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Simple Summary: There are five indigenous chicken breeds in Henan Province, China; however,
comprehensive knowledge of their genetic basis is lacking. Therefore, using whole genome resequenc-
ing, we examined the genetic make-up, genomic diversity, and migration history of the indigenous
Henan chicken populations as well as the selection factors and genes behind the distinct phenotypes
of Henan gamecocks. These results will make it easier to comprehend the traits of the germplasm
and the potential for using native breeds from Henan.

Abstract: There are five indigenous chicken breeds in Henan Province, China. These breeds have their
own unique phenotypic characteristics in terms of morphology, behavior, skin and feather color, and
productive performance, but their genetic basis is not well understood. Therefore, we analyzed the
genetic structure, genomic diversity, and migration history of Henan indigenous chicken populations
and the selection signals and genes responsible for Henan gamecock unique phenotypes using whole
genome resequencing. The results indicate that Henan native chickens clustered most closely with
the chicken populations in neighboring provinces. Compared to other breeds, Henan gamecock’s
inbreeding and selection intensity were more stringent. TreeMix analysis revealed the gene flow from
southern chicken breeds into the Zhengyang sanhuang chicken and from the Xichuan black-bone
chicken into the Gushi chicken. Selective sweep analysis identified several genes and biological
processes/pathways that were related to body size, head control, muscle development, reproduction,
and aggression control. Additionally, we confirmed the association between genotypes of SNPs in the
strong selective gene LCORL and body size and muscle development in the Gushi-Anka F2 resource
population. These findings made it easier to understand the traits of the germplasm and the potential
for using the Henan indigenous chicken.

Keywords: Henan indigenous chicken; breeding; genetic diversity; gamecock; selective sweep

1. Introduction

Indigenous chicken breeds are gradually developed under the influences of long-
term natural environmental and artificial selection, and display abundant phenotypic
diversities, such as heterogeneous feather colors, comb, and plumage shapes [1], which are
unique resources for genetic improvements in chickens. Surveying for genetic variation
can contribute to further research on the molecular mechanisms of chickens’ evolution
and domestication, and the findings of such a survey can serve as a valuable reference
for improving the breeding and cultivation of Chinese indigenous breeds. There are five
indigenous chicken breeds in Henan Province, China, including the Gushi chicken (GS),
Zhengyang sanhuang chicken (ZYSH), Xichuan black-bone chicken (XCBB), Lushi blue-
shelled-egg chicken (LS), and Henan gamecock (HNG). They have unique phenotypic
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traits that distinguish them in terms of morphology, behavior, skin and feather color, and
productive abilities. However, the characteristics of genetic variations in the breeds are still
unclear. Theoretically, a thorough understanding of the genetic diversity of the indigenous
breeds might support conservation and utilization through suitable breeding programs in
the future.

In many domestic animals, whole genome resequencing technology has already been
used to examine the genetic composition of populations [2–5]. Based on this technology,
Luo et al. (2020) investigated the genetic diversity of 157 native Chinese chickens [6],
and discovered that isoprenoid synthase domain containing (ISPD) may be mandatory
for the muscularity of gamecocks, whereas alkylglycerol monooxygenase (AGMO) and
carboxypeptidase Z (CPZ) are crucial for determining the behavioral features. Wang et al.
(2020) analyzed the origin and domestication of the chicken using 863 birds worldwide
and identified that Southwestern China, Northern Thailand, and Myanmar were the main
domestication centers of domestic chickens [5].

Long-term selection alters the patterns of variation in certain genomic regions leading
to increased allele frequencies, the degree of linkage disequilibrium, and a reduction local
diversity [7,8]. Simultaneously, the genomic regions linked to the sites are fixed due to
the genetic hitchhiking effect [9]. The distinctive genetic traces or imprints left in the
genomic regions are signatures that underwent selection [10], which can be effectively
detected by selective sweep analysis [11–13]. Different statistical parameters, such as
fixation index (FST), nucleotide diversity (π), and reduction of diversity (ROD), have been
proposed according to the investigated selection signatures that are within populations or
between populations [14,15]. Among these methods, the FST is usually used to quantify
the degree of population genetic differentiation between populations [16]. The π represents
nucleotide polymorphisms, and decreases with increasing levels of selection. The detection
power of selection signatures has been suggested to be improved by combining several
statistical methods [17]. Numerous chicken selection signatures have been studied in depth,
including those related to feather color [18], comb size [19], and skin color [20], as well as
those relating to bidirectional selection of body weight [21], and regional and commercial
breed features [22].

In the present study, 50 Henan indigenous chickens were whole genome resequenced.
Combined with the genome sequencing data of another 11 Chinese nationwide canonical
indigenous chicken breeds, we comprehensively investigated the genetic structure of
the five Henan indigenous chicken breeds and identified the unique selective genomic
variants/genes in HNG.

2. Materials and Methods
2.1. Sample Collection and Sequencing

The 50 blood samples from the 5 Henan indigenous chicken breeds, including 10
HNG, 10 GS, 10 LS, 10 XCBB, and 10 ZYSH, were collected. Genomic DNA was extracted
from blood samples using the TianGen DNA Kit (DP 341, Tiangen Biochemical Technology,
Beijing, China). Using a NanoDrop spectrophotometer 2000 (NanoDrop Inc., Wilmington,
DE, USA) and agarose gel electrophoresis, the quantity and quality of the genome’s DNA
were assessed. The 50 samples were resequenced on whole genome level by using the
DNBSEQ-T7 platform at the Wuhan Benagen Technology Co., Ltd. (Wuhan, China).

The WGSs of 115 chickens from another 11 chicken breeds, including 10 Guangxi
Yao chicken (YAO), 10 Hetian chicken (HT), 10 Huaixiang chicken, 10 Huanglang chicken
(HL), 10 Huiyang bearded chicken (HUX), 10 Jianghan chicken (JH), 10 Ningdu Yellow
chicken (ND), 10 Wenchang chicken (WC), 10 Wuhua Yellow chicken (WH), 10 Huaibei
partridge chicken (HBM), and 15 Red jungle fowl (RJFt) were retrieved from a published
dataset [22,23].
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2.2. Whole Genome Variants’ Identification and Annotation

To create clean reads of premium quality, the stringent quality filtering techniques
listed below were used: (1) deleting reads with ≥10% undefined nucleotides (N); (2)
eliminating reads with more than 50% bases with phred scores of ≤20; and (3) disposing
reads aligned to the barcode adaptor. The clean reads were then aligned using the BWA-
MEN alignment function built into the BWA (v0.7.17, Heng Li, USA) [24] to the chicken
reference genome (GRCg6a). Duplicated reads were removed using the Picard package [25].
To produce the sequencing coverage statistics, the bedtools (v2.29.2, Aaron R. Quinlan,
USA) was used [26]. Using the GATK (v3.8, Aaron McKenna, USA) software, variant
calling was carried out [27]. Single nucleotide polymorphisms (SNPs) were filtered by
the GATK’s Variant Filtration with options “QD < 2.0 || MQ < 40.0 || FS > 60.0 || SOR
> 3.0 || MQRankSum < −12.5”, excluding those exhibiting segregation distortions or
sequencing errors. Finally, a total of 9,861,819 SNPs with minor allele frequency >0.05 and
maximum miss rate >0.8 were obtained using VCFtools (v0.1.16, Adam Auton, UK) [28] for
subsequent analysis. The Ensemble genome database and SNPEff (v 4.1, Pablo Cingolani,
USA) [29] program was used to obtain information about SNPs annotation.

2.3. Heterozygosity and Runs of Homozygosity

To characterize genetic diversity, we employed a variety of metrics that we all acquired
through PLINK (v1.90, Shaun Purcell, USA) [30].

VCFtools v0.1.16 [28] was used to estimate the nucleotide diversity across the entire
genome for each population. The ratio of observed heterozygosity to observed homozygos-
ity (Ho/-het) was calculated as 1–(number of observed homozygous loci divided by the
number of non-missing loci), and the expected heterozygosity (He) was estimated as the
1–(number of expected homozygous loci over number of non-missing loci). All SNPs were
averaged to determine the observed heterozygosity and expected heterozygosity estimates
for each population’s members. Based on the Runs of Homozygosity (ROH), the inbreeding
coefficient of each individual was estimated. Using PLINK (v1.90, Shaun Purcell, USA),
long homozygous fragments were scanned. The following specific parameters were used to
assess homozygosity: a sliding window of 50 SNPs along the chromosome was used; each
sliding window allowed a maximum of one heterozygote, five missing SNPs, a minimum
length of ROH of 100 kb, a minimum density of one SNP per 50 kb, and a maximum
interval between consecutive SNPs of 1000 kb was permitted for each sliding window.

According to McQuillan [31], the inbreeding coefficients (FROH) for each breed were
determined using the following formula:

FROH = ∑
LROH

LAUTO

LAUTO is the length of the autosomal genome that spans the SNP locations (960280 kb
in the present study).

2.4. Analysis of Population Structure, Linkage Disequilibrium, and Gene Flow

Neighbor in the PHYLIP (v3.69, Joseph Felsenstein, USA) package was used to cre-
ate neighbor-joining (NJ) relationship trees between participants [32], which were then
presented by MEGA (v7.0, Sudhir Kumar, USA) [33]. PLINK (v1.90, Shaun Purcell, USA)
was used to perform principle component analysis (PCA) on the genetic distance matrix
of 16 breeds. To avoid artifacts due to linkage disequilibrium (LD) and to save computa-
tion time, SNPs with high-wise R2 values (R > 0.2) were pruned from the dataset using
PLINK (v1.90, Shaun Purcell, USA, arguments: –indep-pairwise 50 5 0.2), and SNPs having
high-wise R2 values (R > 0.2) were removed from database [30]. The supervised ADMIX-
TURE (v1.3.0, David Alexander, USA) program [34] was used to study the population
structure through the maximum likelihood model. The number of genetic clusters, K, was
predetermined and ranged from 2 to 16. Using PopLDdecay [35], LD for 16 breeds was
determined based on the correlation coefficient R2 statistics of the two loci. For the purpose
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of analyzing gene flow among the 16 breeds, a population phylogenetic tree was built using
TreeMix (v1.13, Robert R Fitak, USA) [36].

2.5. Selective Sweep Analysis

Fst and θπ have been shown to be successful for discovering regions of selective
elimination, particularly when mining functional zones strongly associated to the living
environment, where strong selection signals can be acquired. We used the sliding-window
approach (40-kb windows with 10-kb increments) to determine the genome-wide distri-
bution of FST values and θπ ratios among HNG as well as non-Henan game chickens
(NHNG) in order to identify possible areas that had undergone directional selection in the
HNG. Based on the ratio of π for a subpopulation in relation to a control subpopulation,
the reduction of diversity (ROD) values were estimated. FST values were changed using
Z-transform, and θπ ratios were transformed using log2 ratio. The process was analyzed us-
ing vcftools [28]. FST and log2(θπ ratio) joint analysis, including HNG and NHNG, revealed
the genomic region imprint of HNG. We looked at the windows with the top 5% values for
both the FST and log2 ratio as potential candidates for strongly selected genes. Finally, the
candidate genes were analyzed by Gene Ontology categories (GO) and Kyoto Encyclopedia
of Genes using Metascape https://metascape.org/gp/index.html#/main/step1 (accessed
on 11 November 2022).

2.6. Association Study between SNPs in the LCORL Gene and Growth and Carcass Traits

The LCORL gene SNPs were identified by using double-digest genotyping-by-sequencing
(ddGBS) data from the population of 734 Gushi × Anka F2 chickens [37]. Using Haploview,
linkage disequilibrium analysis of SNPs was carried out. The genotyping information for
SNPs was utilized to conduct an association study with growth and carcass traits.

2.7. Statistical Analysis

The generalized linear mixed model (GLM) included with SPSS 23.0 (IBM, Chicago,
IL, USA) was used to determine the relationship between SNPs and growth, carcass, and
meat quality variables. The models used were as follows:

Yiklm = µ+ Gi + Hk + fl + eiklm (1)

Yiklm = µ+ Gi + Hk + fl + b (Wiklm - ) + eiklm (2)

Model I was employed to analyze SNP association with meat quality and growth
variables, whereas Model II, which included carcass weight as a covariate, was employed
to investigate SNP relationship to carcass traits. These models used Yiklm as the dependent
variable (phenotypic value), µ as the observation mean, eiklm as random error, Gi as the
genotype fixed effect (i = genotypes), Hk as the hatching fixed effect (k = 1, 2), fl as the
family fixed effect (l = 1, 7), b as the carcass weight regression coefficient, and Wiklm as
the slaughter weight of the individual, which was the average slaughter weight [37]. Least
significant difference (LSD) was used to determine the statistical differences among the
least squares means of the different genotypes.

3. Results
3.1. Genomic Variants in the Henan Indigenous Chicken

A total of 50 individuals from five Henan indigenous chicken breeds were whole
genome resequenced with an average sequencing depth 18-fold of the genome. Approx-
imately 25.2 million autosomal SNPs were reported. Following filtering of minor allelic
frequencies <0.01 and call rates <0.9, around 9.86 million autosomal SNPs were eventually
kept and utilized in subsequent experiments. Most of the variations were annotated in
introns (57.812%), exons (1.853%), intergenic region (19.667%), upstream (10.141%), and
downstream (9.625%) of genes (Table S1). Chromosome SNP density distribution analysis
indicated that the SNPs were evenly distributed on each chromosome, other than at the

https://metascape.org/gp/index.html#/main/step1
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telomeres of some chromosomes, and chromosome 1 and 2 had the highest densities of
SNPs (Figure. S1).

3.2. Population Genetic Structure and Genetic Diversity

In order to explore the population genetic structure of Henan indigenous chickens and
its relationship with other chicken breeds in other parts of China, the neighbor-joining (NJ)
tree based on genome-wide SNPs of 16 chicken breeds was constructed, and the results
showed that all the chickens could be divided into three large clusters (Figure 1A). Of
them, cluster 1 included the RJFt and WC, cluster 2 included HUX, WH, YAO, and HX, and
cluster 3 included the remaining 10 indigenous chickens, including five Henan indigenous
chicken breeds, HBM, JH, HL, ND and HT. Obviously, a close genetic relationship between
GS and HBM was found. In addition, the HNG showed conspicuous separation from other
Henan indigenous chicken breeds.
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Figure 1. Genetic relationships and population structure between Henan indigenous chickens and 

other Chinese chicken breeds. (A) Neighbor‐joining (NJ) phylogenetic tree of 16 breeds. (B) Principal Figure 1. Genetic relationships and population structure between Henan indigenous chickens and
other Chinese chicken breeds. (A) Neighbor-joining (NJ) phylogenetic tree of 16 breeds. (B) Principal
component analysis (PCA) of 16 chicken populations. (C) Admixture analysis across 16 chicken
populations. Proportions of genetic ancestry for 16 chicken populations with K = 2–5 (K represents
the number of inferred ancestral populations. Different colors represent assumed ancestors).

Further principal component analysis (PCA) divided the 16 chicken populations into
five groups (Figure 1B). Group 1 was the RJFt population, and the individuals in the
population were scattered, which reflected the large disturbance in the genome variation
of the population. Group 2 contained five chicken breeds (HUX, WH, YAO, HX, and WC)
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located in Southern China. Group 3, 4, and 5 were the three subclasses of cluster 3 of the
NJ tree.

Additionally, we carried out an unsupervised admixture analysis, with K ranging from
2 to 16, to estimate the degree of admixture among 16 breeds of chicken (Figure S2). When
K = 2 as the lowest cross-validation error, there was a clear genetic divergence between the
RJFt population and other populations. When K = 4, the genetic divergence was consistent
with the aforementioned PCA result (Figure 1B). The RJFt population and HNG population
were independently separated from the other populations. Meanwhile, Henan indigenous
chickens, except for HNG, formed a group with HBM, and WC, WH, YAO, HX, and HUX
formed another group, while HT, HL, ND, and JH populations had obvious widespread
genetic introgression from other populations. At K = 5, LS and XCBB populations were
separated from Henan indigenous chickens (Figure 1C). As a whole, the HNG population
had the purest genetic background, while the other four populations had slight genetic
introgression from chicken populations in other regions of China, such as HUX, HX, WC,
WH, and YAO. In addition, the genome of the HNG population was also slightly infiltrated
into the other four Henan indigenous chicken breeds (Figure 1C).

The genetic diversity (heterozygosity and nucleotide diversity) of all the 16 chicken
breeds was also estimated. The results showed that the expected heterozygosity (He)
and nucleotide diversity (π) of HNG population were the lowest, followed by the RJFt
populations and other indigenous chicken populations (Table 1). For Henan indigenous
chickens, with the exception of HNG, their SNP diversities and heterozygosity were at a
medium-to-high level compared with other local chicken breeds. In addition, the lower He
and π of RJFt population implied that the RJFt genetic drift was caused by long-term small
population rearing in different regions.

Table 1. The genetic diversity estimates for different indigenous chicken breeds and red jungle fowl.

Population Ho 1 He 2 π 3

HNG 0.288533 0.272105 0.003004
RJF 0.262515 0.278995 0.003015
JH 0.263002 0.282786 0.003061

HBM 0.281456 0.284406 0.00308
HUX 0.272044 0.289957 0.003093
WH 0.286775 0.287678 0.00312
ND 0.275747 0.288155 0.003126
LS 0.30188 0.283498 0.003133

ZYSH 0.30586 0.284161 0.003137
XCBB 0.305247 0.284792 0.003144

HT 0.285964 0.290634 0.003156
WC 0.278444 0.293583 0.003163
HX 0.283225 0.293124 0.003175
GS 0.305815 0.28887 0.003188

YAO 0.285663 0.293095 0.00319
HL 0.288032 0.297304 0.003224

1 Ho = Observed heterozygosity, 2 He = Expected heterozygosity, 3 π = Nucleotide diversity.

3.3. Runs of Homozygosity and Linkage Disequilibrium Unveiled Genome-Wide Genetic Variation
Remodeling of Henan Gamecock by Strong Artificial Selection

Runs of homozygosity can reveal an animal’s degree of inbreeding. While a short
run of homozygosity indicates more distant shared ancestors, a long run of homozygos-
ity indicates inbred animals with recent common ancestors. We compiled the genomic
inbreeding coefficient (FROH) and runs of homozygosity for 16 different chicken breeds
(Figure 2A–C). The results showed that, with the exception of the RJFt, Henan indigenous
chicken populations had longer runs of homozygosity and higher FROH, suggesting that
Henan indigenous chickens had a higher inbreeding degree among all the 15 Chinese
indigenous chicken breeds. Furthermore, of the Henan indigenous chickens, HNG had the
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largest value and the longest runs of homozygosity, and the highest FROH, indicating that
HNG was subject to more strict inbreeding.
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Linkage disequilibrium (LD) decay patterns can provide details about a population’s
evolution. As a result, comparing the rate of LD decay between populations might provide
useful information about the overall variety of a species. The results showed that the
decay rate of Henan indigenous chickens was slower, indicating that these populations had
experienced stronger selection comparing to other populations. Not surprisingly, HNG
chickens showed the slowest rate of LD decay, suggesting that the breed could have been
subjected to intense artificial selection during domestication (Figure 2D).

3.4. TreeMix Analysis Revealed the Migration History of Henan Indigenous Chickens

Given that a potential introgression from chicken breeds in other regions of China
to Henan indigenous chicken breeds has been suggested by above Admixture analysis,
to better understand the migration patterns of Henan indigenous chickens, we further
reconstructed a maximum likelihood (ML) tree by TreeMix to examine populations split
and migration events. In this ML tree (Figure 3), we observed an early split between central
(GS, HNG, ZYSH, XCBB, LS, HBM, and JH) and southern (HUX, WC, HX, YAO, WH, HT,
ND, and HL) populations. Gene flows from southern chicken breeds into ZYSH and from
XCBB into GS could be evidenced, which conformed with the above admixture results.
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3.5. Genome-Wide Selective Sweep Signals in Henan Gamecock

We found from the ROH and LD decay that Henan fighting cocks were strongly
selected and had distinctive personality traits. In order to further investigate and explore
the genes associated with selection in fighting chickens, we conducted a genome-wide
selection signal analysis in HNG. After filtering, 9,861,819 SNPs in HNG were retained
for the analysis of selection signals between gamecocks and non-gamecocks. Based on
both the ROD and FST statistical methods, the top 5% selected genome regions were
considered as a potential selection signal region, and a total of 1103 candidate genes were
identified from FST, while 1182 genes were obtained from ROD (Figure 4A,B, Tables S2
and S3). A total of 399 overlapping selective genes were obtained in HNGs after gene
intersection obtained by the two statistical methods (Figure 4C, Table S4). Functional
enrichment analysis indicated that the 399 candidate selective genes were mainly involved
in mesenchyme development, cell adhesion molecules, muscle structure development, cell
morphogenesis, MAPK cascade, and regulation of chondrocyte differentiation modulation
of chemical synaptic transmission (Figure 5A,B).

The genomic regions with the most significant selective signals occurred in chromo-
some 1: 42,880,001–42,970,000, containing the transmembrane and tetratricopeptide repeat
containing 3 (TMTC3) gene, and chromosome 4: 75,820,001–75,870,000, containing the
ligand dependent nuclear receptor corepressor like (LCORL) gene and non-SMC condensin
I complex subunit G (NCAPG) gene. The shared long-range haplotypes across the HNG
population could be observed in TMTC3, and LCORL–NCAPG genes, respectively (Fig-
ure 6A,B). Furthermore, we analyzed the association between genotypes of SNPs in the
LCORL gene and growth and carcass traits in the Gushi-Anka F2 resource population.
Based on the previous genotyping-by-sequencing (GBS) data of the population [37], we
detected six SNPs on the LCORL gene (Figure S3), two (Chr4: 75,854,181C>T and Chr4:
75,859,000G>A) of which were significantly associated with body weight (BW) at 0, 2, 4,
6, and 12 weeks of age; body size index including chest depth, breast bone length, body
slanting length, and pelvis breadth; and carcass traits including semi-evisceration weight,
eviscerated weight, semi-evisceration weight rate, eviscerated weight rate, breast muscle
weight, leg muscle weight rate, and the other ratio of viscera (Table S5). For the SNP
Chr4: 75,859,000G>A, the genotype AA was conducive to weight gain and chicken meat
production (Figure 7A). The allele frequency of A was higher than that of G in broiler breed
(Cobb), while reduced in gamecock breeds, and was lowest in other indigenous and layer
breeds (Figure 7B). These results further supported that the strong selection of LCORL gene
in HNG was related to body size and muscle development.
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Figure 6.  elective sweeping signatures of    C ,  C    and NCAPG genes 

in gamecock chickens. (A) F   analysis and haplotype diversity of    C  genes 

between gamecock populations and the other non-gamecock chickens. (B) F   analysis 

and haplotype diversity of NCAPG and  C    genes between gamecock populations 

and the other non-gamecock chickens.  ed, yellow and green represent homozygous 

mutant, heterozygous mutant, and homozygous wild-type, respectively. 
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Figure 6. Selective sweeping signatures of TMTC3, LCORL, and NCAPG genes in gamecock chickens.
(A) FST analysis and haplotype diversity of TMTC3 genes between gamecock populations and the
other non-gamecock chickens. (B) FST analysis and haplotype diversity of NCAPG and LCORL
genes between gamecock populations and the other non-gamecock chickens. Red, yellow, and green
represent homozygous mutant, heterozygous mutant, and homozygous wild-type, respectively.

3.6. Common and Unique Selection Characteristics of Henan Gamecock

To further identify the selected genomic regions and genes that were unique to HNG
and common to other gamecock chicken breeds, we integrated the candidate selective
genomic regions of HNG with the candidate genomic regions of Chinese gamecocks,
which were previously reported by Luo et al. (Table S6). Ref. [6], and identified 52 genes
common to gamecocks (Table S7) and 347 genes unique to HNG (Table S8). These common
selective genes were mainly involved in cell morphogenesis, neuron regulation, behavior,
muscle organ development, female gonad development, regulation of secretion by cell,
and positive regulation of glucose transmembrane transport (Figure 8A), while the unique
selective genes in HNG were mainly involved in sensory organ development, neuron
projection development, DNA metabolic process, epithelial cell differentiation involved
in kidney development, protein ubiquitination, regulation of the Wnt signaling pathway,
manipulation of chondrocyte differentiation, and muscle structure development (Figure 8B).
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4. Discussion

Indigenous chicken breeds usually have excellent meat and egg quality, strong stress
resistance, and possess plentiful genetic diversity and a strong ability to adapt to the
environment [38]. These indigenous varieties are valuable genetic resources for economic
traits improvement and breeding of new varieties. The protection and utilization of the
genetic resources are of great significance for the sustainable development of the poultry
industry.

Genome resequencing technology, widely used in study of the genetic characteristics
and population admixtures [39–42], has accelerated the progress in resolving the genetic
roots of numerous complicated phenotypic features including chicken body size [43] and
plumage color in ducks [44]. Here, we, for the first time, reported the genetic structures
and the migration history of the five Henan indigenous chicken breeds, and the unique
genomic characteristics of HNG by whole-genome resequencing analysis.

Comparative genomics analysis was performed based on genome-wide SNPs of
the Henan indigenous chicken breeds, other indigenous chickens, and wild ancestors.
Population structure analysis revealed the overall differences and similarities of the genomic
architecture of the five Henan indigenous chicken breeds and other Chinese indigenous
chicken breeds as well. The NJ-tree and PCA analysis indicated that the clustering patterns
of the chicken population were closely related to geographical location and altitude, which
is consistent with the clustering patterns of yellow feather chickens in China [18]. For
example, the Henan indigenous chickens had the closest clustering with the chicken
populations in neighboring provinces (JH in Hubei province and HBM in Anhui province),
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but gathered in different clusters with the chicken populations in the Southern Guangdong
province (WH, HX) and Hainan province (WC). In addition, it was worth noting that the
HNG was obviously separated from the other Henan indigenous chickens (PCA), and
was not genetically infiltrated by other non-gamecock breeds, maintaining a relatively
pure genetic background (admixture), which might be due to the fact that the breeding of
gamecock chickens avoids crossbreeding with other types chickens in order to prevent the
reduction of aggression [45].

Admixture analysis indicated that, compared with other chicken breeds in Henan
Province, LS and XCBB populations have a closer genetic relationship (K = 5). According
to the records of annals of poultry genetic resources in China, both LS and XCBB chickens
have black legs and lay blue-shelled eggs, though there are obvious differences in feather,
skin, and meat colors. These may be explained by the closer genetic relationship between
the two breeds. More interestingly, we found that GS and HBM remained unseparated until
K = 15, indicating that the two breeds probably originated from a recent common ancestor,
which can also be explained by almost identical phenotypes and very close geographical
proximity. HNG evolved from the red jungle fowl according to an analysis of migratory
patterns among different types. Another gene flow was seen between southern chicken
breeds and ZYSH. The chicken breeds of southern origin used in the study mostly exhibit
three yellow characteristics, namely yellow feathers, beaks, and leg skin, which are similar
to the characteristics of ZYSH. Since ancient times, the Henan area has been a center of
trade and information exchange, and it is clear that trade, migration, and cultural exchange
between people from the two regions facilitated the spread of chicken variants [46].

The evaluation of genetic diversity showed that the heterozygosity of Henan indige-
nous chickens, except HNG, were higher, indicating that the diversity protection of these
local breeds was highly valued. The amount of animal inbreeding and the population
history are reflected in runs of homozygosity in the genome. Cattle have already shown
that runs of homozygosity are useful for estimating animal inbreeding [3,47], as well as
in goats [48] and pigs [49]. In the Chinese indigenous chickens included in our study, the
length of ROH and FROH varied greatly among different breeds. Except for the RJFt, HNG
had the longest ROH and the highest FROH, which were consistent with the findings by
Zhang et al. [45], in which the game chickens have stronger inbreeding than other local
breeds. In addition, previous research had confirmed that LD increased with the inbreeding
rate and decreased with an increase in hybridization [50]. The obvious increase of LD in
HNG further confirmed strong artificial selection had subjected the gamecocks to more
strict inbreeding to maintain breed-specific traits.

Furthermore, we identified the selective genomic regions and genes that were unique
to HNG and common to other gamecock chicken breeds based on genome-wide selective
sweep signal analysis. However, only 52 common selective genes were identified from
the 399 candidate selective genes in HNG, similar to the previous selection of Xishuang-
banna gamecock [51], which may be due to genetic drift or artificial selection differences
between different breeds [6]. Among the common selective genes, some have been clearly
reported to be associated with body size, insulin like growth factor 2 mRNA binding
protein 1 (IGF2BP1), insulin like growth factor 1 (IGF-1), LCORL, calmodulin-lysine N-
methyltransferase (CAMKMT) [52,53], head size alkylglycerol monooxygenase (AGMO),
CASP2 and RIPK1 domain containing adaptor with death domain (CRADD) [54], pea-comb
SRY-box 5 (SOX5) [55], muscle development collagen type VI alpha 1 chain (COL6A1),
isoprenoid synthase domain containing (ISPD) [56,57], egg production and ovarian devel-
opment estrogen receptor 1 (ESR1), prolyl endopeptidase-like (PREPL) [58] and neuropsy-
chiatric disorders karyopherin subunit alpha 3 (KPNA3), hepatocyte growth factor (HGF),
ectodysplasin A (EDA), cadherin 8 (CDH8), AKT interacting protein (AKTIP) [59–63]. In
addition, the common selective genes including CDH8, ephrin B1(EFNB1), ETS variant
1(ETV1), hepatocyte growth factor (HGF), slit guidance ligand 2(SLIT2), cyclase associated
actin cytoskeleton regulatory protein 1 (CAP1), IGF2BP1, major facilitator superfamily
domain containing 2A (MFSD2A), and ISPD, were most significantly enriched in cell
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morphogenesis, such as cell/neuron projection morphogenesis and cell morphogenesis
involved in differentiation, which played a crucial role in shaping the physiological func-
tions of a given organ, such as cell shape change [64]. Importantly, cell shape changes are
important drivers of growth, muscle strength, and neurotransmitter transmission [65,66].
These selective genes may be conducive to the body size and muscle strength control
of gamecock chickens and the neuroregulation of their aggressive behavior. In addiiton,
several biological processes involved in muscle development, regulation of temperature,
and neuron synapse structure were indeed enriched. Among the unique selective genes in
HNG, such as mono-amine oxidase A (MAOA) [67,68], glutamate metabotropic receptor
8 (GRM8) [69], and orthologs from chicken RNA binding protein, fox-1 homolog 1 (RB-
FOX1) [70] were involved in impulsive aggressive behavior. The candidate gene suppressor
of cytokine signaling 2 (SOCS2) potentially affected immune control and body size [71]. The
candidate gene myosin, heavy chain 1E (MYH1E), was involved in the muscular structure
and processes related to muscle fiber regeneration and repair [72]. Nudix hydrolase 7
(NUDT7) was the most likely candidate gene responsible for the redness of meat color in
pork [73]. These genes uniquely affected phenotypic selection characteristics of HNG.

Among these selective genes, LCORL was located in the most strongly selected ge-
nomic region in HNG. Genomic variations in the LCORL gene had been reported to be
associated with the body size of horses [74–76], cattle [77], sheep [45], and donkeys [78].
In addition, in the F2-generation population derived from the intercrossing of the Luxi
gamecock and the white feather broiler chicken, LCORL was significantly associated with
full eviscerated weight [79]. In our study, genotypes of SNPs Chr4: 75859000G>A and Chr4:
75859000G>A in the LCORL gene were also identified to have an obvious association with
the early body weight and body size at different weeks of age, and carcass traits in the
Gushi-Anka F2 chicken population. By rationally combining the aforementioned studies,
we may suggest that variations in LCORL may be crucial in determining the muscular
characteristics of gamecock hens.

5. Conclusions

In summary, we comprehensively characterized the population genetic structure,
genome diversity, and migration history across all five Henan indigenous chickens, and
revealed that Henan indigenous chickens, except HNG, had a relatively high genetic
diversity, while HNG had been subjected to more strict inbreeding to maintain breed specific
traits. In addition, a slight genetic introgression from chicken populations in other regions
of China into Henan indigenous chickens, except HNG, occurred. Moreover, we identified
several common selective genes and biological processes/pathways in gamecocks that
were related to body size, head control, muscle development, reproduction, and aggression
control. Importantly, we detected the unique selective genes and biological processes
related to sensory organ development and regulation of chondrocyte differentiation in
HNG, which reflected the rapid response to external stimuli and strong ability for injury
repair. Additionally, we confirmed the association between genotypes of SNPs in the
strong selective gene LCORL and body size and muscle development in the Gushi-Anka
F2 chicken population. These findings will facilitate the understanding of the Henan
indigenous breeds’ germplasm traits and use potential.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ani13040753/s1, Figure S1: SNP density map; Figure S2. Admixture
analysis across 16 chicken populations. Pro-portions of genetic ancestry for 16 chicken populations
with K = 2–16 (K represents the number of inferred ancestral populations); Figure S3: 6 SNPs on
LCORL gene LD block; Table S1: Number of effects by type and region; Table S2: Gene annotation
of top 5% outlier genomic regions from Fst; Table S3: Gene annotation of top 5% outlier genomic
regions from ROD; Table S4: Putatively selected genes (top 5% level Zθπ and ZFst values); Table S5:
Association analysis of SNP 4:75859000 in the LCORL with growth, carcass and meat quality traits in
Gushi ×Anka F2 chickens; Table S6: Gene annotation of top 1% outlier genomic regions from ZFst
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and ZHp by Luo et al., 2020. (This table was originally moved from Luo’s study); Table S7: Identified
52genes common to gamecock chickens. Table S8: 347 genes unique to HNG.
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