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Simple Summary: Molecular cytogenetics, and particularly the use of fluorescence in situ hybridiza-
tion (FISH), has allowed deeper investigation of the chromosomes of domestic animals in order
to: (a) create physical maps of specific DNA sequences on chromosome regions; (b) use specific
chromosome markers to confirm the identification of chromosomes or chromosome regions involved
in chromosome abnormalities, especially when poor banding patterns are produced; (c) better anchor
radiation hybrid and genetic maps to specific chromosome regions; (d) better compare related and
unrelated species by comparative FISH mapping and/or Zoo-FISH techniques; (e) study meiotic
segregation, especially by sperm-FISH, in some chromosome abnormalities; (f) better show conserved
or lost DNA sequences in chromosome abnormalities; (g) use informatic and genomic reconstructions,
in addition to CGH arrays in related species, to predict conserved or lost chromosome regions; and
(h) study some chromosome abnormalities and genomic stability using PCR applications. This review
summarizes the most important applications of molecular cytogenetics in domestic bovids, with an
emphasis on FISH mapping applications.

Abstract: The discovery of the Robertsonian translocation (rob) involving cattle chromosomes 1 and
29 and the demonstration of its deleterious effects on fertility focused the interest of many scientific
groups on using chromosome banding techniques to reveal chromosome abnormalities and verify
their effects on fertility in domestic animals. At the same time, comparative banding studies among
various species of domestic or wild animals were found useful for delineating chromosome evolution
among species. The advent of molecular cytogenetics, particularly the use of fluorescence in situ
hybridization (FISH), has allowed a deeper investigation of the chromosomes of domestic animals
through: (a) the physical mapping of specific DNA sequences on chromosome regions; (b) the use of
specific chromosome markers for the identification of the chromosomes or chromosome regions in-
volved in chromosome abnormalities, especially when poor banding patterns are produced; (c) better
anchoring of radiation hybrid and genetic maps to specific chromosome regions; (d) better compar-
isons of related and unrelated species by comparative FISH mapping and/or Zoo-FISH techniques;
(e) the study of meiotic segregation, especially by sperm-FISH, in some chromosome abnormalities;
(f) better demonstration of conserved or lost DNA sequences in chromosome abnormalities; (g) the
use of informatic and genomic reconstructions, in addition to CGH arrays, to predict conserved or
lost chromosome regions in related species; and (h) the study of some chromosome abnormalities and
genomic stability using PCR applications. This review summarizes the most important applications
of molecular cytogenetics in domestic bovids, with an emphasis on FISH mapping applications.

Keywords: animal cytogenetics; cattle; river buffalo; sheep; goat; FISH mapping; PCR

1. Introduction

The application of cytogenetics to domestic animals emerged about 60 years ago
with the study of normal stained chromosome preparations from some cases of domestic
animals with reproductive defects [1–3]. However, the discovery of the Robertsonian
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translocation (rob) involving cattle chromosomes 1 and 29 [4,5] and the demonstration
of its deleterious effects on fertility [6,7] was what piqued the interest of many scientific
groups and focused their attention on studying the chromosomes of domestic animals. This
approach was particularly useful for selecting bulls to be used for artificial insemination,
as it could avoid the transmission of chromosome abnormalities (i.e., rob1;29) from bull
carriers to their progeny. Evolutionary studies also benefitted from advancements beyond
normal chromosome staining. Among the various studies, the most important was the
study of the Bovidae family by Wurster and Benirske [8], who looked at the diploid
number and shape of chromosomes. They concluded that while the diploid number varies
from 38 to 60 among all bovid species, the number of chromosome arms (Fundamental
Number = NF) varies only between 58 and 62, with three exceptions; therefore, they
hypothesized a high degree of autosome arm conservation among all bovid species. This
hypothesis was later confirmed with the application of chromosome banding techniques [9],
which ushered in a new era of chromosome studies in various domestic animal species,
allowing (a) the establishment of standard karyotypes of the most important domestic
species as a point of reference for various applications; (b) better characterization and
identification of the chromosomes involved in chromosome abnormalities of domestic
animals [10], particularly domestic bovids [11], pigs [12], horses [13], and dogs [14]; (c) the
study of the chromosome homologies between related and unrelated species [15–17]; and
(d) the study of chromosome fragility in animals exposed in vivo or in vitro to particular
mutagens [18,19]. The molecular cytogenetics, particularly the introduction of fluorescence
in situ hybridization (FISH), offered a deeper investigation of the chromosomes of domestic
animals through: (a) the physical mapping of specific DNA sequences on chromosome
regions; (b) the use of specific chromosome markers for the identification of chromosomes
or chromosome regions involved in chromosome abnormalities, especially when poor
banding patterns are produced; (c) better anchoring of radiation hybrid (RH) and genetic
maps to specific chromosome regions; (d) better comparisons of related and unrelated
species by comparative FISH mapping and/or Zoo-FISH techniques; (e) the study of meiotic
segregation, especially by sperm-FISH, in some chromosome abnormalities or aneuploidies
in both oocytes and embryos; (f) better demonstration of conserved or lost DNA sequences
in chromosome abnormalities by CGH (comparative genomic hybridization) or SNP (single-
nucleotide polymorphism) arrays; (g) the use of informatic and genomic reconstructions,
in addition to CGH arrays, for the prediction of conserved or lost chromosome regions
in related species; and (h) the study of chromosome abnormalities and genomic stability
using PCR (polymerase chain reaction).

This review summarizes the most important applications of molecular cytogenetics in
domestic bovids, with particular emphasis on FISH mapping applications.

2. The Fluorescence In Situ Hybridization (FISH) Technique

The FISH mapping technique is based on two main principles: the target and the probe.
The target can be a whole chromosome (or chromosome arms) or a specific chromosome
region. The probe is prepared according to the size of the target and is typically: (a) cDNA
(generally applied when the target gene is a multi-copy); (b) cosmids with DNA insert sizes
of 20–40 kb; (c) bacterial artificial chromosomes (BACs) with DNA insert sizes of 100–300 kb;
(d) yeast artificial chromosome (YAC) clones (these are actually not used because they have a
low cloning efficiency and show a high level of chimerism); (e) chromosome painting probes
(obtained by cell sorter or chromosome microdissection techniques) that can visualize parts
of or entire chromosomes; and (f) CGH arrays to check for genomic gains or losses. The
probes are labeled directly with fluorochromes or indirectly with molecules that bind to the
probe via fluorochrome-conjugated antibodies. The probe is specific for the target, based
on complementary DNA base pairing, which allows the fluorescence-labeled probes to
hybridize and form specific fluorescent signals on specific chromosome regions.

The advent of the fluorescence in situ hybridization (FISH) technique, initially applied
to human chromosomes [20,21], noticeably expanded cytogenetics research and investiga-
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tions applied to domestic animals due to the possibility of revealing specific chromosome
regions, entire chromosomes, or chromosome arms according to the choice of probe. One
of the great advantages of the FISH technique is that it can be applied to interphase cell
nuclei, meiotic preparations (sperm and oocytes), embryos, and elongated chromatin fibers,
in addition to metaphase chromosomes, thereby allowing more complete cytogenetic in-
vestigations of animal cells. The following sections describe the main uses of FISH in
domestic bovids.

2.1. FISH and Chromosome Abnormalities

The first study to apply FISH for the precise identification of the chromosomes in-
volved in a chromosome abnormality was published by Gallagher et al. [22], who dis-
covered an X-autosome translocation (X;23) using both Q-banding and a BoLA Class I
cDNA probe. The probe shows hybridization signals to the normal chromosome 23 and
to the translocated autosomal material present on the X chromosome, allowing a more
precise localization of MHC (major histocompatibility complex) in cattle than was achieved
earlier by genetic mapping. Several subsequent studies also applied FISH to obtain better
confirmation of the chromosome(s) involved in abnormalities (especially when banding
was poor) and identification of the break points, especially in reciprocal translocations.
Table 1 shows the main studies that applied FISH mapping, either alone or in combination
with other classical cytogenetic techniques (e.g., C-banding, G-banding, R-banding, and
Ag-NORs), to study the chromosome abnormalities of domestic bovids in somatic cells at
the metaphase (Figure 1) or interphase nuclei of germinal cells, such as sperm and oocytes,
or embryos at different cell stages.

Table 1. FISH mapping approaches applied for the detection of chromosome abnormalities in
domestic bovids. The type of chromosome abnormality, the techniques used (including FISH), the
main results, and authors are reported.

Species Chromosome Abnormality Techniques Used Main Results References

Cattle

t(X-BTA23) in two normal
cows QBH, FISH Better position of MHC-locus [22]

Minute fragment Bovine SAT-DNA Visualization of fragment [23]

rob(4;10) Bovine bivariate flow painting
probes on R-banded karyotype Discovery of a new rob [24]

iso(Yp) GTG, FISH with repeat
sequences Visualization of iso(Yp) [25]

Trisomy 20 QBH, FISH Malformed calf with
cranial defects [26]

rob(2;28) Q-, R-banding, telomeric probe Monocentric translocation [27]

rob(1;29), rob(6;8), rob(26;29) GBG, RBG, CBA, FISH, HAS
painting probe

correct identification of two of
the three robs earlier

published
[28]

Mixoploidy Dual-color FISH with
BTA6/BTA7 painting probes

72% of IVP blastocysts were
mixoploid, versus 25% in vivo [29]

Mixoploidy/polyploidy
Dual-color FISH with BTA6

and 7 painting probes on
in vitro embryo cells

Numerical chromosome
aberrations were detected as

early as day 2 post
insemination (pi)

[30]

rcp(1;5)(q21;qter)(q11;q33)
CBA, GBG, RBG, FISH with
HSA3 and HSA12 painting

probes

Bull and dam carriers, the
latter with poor fertility [31]

invY(Yq11-q12.2) CBG, RBA, FISH 12 young males of which one
(carrier) had female traits [32]
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Table 1. Cont.

Species Chromosome Abnormality Techniques Used Main Results References

Trisomy 28 CBG, RBA, FISH
New chrom. identification of a

previous studied case of
abnormal calf

[33]

t(Xp+;23q-) FISH with painting probe,
SCA Oligospermic bull [34]

rcp(Y;9)(q12.3:q21.1). CBA, RBG, FISH Azoospermic bull [35]

Polyploidy
Painting probe BTA6 and

BTA7 by microdissection on
in vitro embryos

Polyploidy was significantly
higher in trophectoderm (TE)
cells than in embryonic disc

(ED) cells

[36]

rob(1;29) FISH with SAT-I, III, IV

Different pattern of satellite
DNA families in several

chromosomes, model of rob(1;
29) origin

[37]

Mosaicism
2 n = 60/2 n = 60 t (2q−;5p+)

FISH with painting probes
BTA2 and BTA5

Translocation mosaicism in
a bull [38]

XXY-Trisomy X-Y painting probes Testicular hypoplasia [39]

fragm/hypoploidy/hypoploidy-
mixoploidy;

hyperploidy/hyperploidy-
mixoploidy

Karyotyping, FISH with X-Y
painting probes in nuclear

transfer embryos

Anomalies occurred in NT
embryos varied according to

the donor cell culture and
paralleled the frequency of

anomalies in donor cells

[40]

rob(1;29) CBG, GTG, FISH with a
rob(1;29) painting probe

Presence of rob(1;29) in Gaur
(Bos gaurus) [41]

rob(1;29) CBA, RBA, FISH Origin of rob(1;29) by complex
chromosome rearrangements [42]

rob(1;29) Sperm-FISH Low percentage of abnormal
sperm in two carriers [43]

rcp(9;11)(q27;q11) RBG and FISH De novo origin of the rcp [44]

Mosaicism XX/XY cells
FISH with a male-specific
BC1.2 DNA sequence in

interphase cell nuclei
Diagnosis of freemartin [45]

rcp(11;21)(q28-q12) CBA, RBA, Ag-NORs, FISH

Normal bull but with absence
of libido; reduced fertility

(very low presence of
spermatozoa in germinal

elements)

[46]

rob(1;29)
microdissection, DOP-PCR,

cloning and sequencing,
sperm-FISH

Detection of sperm-carrying
rob(1;29) [47]

rcp(2;4)(q45;q34) G-banding, SCA, and
chromosome painting Detection of a new rcp in bull [48]

Aneuploidy Dual-color FISH with Xcen/Y
painting probes in sperm

Study the aneuploidy in
different breeds [49]

rcp(4;7) RBG, FISH (painting probe),
aCGH

Normal male and no genomic
loss in the rcp [50]

Aneuploidy Dual-color FISH with Xcen
and BTA5 painting probes

Study of aneuploidy in
oocytes of two breeds [51]

Aneuploidy
FISH with BTAX, BTAY, and

BTA6 painting probes on
sperm of several young bulls

Aneuploidy frequencies in
young fertile bull spermatozoa

were relatively low
[52]

rcp(Y;21)(p11;q11) G-banding, FISH Normal young bull but lower
testosterone level at 12 months [53]
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Table 1. Cont.

Species Chromosome Abnormality Techniques Used Main Results References

rcp(11;25)(q11, q14∼21) CBA, RBA, FISH, NOR

der11 with two C-bands for a
break at the centromere of
BTA25; cow with reduced

fertility

[54]

Aberrant oocytes Dual-color FISH of
X-cent/BTA5 painting probes

Similar rate of aneuploidy in
different cattle breeds [55]

rob(1;29) FISH, aCGH

New results of the origin of
this rob by transposition,

inversion; no gene-coding
regions were disrupted during

the rearrangements

[56]

Xp-del (inactive X) CBA, RBA, FISH del found in both dam and calf
(normal cow) [57]

X-Y aneuploidy Dual-color FISH with
Xcen-BTAY painting probes

Testing X-Y ratio and
aneuploidy [58]

Aneuploidy
Dual-color FISH with Xcen
and five autosome painting

probes

Similar rates of chromosomal
aberrant secondary oocytes in
two indigenous cattle breeds

[59]

Mixoploidy FISH with BTAX and BTA6
painting probes

First zygotic cleavage (FZC) is
a marker of embryo quality by
demonstrating a significantly
lower incidence of aberrations

in early embryos

[60]

Aneuploidy/polyploidy CA, SCE, MN, MI, FISH

Effect of the
tebuconazole-based fungicide:
monosomies and trisomies on

BTA5 and 7

[61]

rcp(5;6)(q13;q34) RBG, FISH, aCGH Normal young bull with
balanced rcp [62]

rcp(13;26)(q24;q11) CBG, GTG, painting probes
BTA13 and 26, telomeric probe

De novo rcp in both dam
and calf [63]

der(11)t(11;25)(q11;q14–21) CBA, RBA, FISH Abnormal female calf [64]

Chromosome damages SCE, MN, FISH with BTA1, 5,
7 painting probes

No significant chromosome
fragility with use of

thiacloprid
[65]

Abnormal BTA17 in a young
bull

CBA, R-banding, FISH,
PNA-telomeric probe, aCGH,

SNP array
Centromere repositioning [66]

X-monosomy Karyotyping, FISH, SNP
genotype data

Sterile for abnormal internal
sex adducts [67]

rob(3;16) Sperm-FISH

Low rate of unbalanced
gametes produced by adjacent

segregation (5.87%) and
interchromosomal effect (ICE)

on BTA17 and BTA20

[68]

Trisomy 20 Q-banding, FISH Malformed fetus,
cranial defects [69]

Trisomy 29 FISH/genomic analysis
Malformed female calf

showing dwarfism with severe
facial anomalies

[70]

rob(1;29); rcp(12;23)

FISH, use of BAC clones
mapping prox- and dist-

regions of all cattle autosomes
and X

Identification of chromosome
abnormalities in all autosomes

and BTAX
[71]

tan(18;27) CBA, RBA, FISH
Male calf with congenital

hypospadias and a ventricular
septal defect

[72]
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Table 1. Cont.

Species Chromosome Abnormality Techniques Used Main Results References

River buffalo X-monosomy CBA, RBA, FISH
Normal body conformation

and external genitalia, ovaries
not detectable, sterile

[73]

rob(1p;23) CBA, RBA, Ag-NORS, FISH

Complex chromosome
abnormality with fission on
BBU1 and centric fusion of
BBU1p with BBU23 in both

dam and female calf; reduced
fertility in the dam

[74]

rob(1p;18) CBA, RBA, FISH

Famous bull eliminated from
reproduction for the presence

of the same chrom.
abnormality in part of progeny

[75]

Chromosome abnormalities Zoo-FISH

Sequential approach with 13
chromosome river buffalo

painting probes to detect river
buffalo chromosome

abnormalities

[76]

rob(1p;18) Sperm-FISH in motile and
total fraction sperm

Limited effects on the
aneuploidy in gametes on the

motile fraction sperm
[77]

River/Swamp buffalo Aneuploidy M-FISH Study of aneuploidy in river
and swamp buffalo oocytes [78]

Sheep

Chromosome abnormality
Production of all sheep

chromosome painting probes
from cell sorter technique

Easy identification of
chromosome abnormalities [79]

rob(8;11) G-bands, painting probes 8
and 11, SAT-I and SAT-II

SAT-I proximal on both arms
with SAT-II covering the

centromere
[80]

Diploid-polyploid mosaicism

Zoo-FISH with bovine
painting probes X/Y and 1;29

on nuclei of in vivo and
in vitro embryos

In vitro embryos showed
significant higher number of

abnormal embryos than
in vivo ones

[81]

del(10q22) Use of ovine BAC clone in
addition to genetic analyses

Micro-chromosomal deletion
responsible for EDNRB

gene lack
[82]

rcp(4q;12q)(q13;q25)
CBA, RBA, FISH with both

specific markers and
PNA-telomeric probe

Characterization of a new rcp
in a young sheep [83]

rcp(18;23)(q14;q26). CBA, RBA, FISH with bovine
painting probe Reduced fertility [84]

Chromosome abnormalities in
bovids

Partial river buffalo
chromosome painting probes

from microdissection

Detection of chromosome
abnormalities in bovids [85]

A more complete classification of all chromosome abnormalities studied by classical
cytogenetic techniques alone or (in some cases) with other molecular cytogenetic techniques
is provided by Iannuzzi et al. [11].

Two examples of the importance of the use of FISH for the correct identification of the
chromosomes involved in chromosome abnormalities of cattle were a case of autosome
trisomy and two types of Robertsonian translocations. A case of autosome trisomy 28 in an
abnormal calf, revealed by both R-banding and FISH mapping with a specific molecular
marker [33], was identified, and the same abnormality was reported earlier as trisomy 22
using only the banding technique [86]. Two robs earlier reported as rob (4;8) [87] and rob
(25;27) [88] in cattle were later corrected as rob (6;8) and rob (26;29), respectively, using C-,
G-, and R-banding and FISH mapping with specific molecular markers and the use of HSA
painting probes [28].
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Figure 1. FISH mapping with a BAC clone mapping proximal to BTA29 (large arrow) and proximal 
to q-arms (BTA1) of rob (1;29) (small arrows). Indeed, a small chromosome region of 5,4 Mb trans-
located from proximal BTA29 to the proximal region of BTA1 (with an inversion), originating rob 
(1;29) [56]. Different colors indicate different BACs.  

Figure 1. FISH mapping with a BAC clone mapping proximal to BTA29 (large arrow) and proximal to
q-arms (BTA1) of rob (1;29) (small arrows). Indeed, a small chromosome region of 5,4 Mb translocated
from proximal BTA29 to the proximal region of BTA1 (with an inversion), originating rob (1;29) [56].
Different colors indicate different BACs.

Table 1 shows that FISH mapping applications were used for the diagnosis of chro-
mosome abnormalities in both metaphase (the majority) and interphase cells, the latter
applied to lymphocyte nuclei (Figure 2), sperm (Figure 3), oocytes, and embryos.
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Figure 3. Sperm-FISH in a river buffalo bull carrying a rob (1p;18) using BAC probes for BBU 1p (red),
BBU 1q (green), and BBU 18q (yellow) chromosomes. Normal sperm nucleus with 1/1/1 fluorescent
phenotype and separate signals on left. Unbalanced sperm nucleus with 1/0/1 fluorescent phenotype
on right.

Concerning the studies on meiotic preparations, those performed on the synaptonemal
complexes (SCs), especially in spermatocytes, were particularly important for establishing
the regularity of the pairing processes during the pachytene substage of meiotic prophase
in animals carrying chromosome abnormalities (reviewed in [89]). Recent analyses of
meiotic preparations have been performed using immune fluorescence approaches and
have provided more detailed information on SCs [90–92]. Other studies have addressed
the fragile sites in the chromosomes of domestic animals (reviewed by [93]), and limited
studies have used CGH and SNP arrays to establish possible genomic losses occurring
during chromosome rearrangements (Table 1).

FISH mapping was also very important for the definitive establishment of the agree-
ment between various chromosome nomenclatures due to some discrepancies found during
the Reading conference [94] and the subsequent ISCNDA1989 [95] (the inverted position
between BTA4 and BTA6, as well as the correct position of BTA25, BTA27, and BTA29). This
aspect was vital for the clinical cytogenetics of domestic bovids, as it allowed a correct iden-
tification of the chromosomes involved in chromosome abnormalities. During the Texas
conference [96], specific molecular markers (only type I loci) were selected for each bovine
syntenic group and each cattle chromosome based on previous standard chromosome
nomenclatures.

The next advance was the application of FISH mapping by two labs that used 31
selected BAC clones (from the Texas Conference) on RBG- and QBH-banded cattle prepara-
tions [97]. The chromosome-banding homologies among bovids (cattle, sheep, goats, and
river buffalo) were then used to establish a definitive standard chromosome nomenclature
for the main domestic bovid species [98]. Subsequent studies using FISH mapping and
the same Texas markers on river buffalo, sheep, and goat R-banded chromosomes [99,100]
definitively confirmed the chromosome homologies among domestic bovids, as established
at the ISCNDB2000 [98].

2.2. FISH in Physical Mapping

The identification of the DNA structure [101] paved the way for the development of
in situ hybridization technology. In the early stages of its development, this technology
allowed the localization of genes using radioactive probes [102]. It was also used in studies
of domestic animals [103,104], but the greatest diffusion of the physical mapping of genes
awaited the development of fluorescent probes [105]. At that moment, we entered the
golden years of gene mapping, and domestic animals were not excluded. One of the first
examples was the localization of bovine alpha and beta interferon genes [106], and this
localization was rapidly replicated in buffalos, goats, and sheep [107,108]. Subsequently,
many other localizations were obtained using this technology (Figure 4).
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Considering the practical impossibility of compiling a complete list of all gene local-
izations obtained using this technology, some significant examples are listed in Table 2.

Table 2. Gene mapping obtained with FISH in domestic bovids. Type I and type II markers are
expressed with polymorphic (SSRs, microsatellite, STSs) sequences, respectively.

Gene/Genes/Marker Species Reference

Lysozyme gene cluster BBU [110]

Uridine monophosphate synthase BTA [111]

Uridine monophosphate synthase BBU [112]

BTA1 to 7 BTA [113]

Microsatellites BTA [114]

Microsatellites BTA [115]

Beta-defensin genes BTA; OAR [116]

Alpha-S2 casein BTA; BBU [117]

Fas/APO-1 BTA [118]

Interferon gamma OAR [119]

Interleukin-2 receptor gamma BTA [120]

Beta-lactoglobulin pseudogene BTA, OAR, CHI [121]

Bone morphogenetic protein 1 BTA [122]

TSPY BTA, OAR, CHI [123]

VIL OAR, CHI, BBU [124]

Type I markers BTA [125]
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Table 2. Cont.

Gene/Genes/Marker Species Reference

Prion protein gene BTA, OAR, CHI, BBU [126]

IL2RA, VIM, THBD, PLC-II, CSNK2A1, TOP1 BTA [127]

NF1, CRYB1, CHRNB1, TP53, P4HB, GH1 OAR, BBU [128]

PAX8 BTA, OAR, CHI [129]

Type I markers BTA [97]

PREF1 BTA [130]

PRKCI BTA [131]

MHC BTA [132]

Type I markers OAR, CHI [100]

CACNA2D1 BTA [133]

SLC26a2 BTA [134]

SMN BTA, OAR, CHI, BBU [135]

Type I markers BBU [109]

Type I and II markers OAR [136]

PRPH BTA [137]

CYP11b/CYHR1 BTA [138]

SRY, ANT3, CSF2RA BTA [139]

Autosomal loci (11) BTA, OAR, CHI, BBU [140]

Autosomal loci (88) OAR [141]

Autosomal loci (68) BBU [142]

BMPR1B, BMP15, GDF9 BTA, OAR, CHI, BBU [143]

Localization sometimes involved a single gene [124,129] or a family of genes [132].
Other reports, however, mapped many genomic markers [100,141]. A point to remem-
ber is that FISH technology has significantly benefited from the availability of BAC ge-
nomic libraries—elements that represent the ideal source for the construction of the probes.
Among these, the INRA library [144] and the CHORI-240 have played relevant roles. The
publication of genomes [145–148] has since inevitably diminished interest in using this
technology for mapping genetic factors, although genetic factor mapping continued for
species whose genomes were sequenced later, such as the water buffalo [149]. However,
this technology has proved useful in several aspects, including: a) the identification of
errors in genomic assembly [150]; b) the refinement of genome assembly [151]; and c) the
mapping of sequences not included in genomic assemblages [152]. Clearly, the interest
today is very limited in locating a genetic factor in a species whose genomic sequence
is available, but this does not mean that FISH technology is no longer indispensable for
solving other problems related to the organization of genomes.

The mapping of genomic elements by FISH has also been used successfully for the
physical mapping of data obtained by other technologies. The first examples concerned
the physical anchoring of a genetic map to a chromosome [153–155] and the mapping of a
synteny group to a specific chromosome [114]. Subsequent examples of the combined use
of FISH and genetic maps followed [127,156].

2.3. Comparative FISH Mapping

Two main methods have been applied thus far to obtain a FISH mapping comparison
between related and unrelated species: Zoo-FISH, which uses chromosome painting probes,
and FISH mapping, which uses specific molecular markers of both type I and type II. Zoo-
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FISH is a molecular technique that provides an easier comparison between related and
unrelated species from a macro point of view. The term was first reported by [157], based
on earlier studies that used genomic chromosome painting probes, obtained by cell sorter
chromosomes, to compare related species [158–160].

Zoo-FISH was first applied in domestic animals when human chromosome painting
probes became commercially available. This approach demonstrated the conservation of
several human chromosome segments in both domestic bovids (Table 3) and other domestic
species (reviewed in [161]).

Table 3. Comparative FISH mapping in domestic bovids with related and unrelated species.

Author/s Results

[107] Mapping omega and trophoblast interferon genes in cattle and river buffalo

[162] Mapping of lactoperoxidase, retinoblastoma, and alpha-lactalbumin genes in cattle, sheep, and goats

[108] Mapping omega and trophoblast interferon genes in sheep and goats

[163] Mapping LGB and IGHML in cattle, sheep, and goats

[164] Mapping CASAS2 gene to the cattle, sheep, and goat chromosome 4

[165] Mapping MHC-complex in cattle and river buffalo

[166] Mapping inhibin-alpha (INHA) to OAR2 and BTA2

[167] Mapping inhibin subunit beta b to OAR2 and BTA2

[121] Mapping beta-lactoglobulin pseudogene in sheep, goats, and cattle

[168] Mapping ZNF164, ZNF146, GGTA1, SOX2, PRLR, and EEF2 in bovids

[117] Mapping of the alpha-S2 casein gene on river buffalo and cattle

[116] Mapping of beta-defensin genes to river buffalo and sheep chromosomes suggest a chromosome discrepancy in
cattle standard karyotypes

[169] Mapping STAT5A gene maps to BTA19, CHI19, and ORA11

[170] Mapping in Y chromosomes of cattle and zebu by microdissected painting probes

[124] Mapping of villin (VIL) gene in river buffalo, sheep, and goats

[126] Mapping prion protein gene (PRNP) on cattle, river buffalo, sheep, and goats

[171] Mapping BCAT2 gene to cattle, sheep, and goats

[172] Comparative mapping in X chromosomes of bovids

[173] Comparative mapping between BTA-X and CHI-X

[174] Survey of chromosome rearrangements between ruminants and humans

[175] Comparative mapping between cattle and pig chromosomes using pig painting probes

[176] Extensive conservation of human chromosome regions in euchromatic regions of river buffalo chromosomes

[128] Mapping of six expressed gene loci (NF1, CRYB1, CHRNB1, TP53, P4HB, and GH1) to river buffalo and sheep
chromosomes

[177] Comparison of human and sheep chromosomes using human chromosome painting probes

[178] Mapping four HSA2 type I loci in river buffalo chromosomes 2q and 12

[179] Mapping BCAT1 in cattle, sheep, and goats

[180] Comparative mapping in bovid X chromosomes reveals homologies and divergences between the subfamilies
Bovinae and Caprinae

[181] Mapping 16 type I loci in river buffalo and sheep

[182] Mapping 13 type I loci from HSA4q, HSA6p, HSA7q, and HSA12q on in river buffalo

[183] Mapping forty autosomal type I loci in river buffalo and sheep chromosomes and assignment from sixteen human
chromosomes

[184] Mapping eight genes from HSA11 to bovine chromosomes 15 and 29
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Table 3. Cont.

Author/s Results

[98] International chromosome nomenclature in domestic bovids based on Q-, G-, and R-banding and FISH with
31 specific Texas marker chromosomes

[185] Mapping 28 loci in river buffalo and sheep chromosomes

[186] Sheep/human comparative map in a chromosome region involved in scrapie incubation time shows multiple
breakpoints between human chromosomes 14 and 15 and sheep chromosomes 7 and 18

[135] Physical map of the survival of motor neuron gene (SMN) in domestic bovids

[100] Assignment of the 31 type I Texas bovine markers in sheep and goat chromosomes by comparative FISH mapping
and R-banding

[187] Mapping 195 genes in cattle and updated comparative map with humans, mice, rats, and pigs

[188] Mapping of F9, HPRT, and XIST in BTAX and HSAX clarifies breakpoints between the two species

[189] 15 gene loci were mapped in the telomeric region of BTA18q and HSA19q

[190] Comparative G- and Q-banding of saola and cattle chromosomes as well as FISH mapping of 32 type I Texas
markers

[191] Mapping of fragile histidine triad (FHIT) gene in bovids

[192] Chromosome evolution and improved cytogenetic maps of the Y chromosome in cattle, zebu, river buffalo, sheep,
and goats

[193] Physical map of mucin 1, transmembrane (MUC1) among cattle, river buffalo, sheep, and goat chromosomes and
comparison with HSA1

[194] Mapping of LEP and SLC26A2 in bovidae chrom. 4 (BTA4/OAR4/CHI4) and HSA7

[140] Mapping 11 genes to BTA2, BBU2q, OAR2q, and CHI2, and comparison with HSA2q

[195] Mapping among humans, cattle, and mice suggests a role for repeat sequences in mammalian genome evolution

[196] Mapping sheep and goat BAC clones identifies the transcriptional orientation of T cell receptor gamma genes on
chromosome 4 in bovids

[197] Mapping of twelve loci in river buffalo and sheep chromosomes: comparison with HSA8p and HSA4q

[198] Mapping 25 new loci in BTA27 and comparison with both human and mouse chromosomes

[141] An advanced sheep cytogenetic map and assignment of 88 new autosomal loci

[199] Cross-species FISH with cattle whole-chromosome paints and satellite DNA I probes was used to identify the
chromosomes involved in the translocations of some tribe Bovinae species

[142] Extended river buffalo cytogenetic map, assignment of 68 autosomal loci and comparison with human
chromosomes

[200] FISH with 28S and telomeric probes in 17 bovid species. NORs are an important and frequently overlooked source
of additional phylogenetic information within the Bovidae

[201] Mapping DMRT1 genes to BTA8 and HSA9

[202] Comparative DM domain genes between cattle and pigs

[203] Assignments of new loci to BBU7 and OAR6 and comparison with HSA4

[204] Mapping 22 ovine BAC clones in sheep, cattle, and human X chromosome

[205] Mapping and genomic annotation of bovine oncosuppressor gene in domestic bovids

[206] Cytogenetic map in sheep as anchor of genomic maps also using different genomic resources from other species

[207] Molecular cytogenetics in goats and comparative mapping with human maps

[208] Mapping of 6 loci containing genes involved in the dioxin metabolism of domestic bovids

[209] Extended cytogenetic maps of sheep chromosome 1 and their cattle and river buffalo homologues: comparison
with the OAR1 RH-map and HSA2, 3, 21, and 1q

[210] Mapping between BTA5 and some Antilopinae species using Sat-I and SAT-II sequence and BTA-painting probes

[211] Comparison of centromeric repeats between cattle and other Bovidae species
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Table 3. Cont.

Author/s Results

[212] Advanced comparative map in X chromosome of Bovidae

[143] Physical map of BMPR1B, BMP15, and GDF9 fecundity genes on cattle, river buffalo, sheep, and goat
chromosomes

[152] Physical mapping of 20 unmapped fragments in Btau 4.0 Genome Assembly in cattle, sheep, and river buffalo

[213] Physical map of LCA5L gene in cattle, sheep, and goats

[214] New cryptic difference between cattle and goat karyotypes

[215] Small evolutionary rearrangement between BTA21 and homologous OAR18

[216] Assignment of 23 endogenous retrovirus to both sheep and homologous chromosomes regions of river buffalo

The use of human-chromosome painting probes allowed the identification of a
substantial number of human chromosome segments (around 50) in bovid chromo-
somes [175,176,217–219]. Zoo-FISH has also been applied to correctly identify some
chromosomes involved in the chromosome abnormalities shown in Table 1. The availabil-
ity of specific painting probes obtained by both cell sorting and/or by the microdissection
of specific chromosomes (or chromosome arms) from domestic animals extended these
studies to investigations between related species (Table 3). For example, in cattle, Zoo-
FISH was applied to study X-Y aneuploidy in sperm [55] and in oocytes [58] (Table 1).
An interesting approach was demonstrated in two studies characterizing two cases of
goat/sheep [220] and donkey/zebra [221] hybrids using multicolor FISH (M-FISH),
starting from painting probes obtained from microdissected river buffalo chromosomes
(or chromosome arms) and from flow-sorted donkey chromosomes, respectively.

Chromosome painting probes allow the delineation of large, conserved chromosome
regions between related and unrelated species, as reported above. The use of comparative
FISH mapping using several chromosome markers to map a single type I or type II locus
along the chromosomes allows a more accurate establishment of the gene order within
chromosome regions, thereby confirming that chromosome rearrangements occurred to
differentiate related or unrelated species in key evolutionary studies (Table 3). These
detailed comparisons have confirmed a high degree of autosome (or chromosome arm)
conservation among all bovid species. The main autosome difference found thus far in
bovids was a chromosome translocation of a proximal chromosome region from Bovinae
chromosome 9 to Caprinae chromosome 14, as demonstrated by both chromosome banding
and, in particular, by a molecular marker (COL9A1) mapping proximal to Bovinae chro-
mosome 9 and proximal to Caprinae chromosome 14 (reviewed in [9]). This translocation
involved a genome region of about 13 MB and was followed by an inversion in Caprinae
chromosome 14, as demonstrated earlier [213]. This chromosome event was common to all
remaining Bovidae subfamilies, leading to the conclusion that the Bovinae subfamily is an
ancestor to the remaining Bovidae subfamilies (reviewed in [9]).

In contrast to autosomes, sex chromosomes are differentiated by more complex chro-
mosome rearrangements. Indeed, the Caprinae X chromosome (as for all remaining X
chromosomes of the other Bovidae subfamilies) is differentiated from the ancestor Bovinae X
(very probably a large acrocentric chromosome, such as that of the water buffalo) by at least
three chromosome transpositions and one inversion (reviewed in [9]). Detailed FISH map-
ping data are also useful for better anchoring of both genetic and RH maps [203,222–224].
The availability of detailed cytogenetic maps in bovid species allowed a better comparison
of the bovid and human chromosomes, especially using type I loci. These comparisons fa-
cilitated the translation of genomic information from the human genome to the genomes of
domestic animals, especially in those with no genome sequencing available. These compar-
isons also revealed a very high number of chromosome rearrangements that differentiate
bovid species from humans. Indeed, the conservation of entire chromosomes or large
regions of them between bovid and human chromosomes, as revealed by Zoo-FISH, was
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the result of complex chromosome rearrangements that differentiated human and bovid
species according to their gene order. An example is presented in Figure 5 which illustrates
the comparison of FISH mapping between HSA2q and BTA2. As seen, when utilizing
the Zoo-FISH technique with the HSA2q painting probe, almost all BTA2 is painted [217],
indicating a high degree of chromosome conservation between the chromosomes of the
two species. By conducting the same comparison using comparative FISH mapping and
examining the gene order along the chromosomes of the two species, we observe a distinct
gene order between the two species, thus revealing complex chromosome rearrangements
that differentiated the chromosomes of the two species during their evolution.
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Figure 5. Comparative FISH mapping between HSA2q and BTA2. Note the different gene order
between the two chromosomes due to complex chromosome rearrangements occurred during the
chromosome evolution of the two species (Drawn from Di Meo et al., Animal Genetics 37, 299–300, 2006,
Wiley Online Library [140]).

2.4. Fiber-FISH

The various FISH mapping techniques developed for human cytogenetics (reviewed
by [225]) include SKY-FISH (spectral karyotyping FISH), Q-FISH (quantitative FISH), M-
FISH (multicolor FISH), heterochromatin-M-FISH, COBRA-FISH (combined binary ratio
labeling FISH), cenM-FISH (centromere-specific M-FISH), and fiber-FISH. Among these
techniques, only fiber-FISH and M-FISH have been applied to domestic bovids. The use
of fiber-FISH yields high-resolution maps of chromosomal regions and related genes on
a single DNA fiber. This approach establishes the physical location of DNA probes with
a resolution of 1000 bp. It is particularly useful for detecting gene duplications, gaps,
and variations in the nuclear genome. The DNA fibers are obtained from nucleated cells
by releasing the DNA fibers from the nucleus, stretching them mechanically, and then
fixing them on slides [226] (Figure 6). Table 4 summarizes the studies that have used this
technique in domestic bovids.
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gryposis using a BAC clone containing the survival of motor neuron gene (SMN). The presence of
two groups of linear hybridization signals (arrows) supports the hypothesis that SMN was at least
duplicated [135].

Table 4. Studies using the fiber-FISH on domestic bovids.

Species Author/s Results

Cattle [227] Genomic organization of the bovine aromatase

[228] Molecular characterization of STAT5A- and STAT5B-encoding genes

[135] Demonstration of survival of motor neuron gene (SMN) duplication in a calf affected by arthrogryposis

[229] Demonstration of multiple TSPY copies on the Y chromosome

Sheep [230] DNA fiber barcodes indicated a chromosomal deletion

2.5. CGH Arrays

The CGH array technology, an evolution of in situ comparative genomic hybridization
(CGH), is a method of cytogenetic investigation that emerged in the 1990s to overcome
the limitations of common banding cytogenetic analyses, especially those involving the
presence of genomic imbalances, such as duplications or deletions [231,232]. In situ CGH
technology has many similarities to FISH: the support used is the same, i.e., denatured
metaphases fixed on slides and the approaches to label the probes are identical. However, in
this case, the probes are produced using complete genomic DNA deriving from two subjects:
typically, one healthy and one relating to the subject being investigated. The two DNAs are
labeled with two different fluorochromes and then hybridized simultaneously on the slide.
In the hybridization phase, a competition is therefore created between the probes, and in
the presence of a normal chromosomal segment, an intermediate color is obtained, while in
the presence of chromosomal alterations, a fluorescence closer to one of the two colors used
is obtained. Although this technology has been widely used and has provided important
results, its major limitation lies in the resolution. CGH array technology follows the same
principle, but the support is no longer represented by slides but by synthetic DNA fixed on
slides. Initially, the chips for CGH array analyses contained DNA extracted from BAC to
provide as uniform a representation of the genome as possible [233]. Current CGH array
analyses are performed using devices containing oligonucleotides chosen that uniformly
cover the whole genome and achieve resolutions of 5–10 kb [234,235]. More information
about this technology and its use is provided by [236]. In species of zootechnical interest,
CGH array analyses (Figure 7) became common following the appearance of the first
commercial arrays, and these analyses are conducted essentially for two purposes: the
identification of copy number variation (CNV) polymorphisms and the characterization
of chromosome anomalies. CNVs are polymorphic variations present very frequently in
the genomes of higher organisms [237–239]. In humans, approximately 4.8–9.7% of the
genome contains CNVs [240]. The introduction of commercial arrays has allowed the use
of this technology to obtain a great amount of information about the distribution of CNVs
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in species differences and how these variations are related to phenotypic traits. The transfer
of this technology to the animal field and the availability of commercial arrays has led to
the publication of several reports (Table 5).

Table 5. Identification of CNV.

Specie Reference Note

Cattle [241] 3 Holstein bulls

Cattle [242] 90 animals: 11 Bos taurus breeds, 3 Bos indicus breeds, and 3
composite breeds for beef, dairy, or dual purpose

Cattle [243] 20 animals: 14 Holsteins, 3 Simmental 2 Red Danish and 1 Hereford

Cattle [244] 47 Holstein bulls

Cattle [245] 24 animals from Chianese breeds

Cattle [246] 3 Angus, 6 Brahman, and 1 composite animal

Sheep [247] 36 animals

Sheep [248] 12 animals

Goat [249] 10 animals
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 Btau_4.6.1 Cattle Gen. Seq. Int. Consortium no yes no 
 Btau_4.0 Cattle Gen. Seq. Int. Consortium no no yes 
 UMD_3.1.1 University of Maryland yes yes no 
 UMD_3.1 University of Maryland no no yes 
 Baylor 4.0 Baylor College of Medicine no yes no 

Figure 7. Identification of the PAR region present on BTAX and BTAY. The PAR region (yellow box) is
identified by comparing DNA obtained from a male subject and that obtained from a female subject
using a SurePrint G3 Bovine CGH Microarray 180 k (Agilent Technologies, Santa Clara, CA, USA).
Parma P. Personal communication.

3. Combined Informatic and Genomic Information

The publication of animal genomes [145–149,250] has made available a very large
series of data that required the development of sophisticated analysis techniques and often
required the use of computers with large processing capacities. The first bio-informatic
analyses were used to assemble thousands of short genomic sequences, produced by
modern high-throughput sequencing technologies, into genomes. Today, most of these
programs are available free of charge through web pages that function as interfaces between
the user and calculation tools [251]. Currently, dozens of bio-informatics programs are
available to analyze the data contained in genomic assemblies, and many of these are
accessible through various web platforms. Making a complete list is very complicated,
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in part because this is a rapidly evolving discipline that introduces, almost daily, new
analytical tools.

3.1. Visualization of Genomes

The genomic sequences produced by the various assemblies can be visualized us-
ing one of the available websites available, including Genome Data viewer [252], UCSC
Genome Browser [253], and Ensembl [254]. Currently, these websites provide the ability to
view and process data relating to several genome assemblies (Table 6).

Table 6. Independent genomic assemblies that can be analyzed through the main genomic visualiza-
tion sites.

Specie 1 Genome Assembly 2 Origin GDW 3 UCSC 4 ENS 5

BTA ARS-UCD1.3 USDA ARS yes no no

ARS-UCD1.2 USDA ARS no yes no

Btau_5.0.1 Cattle Gen. Seq. Int.
Consortium yes no no

Btau_4.6.1 Cattle Gen. Seq. Int.
Consortium no yes no

Btau_4.0 Cattle Gen. Seq. Int.
Consortium no no yes

UMD_3.1.1 University of Maryland yes yes no

UMD_3.1 University of Maryland no no yes

Baylor 4.0 Baylor College of Medicine no yes no

OAR ARS-UI_Ramb_v2.0 University of Idaho yes no no

Oar_rambouillet_v1.0 Baylor College of Medicine yes no yes

Oar_v4.0 Int. Sheep Gen. Consortium yes yes no

CAU_O.aries_1.0 China Agricultural
University yes no no

CHI ARS1.2 USDA ARS yes no no

ARS1 USDA ARS no no yes

CHIR_1.0 Int. Goat Gen. Consortium yes no no

BBU NDDB_SH_1 Nat. Dairy Dev. Board,
India yes no no

UOA_WB_1 University of Adelaide yes no no

BIN Bos_indicus_1.0 Genoa Biotecnologia SA yes no no
1 BTA = cattle; OAR = sheep; CHI = goat; BBU = water buffalo and BIN = Zebu. 2 Only genomic assemblages at
the chromosomal level were considered and not those limited to scaffolds. 3 Genome data viewer. 4 USCS genome
browser. 5 Ensembl genome browser.

These genome viewers are constantly evolving and contain several tools within them
that allow the user to obtain highly relevant genetic data and information. This includes, but
is not limited to, the possibility of: (a) identifying the structure of genetic factors (in terms
of exon–intron boundaries); (b) identifying SNP polymorphisms in a particular region of
the genome; (c) identifying the position of BACs by mapping the BES (Bac Ends Sequences,
particularly useful when the user wants to choose the BACs to use in FISH analysis);
(d) observing the genomic regions expressed in particular types of tissues; (e) analyzing
the relationships between different assemblies of the same species; (f) visualizing the
relationships between similar regions in different species (comparative genomics); and
(g) viewing the repeating regions. In this review, we do not specify a best genome viewer,
as this will often depend on personal needs and experience. However, as each genome
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viewer has its own specific analysis tools, sometimes the best solution is to use all three to
obtain more complete information.

3.2. Use of Genomic Assemblies

The availability of genomic assemblages has, on the one hand, limited the interest
in the physical mapping of genomic elements, but has, on the other hand, allowed the
evolution of a very large number of genetic and genomic analyses. Probably one of the most
common uses (even if not directly related to cytogenetics) is to design primers for use in PCR
amplifications. This operation can be performed using different software, both available
for free and for a fee. Among those available free of charge, the most frequently used is
Primer3 [255]. The availability of genomic assemblages also makes rapid evolutionary
investigation possible (i.e., visualizing, in a simple and rapid way, the similarities that exist
between the various genomic regions of different species). The publication of genomes
has certainly had a great impact on cytogenetics (both negatively and positively). If the
golden era of gene mapping has ended, the possibility of rapidly identifying BACs for
use as probes in FISH experiments has certainly provided great benefits to cytogenetics,
as it avoids long and tedious testing of BAC libraries. This aspect has allowed the rapid
characterization of some chromosomal anomalies, such as a centromere repositioning
event in cattle [66], a reciprocal translocation, also in cattle [62], and cryptic evolutionary
rearrangements between cattle and sheep [213]. Finally, the rapid localization of BACs
on genomes has allowed the development of complex approaches for the identification of
chromosomal abnormalities, which are also difficult to identify [71]. Obviously, these are
not all the possible uses of genomic assemblies, but they represent the best examples in
relation to cytogenetics. Each genomic assembly contains substantial information that can
be used for very specific purposes and avoids the need for probes that would be complex
to synthesize. The continuous evolution of these data analysis tools creates difficulty in any
attempt to compile their possible uses.

3.3. Tools for Genomic Data Analyses

Simultaneously with the publication of the genomes, bio-informatics tools were devel-
oped for the analysis of the vast amount of data generated—data that are characterized by
both their great variety and their large quantity. One of the main repositories of tools for
analyzing genomic data is Galaxy [251]. This repository provides access to bio-informatic
analysis tools, which are constantly updated. SNP variations represent the major source
of variation in genomes, and the genomes of the species covered in this review are no
exception. Currently, identifying these sources of variation is quite simple (through modern
high-throughput sequencing techniques at ever-lower cost), but this does not characterize
the effect that these variations can cause. For this scenario, the variant effect predictor (VEP
available on the Ensembl website) software is helpful [256].

Without a doubt, BACs represent one of the most useful tools for molecular cytogenet-
ics, and, as previously mentioned, their identification in genomes is currently greatly facili-
tated. However, the current situation would not be possible without the existence of two
important institutions that have dedicated part of their activities to the construction, main-
tenance, and distribution of BAC libraries: the BACPAC Resources Center (BPRC, https:
//bacpacresources.org/ (accessed on 2 March 2023)) and INRA (http://abridge.inra.fr/
index.php?option=com_flexicontent&view=item&cid=17&id=61&Itemid=202&lang=fr (ac-
cessed on 2 March 2023)). Through these two institutes, BACs belonging to different
libraries can be obtained.

3.4. Whole-Genome Sequencing

In recent years, the decreasing costs of sequencing have made it possible to analyze
many subjects. The purposes of these sequencings are different; in many cases, the aim is the
identification of signatures of selection [257–259], but other purposes are represented, such
as: (a) the identification of genetic variants in specific genes [260]; (b) the verification of data

https://bacpacresources.org/
https://bacpacresources.org/
http://abridge.inra.fr/index.php?option=com_flexicontent&view=item&cid=17&id=61&Itemid=202&lang=fr
http://abridge.inra.fr/index.php?option=com_flexicontent&view=item&cid=17&id=61&Itemid=202&lang=fr


Animals 2023, 13, 944 19 of 34

obtained regarding the identification of SNPs with chip arrays [261]; (c) the identification of
the run of homozygosity in breeds intended for different productions [262]; (d) prediction
and QTL mapping [263]; and (e) the identification of copy number variants [264] and
transcriptome characterization [265]. Similar analyses were performed on sheep [266,267]
and goats [268,269]. Additionally, in this case, the water buffalo seems to be slightly behind,
as there are very few papers available on it [265].

4. PCR-Based Methods and Molecular Cytogenetics

The polymerase chain reaction (PCR) [270] is a method largely used to make millions
of copies of a specific DNA sample in a fast and economical way for the detection, quantifi-
cation, and typing of infectious diseases and genetic changes. Current PCR-based methods
are distinguished as: (a) first-generation PCR, (b) second-generation quantitative PCR
(qPCR), and (c) third-generation droplet-based digital PCR (dPCR). PCR detects endpoint,
qualitative, or semi-quantitative assays by gel electrophoresis, separating DNA fragments
according to size. The qPCR measures DNA/RNA in real time using PCR methods, flu-
orescent dyes, and fluorometry for relative quantification and quantitative assays with
standard curves. The dPCR splits a PCR sample labeled with fluorescent dye into millions
of microsamples to digitize the pool of DNA molecules with a single or no copy in each
droplet. It quantifies the DNA/RNA copy number faster than qPCR based on standard
curves [271].

In recent years, PCR-based methods have replaced the classic cytogenetic techniques
for detecting chromosome abnormalities and aneuploidy due to greater precision, lower
cost, and faster data than are possible with cytogenetic methods, because of the small
quantities of DNA (30 ng) required from any stored or fresh biological samples. PCR-based
approaches are most commonly used in bovid studies to examine sex chromosomes in
early-sex-determination assays to detect aberrations (Table 7).

Table 7. PCR-based approaches on bovids for the detection of chromosomal aberrations.

Species Objective Sample PCR-Based Method Reference

Cattle Sex-determination Embryos PCR [272]

Cattle Freemartinism diagnosis Blood PCR [273]

Cattle Sex-determination Embryos PCR [274]

Cattle Sex-determination Spermatozoa PCR [275]

Cattle Chimerism diagnosis Blood qPCR [276]

Cattle XX/XY chimerism diagnosis Blood PCR [277]

Cattle SRY-positive hermaphrodite diagnosis Blood PCR [278]

Cattle XY (SRY-positive) diagnosis Blood PCR [279]

Cattle Freemartinism diagnosis Blood qPCR [280]

Cattle Freemartinism diagnosis Blood dPCR [281]

Cattle Sex-determination Spermatozoa dPCR [282]

Cattle Mosaic karyotype (60,XX/60,XX,+mar)
diagnosis Skin tissue PCR [283]

Cattle Mosaicism (60,XX/90,XXY) diagnosis Blood, skin, buccal epithelial
cells, and hair follicles dPCR [284]

Cattle XX/XY chimerism diagnosis Blood and hair follicles dPCR [285]

Telomere assessment is another critical goal of cytogenetics research due to the central
roles of telomeres in chromosome stability, aging, cancer development, apoptosis, and
senescence. The telomeres consist of thousands of noncoding repetitive sequences of DNA
composed of six nucleotide motifs (TTAGGG)n localized at the ends of chromosomes
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and are responsible for maintaining DNA integrity during each cell division. They are
associated with several proteins, with the most abundant being the shelterin complex,
which is made up of six different polypeptides. Telomeres also contain other genomic
structures, such as T-loops, D-loops, G-quadruplexes (G4), R-loops, and long noncoding
RNA (TERRA) [286].

In farm animals, telomere length (TL) did not receive much interest initially due
to the difficulty in determining the natural limits of their lifespans. However, a recent
study related TL to health, genome stability, and aging in cattle aged between 2 and
13 years and transformed TL into a sensitive biomarker for longevity and wellness (critical
traits of selective breeding), responding to the “One Health” approach (improving animal
welfare) [287]. TL is not often used as a unique marker of aging in humans because of
its poor predictive accuracy due to increased telomere shortening in elderly humans as a
consequence of age-related diseases (e.g., cancer, atherosclerosis, autoimmune disorders,
obesity, chronic obstructive pulmonary disease, diabetes, hematological disorders, and
neurodegenerative diseases) [288]. By contrast, TL proved to be a relevant biomarker of the
general state of farm animals due to their lack of age-related pathologies [289,290].

Approaches for measuring TL include: (a) telomere restriction fragment (TRF)
length [291]; (b) length analysis by Southern blotting; (c) fluorescent in situ hybridization
(FISH) by flow cytometry (flow-FISH) or in metaphase cells (Q-FISH) [292,293]; and
(d) PCR-based methods. Most of these methods have several limitations. For example,
TRF and flow-FISH are labor-intensive and expensive; Southern blot analysis requires
large amounts of genomic DNA, and Q-FISH works only on chromosomes (metaphase
stage). Of the available methods, the PCR-based ones are the fastest, most recent,
and least costly and require only small quantities of DNA (30 ng) from stored or fresh
biological samples [294]. The qPCR method amplifies telomere repeats relative to a single-
copy gene (reference gene) according to a method described by Cawthon et al. [295]
and follows the MIQE guidelines [296]. One limitation of qPCR is the inconsistent
repeatability and reproducibility of different TL measurement methods, producing a
high variation in results [297]. Several studies on humans and animals indicated that
the DNA extraction method might affect TL measurements using q-PCR, as DNA yields
were higher using the non-silica membrane kit (salting-out method), and DNA integrity
on electrophoresis gels varied [298,299]. A recent study showed comparable results
for DNA quality and purity (tested using a NanoDrop instrument and electrophoresis
gels) in cattle blood and milk samples using two different extraction kits (a salting-
out kit for blood and a silica membrane kit for milk samples) due to the difficulty of
extracting DNA from milk matrices. The DNA quality results were similar in both
matrices, demonstrating a synchronous trend between them for the first time [287].

5. Current Developments and Knowledge Gaps

Molecular cytogenetics is approaching its first 30 years of history and during this
period, it performed important functions that evolved over time. It therefore seems normal
that in the coming years, we will witness further developments; however, some approaches
will always be current and irreplaceable. The FISH technology represents, and will rep-
resent, the main methodology for the verification of chromosomal anomalies eventually
identified with other approaches, just as the CGH array technology that will be increas-
ingly used for the identification of genomic variants linked to a particular phenotype.
Molecular cytogenetics could be very useful for the study of those species which have
not yet benefited from the genomic revolution, or which are still in its early stages: in
this sense, the water buffalo (Bubalus bubalis) is the main example. Despite possessing
a great economic importance, its genome has been decrypted and made available only
recently, and the application of other technologies is very late. A further gap that can be
filled is the development of a technological approach that can allow the identification of all
chromosomal types identifiable by cytogenetic analyses. A similar approach has already
been published [71], but only the transfer of SKY-FISH technologies [300] from humans to
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bovids will bridge this gap. Finally, the certain decrease in costs will mean that even the
species considered in this review will be able to benefit from long-read genomic sequencing,
such as PacBio [301] and Oxford Nanopore [302].

6. Conclusions

The study of the chromosomes of domestic bovids is about to enter its seventh decade,
and, as expected, it has undergone a notable evolution along the way. This evolutionary
process for this discipline is mainly a result of the appearance of technologies that have sig-
nificantly increased the potential of applied cytogenetics. Banding techniques, FISH, CGH
arrays, and PCR have radically changed animal cytogenetics, making them irreplaceable
tools for understanding the genetics of bred animals. Therefore, considering the history
of cytogenetics, a quite easy prediction is that even the next evolutions will be dictated by
technological advances. Predicting the next technological leap is difficult, but if we were
to make a prediction, it would be that long-read genomic sequencing technologies will
have important impacts on cytogenetics. Cytogenetics will likely retain its functionality,
particularly in the confirmation of genomic results and the characterization of cytogenetic
anomalies, as well as in evolutionary studies. This is because the most significant genetic
mutations have accumulated at the chromosome level during the evolution of species.
Finally, the implication and progresses from animal cytogenetics can be summarized as
follows:

• In the pre-genomic era, FISH technology represented the almost exclusive technology
available for the localization of genes in genomes.

• Prior to the availability of low-cost genomic sequencing, molecular cytogenetics was
the only approach for identifying similarities between karyotypes of different species.

• The technologies of molecular cytogenetics represent the best approach for the charac-
terization of chromosomal abnormalities.

• Despite scientific progress in similar disciplines, molecular cytogenetics will always
find its place and represent an inescapable investigation methodology.
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Abbreviations

aCGH array Comparative Genomic Hybridization
BAC Bacterial Artificial Chromosome
BBU Bubalus bubalis Chromosome, 2 n = 50
BES Bac Ends Sequences
BIN Bos indicus Chromosomes, 2 n = 60
BTA Bos taurus Chromosome, 2 n = 60
CA Chromosome Abnormalities (chromosome breaks)
CBA C-banding by Acrine Orange Staining
CHI Capra hircus Chromosomes, 2 n = 60
Fiber-FISH Extended Chromatin Fiber-FISH
FISH Fluorescence In Situ Hybridization
GBG G-banding by Early BrdU-Incorporation and Giemsa Staining
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HSA Human sapiens Chromosome, 2 n = 46
IVP In Vitro Production
MHC Major Histocompatibility Complex
MI Mitotic Index
MN Micronuclei
OAR Ovis aries Chromosomes, 2 n = 54
PCR Polymerase Chain Reaction
PNA Peptide Nucleic Acids
QBH Q-banding by Early BrdU-Incorporation and Hoescht Staining
RBA R-banding by Late BrdU-Incorporation and Acridine Orange Staining
RBG R-banding by Late BrdU-Incorporation and Giemsa Staining
RH Radiation Hybrids
SCA Synaptonemal Complex Analysis
SCE Sister Chromatid Exchange
SKY-FISH Spectral Karyotyping
SNP Single Nucleotide Polymorphism
YAC Yeast Artificial Chromosome
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65. Galdíková, M.; Šiviková, K.; Holečková, B.; Dianovský, J.; Drážovská, M.; Schwarzbacherová, V. The effect of thiacloprid
formulation on DNA/chromosome damage and changes in GST activity in bovine peripheral lymphocytes. J. Environ. Sci. Health
B 2015, 50, 698–707. [CrossRef]

66. De Lorenzi, L.; Iannuzzi, A.; Rossi, E.; Bonacina, S.; Parma, P. Centromere repositioning in cattle (Bos taurus) chromosome 17.
Cytogenet. Genome Res. 2017, 151, 191–197. [CrossRef]

67. Berry, D.P.; Wolfe, A.; O’Donovan, J.; Byrne, N.; Sayers, R.G.; Dodds, K.G.; McEwan, J.C.; O’Connor, R.E.; McClure, M.; Purfield,
D.C. Characterization of an X-chromosomal non-mosaic monosomy (59, X0) dairy heifer detected using routinely available single
nucleotide polymorphism genotype data. J. Anim. Sci. 2017, 95, 1042–1049. [CrossRef]

http://doi.org/10.1016/j.theriogenology.2007.06.022
http://doi.org/10.1159/000097421
http://doi.org/10.1159/000118746
http://doi.org/10.1159/000138891
http://www.ncbi.nlm.nih.gov/pubmed/18758165
http://doi.org/10.1159/000245923
http://www.ncbi.nlm.nih.gov/pubmed/20016173
http://doi.org/10.1159/000315891
http://www.ncbi.nlm.nih.gov/pubmed/20606398
http://doi.org/10.1016/j.theriogenology.2009.10.007
http://www.ncbi.nlm.nih.gov/pubmed/20022097
http://doi.org/10.1111/j.1365-2605.2009.00989.x
http://www.ncbi.nlm.nih.gov/pubmed/19751362
http://doi.org/10.1159/000317089
http://doi.org/10.1159/000324696
http://www.ncbi.nlm.nih.gov/pubmed/21389692
http://doi.org/10.1016/j.theriogenology.2011.02.010
http://doi.org/10.1007/s10577-012-9315-y
http://doi.org/10.1159/000342189
http://doi.org/10.1016/j.theriogenology.2012.03.017
http://www.ncbi.nlm.nih.gov/pubmed/22503844
http://doi.org/10.1016/j.theriogenology.2011.09.016
http://www.ncbi.nlm.nih.gov/pubmed/22056011
http://doi.org/10.1111/j.1439-0531.2012.01987.x
http://doi.org/10.1016/j.chemosphere.2013.04.001
http://doi.org/10.1159/000356209
http://doi.org/10.1159/000368950
http://www.ncbi.nlm.nih.gov/pubmed/25401777
http://doi.org/10.1159/000438973
http://www.ncbi.nlm.nih.gov/pubmed/26337016
http://doi.org/10.1080/03601234.2015.1048102
http://doi.org/10.1159/000473781
http://doi.org/10.2527/jas.2016.1279


Animals 2023, 13, 944 25 of 34

68. Barasc, H.; Mouney-Bonnet, N.; Peigney, C.; Calgaro, A.; Revel, C.; Mary, N.; Ducos, A.; Pinton, A. Analysis of meiotic segregation
pattern and interchromosomal effects in a bull heterozygous for a 3/16 robertsonian translocation. Cytogenet. Genome Res. 2018,
156, 197–203. [CrossRef]

69. Häfliger, I.M.; Agerholm, J.S.; Drögemüller, C. Constitutional trisomy 20 in an aborted Holstein fetus with pulmonary hypoplasia
and anasarca syndrome. Anim. Genet. 2020, 51, 988–989. [CrossRef]

70. Häfliger, I.M.; Seefried, F.; Drögemüller, C. Trisomy 29 in a stillborn swiss original braunvieh calf. Anim. Genet. 2020, 51, 483–484.
[CrossRef] [PubMed]

71. Jennings, R.L.; Griffin, D.K.; O’Connor, R.E. A new approach for accurate detection of chromosome rearrangements that affect
fertility in cattle. Animals 2020, 10, 114. [CrossRef]

72. Iannuzzi, A.; Braun, M.; Genualdo, V.; Perucatti, A.; Reinartz, S.; Proios, I.; Heppelmann, M.; Rehage, J.; Hülskötter, K.; Beineke,
A.; et al. Clinical, cytogenetic and molecular genetic characterization of a tandem fusion translocation in a male Holstein cattle
with congenital hypospadias and a ventricular septal defect. PLoS ONE 2020, 15, e0227117. [CrossRef]

73. Iannuzzi, L.; Di Meo, G.P.; Perucatti, A.; Zicarelli, L. Sex chromosome monosomy (2n=49,X) in a river buffalo (Bubalus bubalis).
Vet. Rec. 2000, 147, 690–691.

74. Di Meo, G.P.; Perucatti, A.; Genualdo, V.; Iannuzzi, A.; Sarubbi, F.; Caputi-Jambrenghi, A.; Incarnato, D.; Peretti, V.; Vonghia,
G.; Iannuzzi, L. A rare case of centric fission and fusion in a river buffalo (Bubalus bubalis, 2n = 50) cow with reduced fertility.
Cytogenet. Genome Res. 2011, 132, 26–30. [CrossRef]

75. Albarella, S.; Ciotola, F.; Coletta, A.; Genualdo, V.; Iannuzzi, L.; Peretti, V. A new translocation t(1p;18) in an Italian Mediterranean
river buffalo (Bubalus bubalis, 2n = 50) bull: Cytogenetic, fertility and inheritance studies. Cytogenet. Genome Res. 2013, 139, 17–21.
[CrossRef]

76. Pauciullo, A.; Perucatti, A.; Iannuzzi, A.; Incarnato, D.; Genualdo, V.; Di Berardino, D.; Iannuzzi, L. Development of a sequential
multicolor-FISH approach with 13 chromosome-specific painting probes for the rapid identification of river buffalo (Bubalus
bubalis, 2n = 50) chromosomes. J. Appl. Genet. 2014, 55, 397–401. [CrossRef]

77. Di Dio, C.; Longobardi, V.; Zullo, G.; Parma, P.; Pauciullo, A.; Perucatti, A.; Higgins, J.; Iannuzzi, A. Analysis of meiotic
segregation by triple-color fish on both total and motile sperm fractions in a t(1p;18) river buffalo bull. PLoS ONE 2020, 15,
e0232592. [CrossRef] [PubMed]

78. Pauciullo, A.; Versace, C.; Perucatti, A.; Gaspa, G.; Li, L.Y.; Yang, C.Y.; Zheng, H.Y.; Liu, Q.; Shang, J.H. Oocyte aneuploidy rates
in river and swamp buffalo types (Bubalus bubalis) determined by Multi-color Fluorescence In Situ Hybridization (M-FISH). Sci.
Rep. 2022, 12, 8440. [CrossRef] [PubMed]

79. Burkin, D.J.; O’Brien, P.C.; Broad, T.E.; Hill, D.F.; Jones, C.A.; Wienberg, J.; Ferguson-Smith, M.A. Isolation of chromosome-specific
paints from high-resolution flow karyotypes of the sheep (Ovis aries). Chromosome Res. 1997, 5, 102–108. [CrossRef] [PubMed]

80. Chaves, R.; Adega, F.; Wienberg, J.; Guedes-Pinto, H.; Heslop-Harrison, J.S. Molecular cytogenetic analysis and centromeric
satellite organization of a novel 8;11 translocation in sheep: A possible intermediate in biarmed chromosome evolution. Mamm.
Genome 2003, 14, 706–710. [CrossRef] [PubMed]

81. Coppola, G.; Alexander, B.; Di Berardino, D.; St John, E.; Basrur, P.K.; King, W.A. Use of cross-species in-situ hybridization
(ZOO-FISH) to assess chromosome abnormalities in day-6 in-vivo- or in-vitro-produced sheep embryos. Chromosome Res. 2007,
15, 399–408. [CrossRef]

82. Lühken, G.; Fleck, K.; Pauciullo, A.; Huisinga, M.; Erhardt, G. Familiar hypopigmentation syndrome in sheep associated with
homozygous deletion of the entire endothelin type-B receptor gene. PLoS ONE 2012, 7, e53020. [CrossRef]

83. Iannuzzi, A.; Perucatti, A.; Genualdo, V.; De Lorenzi, L.; Di Berardino, D.; Parma, P.; Iannuzzi, L. Cytogenetic elaboration of a
novel reciprocal translocation in sheep. Cytogenet. Genome Res. 2013, 139, 97–101. [CrossRef] [PubMed]

84. Iannuzzi, A.; Perucatti, A.; Genualdo, V.; Pauciullo, A.; Incarnato, D.; Musilova, P.; Rubes, J.; Iannuzzi, C. The utility of
chromosome microdissection in clinical cytogenetics: A new reciprocal translocation in sheep. Cytogenet. Genome Res. 2014, 142,
174–178. [CrossRef] [PubMed]

85. Pauciullo, A.; Perucatti, A.; Cosenza, G.; Iannuzzi, A.; Incarnato, D.; Genualdo, V.; Di Berardino, D.; Iannuzzi, L. Sequential
cross-species chromosome painting among river buffalo, cattle, sheep and goat: A useful tool for chromosome abnormalities
diagnosis within the family Bovidae. PLoS ONE 2014, 9, e110297. [CrossRef]

86. Christensen, K.; Juul, L. A case of trisomy 22 in a live hereford calf. Acta Vet. Scand. 1999, 40, 85–88. [CrossRef] [PubMed]
87. De Giovanni, A.; Molteni, L.; Succi, G.; Galliani, C.; Bocher, J.; Popescu, C.P. A new type of Robertsonian translocation in cattle. In

Proceedings of the 8th European Colloquium on Cytogenetics of Domestic Animals, Bristol, UK, 19–22 July 1988; pp. 53–59.
88. De Giovanni, A.; Succi, G.; Molteni, L.; Castiglioni, M. A new autosomal translocation in “Alpine grey cattle”. Ann. Genet. Sel.

Anim. 1979, 11, 115–120. [CrossRef]
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