and have the
ability to scavenge free radicals may have hepato-renal protective characteristics. As we
mentioned previously, ASLE has high levels of antioxidant enzyme activity. The present
study suggested the idea that the incorporation of ASLE in the fish diet led to a reduction of
liver functional enzymes (ALT, AST, and ALP) and kidney function indicators. Additionally,
ASLE reduced MDA levels in the liver and serum. The current results were supported
by Kumar, et al. [19], who mentioned that the effect of ASLE was equivalent to that
of a hepatoprotective substance (silymarin), which was attributed to the abundance of
coumarins, which may be the main factor causing the hepatoprotective action.

The primary indicators of fish stress are serum glucose and cortisol, which fluctuate
depending on changes in the environment or in the diet. Under normal circumstances,
cortisol regulates a variety of physiological processes in fish, and it also enables quick
physiological changes in response to stress [81]. Several components of intermediary
energy metabolism are stimulated by cortisol, which also increases oxygen absorption,
boosts gluconeogenesis, and inhibits glycogen synthesis. Cortisol also appears to play
a key role in both aerobic and anaerobic metabolism [82]. In the current investigation,
blood glucose and cortisol levels were significantly decreased with the dietary addition
of ASLE. The richness of ASLE in flavonoids and other essential minerals plays a critical
role in controlling glucose uptake and lipid metabolism [19,71,83,84]. Since cortisol plays
a significant role in reducing inflammation and improving immunity, as shown by the
lower level of MPO in serum, ASLE is therefore believed to be particularly beneficial for
reducing stress.

Particularly during the winter months, tilapia in fish farms are occasionally exposed
to sudden cold temperatures for a few hours in the early morning. Overall, the greater
capacity of the tilapia supplemented with ASLE to withstand cold-water stress was a direct
consequence of all of the impacts mentioned. Consistent with this result, Ibrahim, et al. [14]
revealed that incorporation of rocket leaves in the diet could ameliorate tilapia fish against
cold water stress.

Challenge tests are typically used as the standard assay to assess the overall health of
the immune system [85]. A strong indicator of the effectiveness of immunostimulants is the
increase in the resistance of fish to pathogenic microorganisms [86]. According to the find-
ings of this study, dietary ASLE had a protective effect against A. sobria infection in the fish.
This may have been correlated with the elevation of nonspecific immune parameters, such
as phagocytic activity, lysozyme, NO, C3, and antioxidant enzyme activities, in addition
to the reduced levels of glucose and cortisol, which could have strengthened the defense
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of fish against infection. In fact, it has also been reported to possess extraordinary phar-
macological capabilities, including antibacterial action [87]. In addition, annotemoyin, an
active acetogenin component obtained from chloroform leaf extract, and certain flavonoid
compounds purified from the plant’s aqueous leaf extract, both demonstrated notable
antibacterial properties [88]. Squamocin, squamostatin, and cholesteryl glucopyranoside
are examples of other acetogenins that have been shown to suppress the growth of certain
Gram-positive and Gram-negative bacteria [18,89]. The primary components of ASLE’s
antimicrobial mechanism of action are the phenolic compounds, which disrupt bacterial
metabolic processes, cause cytoplasmic component coagulation and leakage, and have an
anti-quorum sensing function [90]. Our findings agree with those of Paul, et al. [55], who
investigated the impact of ASLE on the survival rates of C. batrachus. The inclusion of
phytochemical components and the antimicrobial characteristics of ASLE contributed to
the higher survival rates. The enhancement in the disease resistance of Nile tilapia has been
reported when fed various medicinal plants or their extracts [13,91,92].

5. Conclusions

The findings of the current investigation demonstrated that the dietary addition of
ASLE at a dose of 20 g/kg could improve the measured blood parameters, demonstrating
its hemostatic efficacy on RBCs, Hb, PCV, and WBCs, as well as the immune response,
antioxidant status, and tolerance of Nile tilapia to cold water stress and A. sobria infection.
Improvements in hepatorenal function, immunological, and antioxidant parameters may
strengthen fish’s ability to fight off diseases and tolerate stress, which would ultimately
benefit the aquaculture sector. However, more research is required to determine the
molecular, immunomodulatory, and other effects brought about by ASLE in other species
of fish.
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