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Simple Summary: The European wildcat is an iconic small-sized predator that is still threatened by
habitat fragmentation, accidental or illegal killings, and hybridization with domestic cats. However,
phylogenetic and phylogeographic patterns of the taxon, though essential to design appropriate
long-term conservation management actions, have been poorly investigated. Therefore, in this
study, for the first time, we describe the most geographically-representative evolutionary history of
the species in Europe based on mitochondrial DNA sequences. Our results clearly show that the
European wildcat genetic variability was mainly originated during Pleistocene climatic oscillations
and successively modeled by both historical natural gene flow among wild lineages and more recent
wild x domestic anthropogenic hybridization events.

Abstract: Disentangling phylogenetic and phylogeographic patterns is fundamental to reconstruct
the evolutionary histories of taxa and assess their actual conservation status. Therefore, in this study,
for the first time, the most exhaustive biogeographic history of European wildcat (Felis silvestris)
populations was reconstructed by typing 430 European wildcats, 213 domestic cats, and 72 putative
admixed individuals, collected across the entire species’ distribution range, at a highly diagnostic
portion of the mitochondrial ND5 gene. Phylogenetic and phylogeographic analyses identified two
main ND5 lineages (D and W) roughly associated with domestic and wild polymorphisms. Lineage
D included all domestic cats, 83.3% of putative admixed individuals, and also 41.4% of wildcats;
these latter mostly showed haplotypes belonging to sub-clade Ia, that diverged about 37,700 years
ago, long pre-dating any evidence for cat domestication. Lineage W included all the remaining
wildcats and putative admixed individuals, spatially clustered into four main geographic groups,
which started to diverge about 64,200 years ago, corresponding to (i) the isolated Scottish population,
(ii) the Iberian population, (iii) a South-Eastern European cluster, and (iv) a Central European cluster.
Our results suggest that the last Pleistocene glacial isolation and subsequent re-expansion from
Mediterranean and extra-Mediterranean glacial refugia were pivotal drivers in shaping the extant
European wildcat phylogenetic and phylogeographic patterns, which were further modeled by both
historical natural gene flow among wild lineages and more recent wild x domestic anthropogenic
hybridization, as confirmed by the finding of F. catus/lybica shared haplotypes. The reconstructed
evolutionary histories and the wild ancestry contents detected in this study could be used to identify
adequate Conservation Units within European wildcat populations and help to design appropriate
long-term management actions.

Keywords: European wildcat; Felis silvestris; divergence times; glacial refugia; mitochondrial DNA;
mito-nuclear discordances; phylogeny; phylogeography

1. Introduction

Biogeographic and phylogeographic patterns are key factors in clarifying the evolutionary
histories of taxa and identifying appropriate conservation management units (ESU and MU [1,2])
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to be long-term preserved [3,4]. Quaternary climate oscillations have significantly affected the
current composition, distribution, and genetic diversity of species, subspecies, and populations,
with local extinctions, replacements, and re-expansions with secondary contacts within the
Palaearctic region [5]. Additionally, the current Eurasian taxa distribution and genetic structure
have been further altered by more recent anthropic factors, such as natural habitat fragmen-
tation, domestication, and alien species invasions, which are heavily impacting biodiversity
and ecosystem equilibria [6,7]. The potential consequences of such past environmental changes
and recent intense anthropic activities on the survival of natural taxa have been extensively
investigated through a number of molecular studies, which allowed to reconstruct complex phy-
logeographic structures [8–10], identify local adaptations [11,12], trace migration routes [13,14],
detect domestic or allochthonous introgression signals [15,16], and design sound conservation
strategies, especially for populations affected by protracted demographic declines [17,18].

Among Eurasian felids, the European wildcat (Felis silvestris), heterogeneously dis-
tributed throughout Europe, Caucasus, and Turkey, represents a challenging conservation
priority, potentially threatened by habitat loss and anthropogenic hybridization, whose
taxonomy and systematics are, however, still debated [19–21].

Indeed, based on genetic and biogeographic information, Driscoll et al. [20] included
the European wildcat among the five subspecies of Felis silvestris (F. s. silvestris, F. s. lybica, F.
s. catus, F. s. ornata, and F. s. cafra). Conversely, Kitchener et al. [22] recently reclassified the
European taxa as three separate species: the European wildcat, Felis silvestris, the African
wildcat, Felis lybica, and the domestic cat, Felis catus.

Fossil records and archaeological remains dated the first appearance of the European
wildcat in the continent back to 450,000–200,000 years ago [23]. Since then, both Pleistocene
natural climatic oscillations [24,25] and anthropogenic events, such as human persecu-
tion [26], deforestation, habitat modifications, and local decline of major prey [27–29], have
continuously shaped current distribution patterns and genetic structure of the species [25].
In particular, the European wildcat genetic structure has been further muddled by an-
thropogenic hybridization and subsequent introgression with domestic cats, which were
human-spread from the Middle East through Europe after their domestication from the
African wildcat [20,30,31].

To shed light on the conservation status of the taxon, the European wildcat population
genetic structure [32–34] and patterns of domestic admixture [35–39] have been deeply
addressed, principally using nuclear molecular (STR and SNP) markers, detecting five
main biogeographic groups and variable degrees of domestic introgression throughout
Europe [25,34,40].

However, only a few molecular studies have investigated phylogenetic and phylogeo-
graphic patterns of Felis silvestris in Europe so far, mainly using informative mitochondrial
portions (such as the Control Region or the NADH Dehydrogenate Subunits) to distinguish
domestic cat from European wildcat lineages, detecting the rough presence of a continental
and Mediterranean clade among the latter [20,31,35,36,41,42]. However, these studies also
hightailed the occurrence of anomalous cases of F. catus/lybica mitochondrial lineages
among nuclear-pure wildcat individuals, which might be interpreted as (i) the legacy of
ancient natural [31], (ii) Neolithic human-mediated [41] hybridization events between
European and African wildcat populations, or (iii) a signal of a more recent anthropogenic
admixture between European wildcats and domestic cats [20]. Nevertheless, only a small
number of individuals were typed in these studies, and the analyzed samples were col-
lected across restricted geographical areas. Thus, an extensive and exhaustive analysis of
the European wildcat mitochondrial diversity patterns across the continent is still missing
and would be necessary to disentangle the complex evolutionary framework of the species
and better understand the role played by natural and anthropogenic drivers.

In this study, therefore, we analyzed variation patterns of a portion of the mitochon-
drial NADH dehydrogenase subunit 5 in a geographically representative set of European
wildcat and domestic cat individuals with the scope to (1) accurately describe European
wildcat phylogenetic and phylogeographic patterns in Europe, (2) date back divergence
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times among the main haplogroups in the European wildcat phylogenetic history, and (3)
evaluate different likely biogeographic scenarios to clarify the origin of shared haplotypes
between wild and domestic cats.

2. Materials and Methods
2.1. Sampling

A total of 705 high-quality DNA cat samples, opportunistically collected from found
dead animals between 1998 and 2010 in 12 sub-regions belonging to six European biogeo-
graphic macro-regions (Figure 1), were selected from the ISPRA Felis DNA biobank [25].
Sampled individuals had been previously identified morphologically by collectors accord-
ing to phenotype, life history traits, and biometric indices [43–45]. Samples had also been
previously genotyped at 31 microsatellites (STR) loci [25] and genetically classified as do-
mestic (Felis catus), wild (Felis silvestris), or putative wild x domestic admixed cats through
Bayesian clustering analyses based on an assignment threshold of posterior probability
proportion to belong to the wildcat cluster qi = 0.90 [33] (Supplementary Table S1). Accord-
ing to these criteria, the selected samples were re-classified into 420 European wildcats,
213 domestic cats, and 72 putative admixed individuals (see Mattucci et al. [25] for details
about sampling, DNA extraction, genotyping, and assignment methods). Due to the high
level of domestic introgression spread in Scotland and Hungary, felid samples from these
two sub-regions were mainly represented by wild x domestic admixed cats [25].
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Figure 1. Map of the approximate cat sampling locations. Dark grey areas correspond to the most
recently updated IUCN Felis silvestris distribution range [46]. Macro-regions (Italy, Central Europe, Iberian
Peninsula, Balkans, Eastern Europe, Scotland) are indicated in different colors. Each macro-region was
further subdivided into sub-regions (It-cnt: Central Italy; It-Sicily: Sicily; Eu-cnt: Center–North Germany;
Eu-sw: Southern and Western regions of Central Europe; Ib-prt: Portugal; Ib-sp: Spain; Balk-n: Northern
Balkans; Balk-s: Southern Balkans; Balk-nw Eastern Italian Alps and North-Western Dinarides; East-n:
Poland; East-s: Hungary). Samples from the North-Eastern Italian Alps were included in the Balkans
group (blk-nw) according to the most recent genetic structure detected in Europe through Bayesian
assignment procedures performed using nuclear microsatellite genetic profiles [25]. Small circles indicate
the approximate geographic locations within the main sampling areas. Each sub-region is provided with
the number of analyzed samples classified on the base of their 31-STR assignment values [25]: W = wildcat;
D = domestic cat; H = putative admixed. Further details are available in Supplementary Table S1.
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2.2. Mitochondrial DNA Sequencing and Haplotype Identification

Selected samples were sequenced for a portion of 835 bp of the mitochondrial NADH
dehydrogenase subunit 5 (ND5; nucleotides 13,149–13,983 mapped on the mitochondrial
genome of the domestic cat; NCBI Reference Sequence NC001700). This mtDNA region
is particularly suitable for phylogeny reconstructions, because of the absence of nuclear
mitochondrial segments (numts) and its reduced homoplasy, and is highly discriminating,
since it contains seven diagnostic mutations useful to distinguish the European wildcat
(F. silvestris) from the domestic/African cat (F. catus/lybica) lineages [20,31].

Fragments were amplified using Polymerase Chain Reaction (PCR) primers F2B (5′-
TGCCGCCCTACAAGCAAT-3′) and R3B (5′-TAAGAGACGTTTAATGGAGTTGAT-3′) [47].
Each 10 µL PCR reaction contained 2 µL of DNA (c. 50 ng), 0.8 µL of 10X Taq Buffer advanced
(Eppendorf) with self-adjusting Mg2+ (Eppendorf), 0.80 µL of 0.2% bovine serum albumin
(Sigma–Aldrich, St. Louis, MO, USA), 0.36 µL of 2.5 mM dNTPs (Eppendorf), 0.15 µL of each
10 mM primer solution (Bionordika, Solna, Sweden), 0.04µL of 5 U/µL HotStart Taq polymerase
(Eppendorf, Tokyo, Japan), and 5.70 µL of purified water (Eppendorf, Milano, Italy). PCRs
were performed in a Veriti Thermal Cycler (Life Technologies, Carlsbad, CA, USA) with the
following thermal profile: 94 ◦C for 15 min for initial denaturation and Taq activation, followed
by 50 cycles of 30 s at 94 ◦C, 60 s at 55 ◦C and 60 s at 72 ◦C. The PCR cycling was followed
by a final extension for 10 min at 72 ◦C. PCR products were stored at 4 ◦C and then purified
by exonuclease digestions (1 µL of EXO-SAP per sample, incubated at 37 ◦C for 30 min, then
at 80 ◦C for 15 min). The purified amplicons were Sanger-sequenced in both directions. Each
10 µL reaction contained 1 µL of amplified DNA, 1 µL of BigDye v1.1 (Life Technologies),
0.2 µL of either the forward or reverse primer, and 7.8 µL of purified water. Sequencing was
performed in a Veriti Thermal Cycler with 25 cycles of 10 s at 96 ◦C, 5 s at 55 ◦C, 4 min at 60 ◦C
and storage at 4 ◦C. The purified products were added with 10 µL of Hi-DI formamide (Life
Technologies), denatured for 3 min at 95 ◦C, and analyzed on an Applied Biosystems (ABI) 3130
XL DNA Analyzer.

2.3. Phylogenetic Analyses and Estimates of Divergence Times

The 705 cat NAD5 sequences were aligned and corrected in SEQSCAPE v2.5 (Life
Technologies) and used to build a cat NAD5 dataset, which also included other 10 differ-
ent European wildcat homologous sequences (accession numbers: EF587158, EF587164,
EF587168, EF587166, EF587170, EF587169, EF587171, EF587156, EF587162, EF587159; [20]),
retrieved from GENBANK.

All the 715 produced and downloaded cat sequences were consequently trimmed
into equal sequences of 669 bp (positions 13,243–13,911) to maintain full-length, double-
stranded, high-quality sequence data across all samples, using BIOEDIT v7.1.11 [48].

Identical haplotypes were identified and collapsed using DNASP v5.10.01 [49], and
possible correspondences with haplotypes already published in GENBANK were checked
using BLAST [50]. The final dataset of unique cat NAD5 haplotypes was then used to
perform all the downstream diversity, phylogeographic and phylogenetic analyses.

Haplotype (Hd) and nucleotide diversity (π) were computed using DNASP.
The best nucleotide substitution model scheme was computed in PARTITIONFINDER

v2 [51] by the Bayesian information criterion (BIC), and, subsequently, three phylogenetic
trees were constructed through different computational approaches: (i) the neighbor-joining
(NJ, [52]) method, using Smart Model Selection (SMS, [53]) algorithms implemented in
MEGA v11.0 [54] and performing 10,000 random bootstrap replications; (ii) the maximum-
likelihood method (ML, [55]) implemented in PHYML v3.0 [56] with the heuristic search by
topological rearrangement of an initial tree (Near-Neighbor-Interchange) and 5000 random
bootstrap replications; (iii) the Bayesian method (BT) implemented in BEAST v2.1.3 [57],
which further allowed to estimate divergence times among nodes. Due to the strong
relationship between taxa, a strict molecular clock model with a fixed mean substitution
rate (2.28 × 10−8/site/year [47]) and constant population size as coalescent priors were
selected. The Bayesian posterior probabilities (BPPs), as well as the high posterior densities
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for the node ages (HPDs), were extrapolated by performing three independent MCMC
runs of 100,000,000 steps with a burn-in period of 10,000,000 steps and picking genealogies
every 2000 steps. The results of the three chains were simultaneously analyzed in TRACER

v1.7 [58].
The corresponding portion of the ND5 sequence of Felis margarita retrieved from

GENEBANK (Accession number: EF587034) was used as an outgroup in NJ and ML tree re-
constructions. Conversely, the BT tree was calculated without the inclusion of an outgroup,
as suggested by BEAST developers [57], and the tree rooting point was estimated using as a
prior calibration point the time interval in which the common ancestor between F. silvestris
and F. catus/lybica likely coalesced (230,000–173,000 years ago [20]).

Each supported node was annotated with bootstrap values for NJ and ML trees and
the highest posterior density (HPD) for the BT tree (e.g.: NJ/ML/HPD).

2.4. Demographic Analyses

A median-joining (MJ) network analysis was performed in NETWORK v4.6 (Fluxus
Technology Ltd., Stanway, UK [59]) to corroborate tree reconstructions, and investigate
haplotypes relationships, frequencies, and geographic repartitions, using an ε = 10 and
transversions/transition weighting of 3:1.

Haplotype pairwise genetic distances among cat taxa and cat biogeographic clus-
ters, assessed with an analysis of molecular variance (AMOVA), and the φST and φSC
indexes for genetic differentiation [60], were computed in ARLEQUIN v3.5.1.3 [61], running
10,000 permutations to evaluate the significance of each parameter.

Further spatial analysis of molecular variance (SAMOVA) was performed using
SAMOVA v2.0 [62], which defines clusters of geographically homogeneous populations,
based on an a priori definition of the number of K groups, and uses a simulated annealing
procedure to maximize the proportion of total genetic variance between groups with an
AMOVA approach. We tested a different number of groups (with K from 2 to 9), each time
with the simulated annealing process repeated 10,000 times, starting with a different parti-
tion of the population samples into the K groups. The selection of the best K-repartitions
was based on the highest significant values of the FCT genetic differentiation index. FCT
estimates differentiation among those groups of populations. The closer FCT is to 1, the
more divergent the groups are from each other.

2.5. Approximate Bayesian Computation Analyses

The Approximate Bayesian Computation (ABC) simulations [63], implemented in
DIYABC v2.1.0 [64], were run to model plausible demographic scenarios and estimate diver-
gence times (in generations). We performed two types of ABC analyses: (a) considering only
populations carrying wildcat mitochondrial haplotypes [20]; and (b) considering popula-
tions showing mito-nuclear discordance (see Results). In details, to avoid over-computation,
we designed the smallest number of evolutionary scenarios using as prior populations
the spatially geographical and genetically homogeneous clusters found through SAMOVA
analyses. Successively, we simulated alternative evolutionary hypotheses using haplotype
distribution and divergence times estimated from the reconstructed Bayesian phylogeny
(see Results) and modeled population dynamics, taking into account the main phylogeo-
graphic findings reported in the literature [20,25,31]. Therefore, we tested four demographic
scenarios for the wildcat haplotypes (Supplementary Figure S1), hypothesizing that the
four clusters split sequentially (scenarios 1 and 3) or simultaneously (scenarios 2 and 4) and
that Cluster 4 diverged by isolation (scenarios 1 and 2) or followed a gene flow with other
European populations (scenarios 3 and 4). The haplogroup, including wildcats showing
mito-nuclear discordances, was analyzed by testing three different scenarios: (a) the three
clusters split in recent times from few common ancestral haplotypes (scenario 1); (b) the
three clusters split in different sequential evolutionary events (scenario 2); (c) same as
scenario 2 but considering longer coalescence time (scenario 3). We ran 4 × 106 simulations
for each scenario using prior uniform distributions of the effective population sizes and
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time parameters with the gamma-distributed mutation model with Gamma shape = 4.0.
Scenarios were compared by estimating posterior probabilities using the logistic regression
method using 1% of the simulated datasets. For the best models, posterior distributions
of the parameters were estimated with a logit-transformed linear regression on the 1%
simulated datasets closest to the observed data. Scenario confidence was evaluated by
comparing observed and simulated summary statistics. Finally, the goodness-of-fit of the
posterior parameters for the best-performing scenarios was tested via the model checking
option with default settings, and significance was assessed after Bonferroni correction for
multiple testing.

3. Results

Haplotype alignment did not show any indels or stop codons and the aminoacidic
sequence was concordant with the domestic cat ND5 protein sequence (NCBI Reference
Sequence NC001700). Thus, we excluded the amplification of numts or pseudogenes. After
regrouping procedures, we identified 29 haplotypes among the 715 sequences, counting
32 polymorphic sites, including 23 parsimony informative sites, with a total haplotype
diversity Hd = 0.862 ± 0.006 and a nucleotide diversity π = 0.870 ± 0.013 (Table 1). We
compared the resulting haplotype sequences with the NCBI nucleotide database using the
Blast algorithm founding 12 new unpublished haplotypes (Supplementary Table S2).

Table 1. Summary of genetic variability statistics obtained by analyzing a portion of the mitochondrial
ND5 gene and considering as sample groups: (a) STR Bayesian assignment cat populations [25]; (b)
main phylogenetic lineages; and (c) biogeographic macro-regions within each phylogenetic lineage.
For lineages W and DW (lineage D pruned by domestic cats), the statistics are also provided for each
macro-region. N = number of samples; SD = standard deviation.

N Number of
Haplotypes

Nucleotide Diversity
(π ± SD) Haplotype Diversity (h ± SD) Tajima’s D p-Value Fu and Li’s

F p-Value

Overall 715 28 0.870 ± 0.013 0.862 ± 0.006

Domestic
cats 213 12 0.230 ± 0.150 0.735 ± 0.018 −0.413 0.078 −2.337 0.026

Putative
admixed 72 8 0.686 ± 0.378 0.797 ± 0.027 1.145 0.173 4.129 0.442

Wildcats 430 20 1.063 ± 0.552 0.813 ± 0.011 2.297 0.405 4.534 0.280

Lineage D 448 14 0.247 ± 0.161 0.746 ± 0.012 −0.347 0.067 −2.271 0.046
Lineage W 267 14 0.255 ± 0.166 0.720 ± 0.021 −0.452 0.059 −2.789 0.030

Italy 55 4 0.048 ± 0.055 0.173 ± 0.068 −1.025 0.043 −1.780 0.009
Central
Europe 117 7 0.165 ± 0.121 0.676 ± 0.034 −0.359 0.098 −0.706 0.103

Iberian
Peninsula 40 5 0.245 ± 0.164 0.637 ± 0.063 0.434 0.135 1.091 0.260

Balkans 43 2 0.014 ± 0.028 0.047 ± 0.044 −1.480 0.001 −0.723 0.042
Eastern
Europe 8 4 0.230 ± 0.174 0.750 ± 0.139 1.347 0.234 −0.375 0.030

Scotland 7 1
Lineage DW 235 7 0.208 ± 0.142 0.581 ± 0.034 0.415 0.223 0.742 0.202

Italy 54 4 0.207 ± 0.144 0.461 ± 0.058 1.288 0.359 1.942 0.388
Central
Europe 41 3 0.037 ± 0.047 0.096 ± 0.062 −2.002 0.000 −1.107 0.047

Iberian
Peninsula 8 2 0.064 ± 0.073 0.429 ± 0.169 0.334 0.479 0.536 0.132

Balkans 61 5 0.260 ± 0.170 0.571 ± 0.055 1.461 0.366 1.828 0.341
Eastern
Europe 64 4 0.199 ± 0.139 0.656 ± 0.035 1.235 0.384 1.993 0.406

Scotland 7 1

3.1. Phylogenetic Analyses and Divergence Time Estimates

The best fit evolutionary model for the 29-haplotype alignment was Kimura’s two-
parameter (K80 [65]) model with invariable sites (I = 0.80) for the first and second codon
positions, whereas the Hasegawa, Kishino, and Yano (HKY [66]) model with a gamma
distribution and four discrete categories was selected for the third codon position.

The NJ, ML, and BT phylogenetic trees showed very concordant topologies for the
main clades (Supplementary Figure S2); thus, we described in detail directly the topology of
the tree generated by BEAST, which presented posterior probabilities of the main internodes
> 0.90 (Figure 2a). In the BT tree, haplotypes were clearly split into two main and strongly
supported lineages (node 1, 100/100/1), diverging 197,500 years ago (95% HPD 173,002–
226,274 years ago): (i) lineage D, including 15 haplotypes, shared in 448 (62.3%) individuals
and (ii) lineage W, including 14 haplotypes, shared in 267 individuals (37.7%) (Table 1).
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Haplotypes were separated into three main categories according to the previous 31-STR
Bayesian assignment tests performed by Mattucci et al. [25]: (i) category “d” included
haplotypes found only among domestic cats; (ii) category “dw” included haplotypes found
either in domestic, wild or putative admixed individuals; and iii) category “w” included
haplotypes found only among wildcats and putative admixed individuals.
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values and also the respective bootstrap values derived from the NJ and ML trees. (b) MJ networks
among ND5 haplotypes were obtained from all 715 analyzed cat samples. Haplotypes, according to
the 31-STR Bayesian assignment values of their belonging samples [25], were partitioned and colored
as domestic, wild, and putative admixed groups. (c) MJ networks among ND5 haplotypes, including
only wildcats and putative admixed individuals (n = 502). Each haplotype was divided and colored
according to the proportion of individuals belonging to each biogeographic macro-region. Small bars
indicate the number of mutations (greater than one) between two different haplotypes. The frequency
of each haplotype is proportional to the size of the circles.

Lineage D included eight haplotypes, identified by the prefix “d”, exclusively detected
in 25 domestic cat genotypes, and other seven haplotypes, identified by the prefix “dw”,
found in 174 wildcat (41.4% of the wild), 188 domestic cats, and 61 putative admixed
(84.7% of the wild) genotypes (Supplementary Table S3). In this lineage, we found the first
highly supported split (node 2, 100/88/0.99) dating back about 80,000 years ago (95% HPD
31,561–145,850 years ago), distinguishing two major clade groups, I-II and III (Figure 2a).
A second split occurred at node 3 (63/65/0.54), about 50,000 years ago (95% HPD 16,756–
97,189 years ago), separating clades I and II (Figure 2a). A final third split appeared at node 4
(61/64/0.92), dating back 37,700 years ago (95% HPD 11,992–76,931 years ago) and dividing
sub-clades Ia and Ib (Figure 2a). Interestingly, most wild individuals showing discordant
mtDNA variants (130 wildcats) shared dw4 and dw6 haplotypes within sub-clade Ia, and all
61 putative admixed individuals carried dw haplotypes.

Lineage W included 14 haplotypes, identified by the prefix “w”, and shared by 246 (58.6%)
wildcats, 11 (15.3%) putative admixed individuals, and all the 10 GENEBANK European wildcat
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reference sequences. It presented only one main supported diverging point (node 5, 96/100/1),
dated back to 62,400 years ago (95% HPD 21,860–118,910 years ago), separating two clades, IV
and V (Figure 2a) (see Supplementary Material and Supplementary Table S3 for details).

3.2. Phylogeographic Analyses of European Wildcat and Putative Admixed Individuals

MJ network, reconstructed using the entire 29-haplotype alignment, was highly con-
cordant with the topology of the BT tree (Figure 2), identifying two main haplogroups (D
and W), which were clearly separated by seven diagnostic polymorphisms, previously
described by Driscoll et al. [47], though one of them (D) included seven domestic–wild
shared haplotypes (Figure 2b). The AMOVA (Table 2), performed considering European
wildcats, domestic cats, and putative admixed cats as different groups, detected a higher
proportion of variation within (63.3%) than among (36.7%) populations and a significant
differentiation index φst = 0.37 (p < 0.01). However, to avoid that domestic cat distribution,
strongly linked to human activities, might inflate estimates, the initial dataset was pruned
from samples genetically assigned to the domestic cat group and phylogeographic analyses
were focused on wildcat and putative admixed populations. Thus, a further MJ network
was reconstructed using ND5 sequences from 430 wildcats and 72 putative admixed indi-
viduals, corresponding to 21 haplotypes and characterized by 26 polymorphic sites and
21 parsimony informative sites (Figure 2c). In the network, the presence of two main
haplogroups, significantly differentiated (φST = 0.97, p < 0.01; Table 2) was still evident:
(i) DW, cleaned from “d” haplotypes, including 174 wildcats and 61 putative admixed cats;
and (ii) W, including 256 wildcats and 11 putative admixed individuals (Figure 2c).

Table 2. Analysis of molecular variance (AMOVA) on a portion of the mitochondrial ND5 gene
computed among and within three different sample groups: (a) the STR Bayesian assignment
populations [25]; (b) the main phylogenetic lineages; and (c) the biogeographic macro-regions within
each phylogenetic lineage. φST: differences among groups; φSC: differences among populations
within a group. All values were highly significant (p < 0.05). Lineage DW represents lineage D pruned
by domestic cats.

Source of Variation Variance
Components

Percentage of
Variation

Differentiation
Indexes

Among wildcats, domestic cats,
and putative admixed 1.51 36.66 φST = 0.37

Within wildcats, domestic cats,
and putative admixed 2.60 63.34

Among lineages W/DW 5.68 86.68 φST = 0.92
Among macro-regions/within

lineages 0.37 5.60 φSC = 0.42

Within macro-regions 0.51 7.72

Lineage W
Among macro-regions 0.59 58.24 φST = 0.58
Within macro-regions 0.42 41.76

Lineage DW
Among macro-regions 0.12 17.21 φST = 0.17
Within macro-regions 0.60 82.79

Haplogroup DW showed a split, roughly corresponding to node 2 of the BT tree
(Figure 2c), which separated clades I-II and III. In particular, sub-clade Ia included haplotype
dw4, which was the most frequent within haplogroup DW, was found in 146 individuals,
and showed a spread distribution across central and southern Europe (Figure 3).
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Figure 3. Distribution map of the main six haplogroup clades derived from the Bayesian tree. Donut
charts show the proportional frequency of haplogroups of lineage W. The inscribed pie charts show the
proportional frequency of lineage DW (lineage D pruned by domestic cats). Circles are approximately
proportional to sample size. Black solid curved lines trace the geographical separations among
genetic clusters detected in both lineages W and DW through SAMOVA analyses, while dotted line
shows the additional genetic separation found for lineage W. Black numbers in white circles indicate
the clusters found by SAMOVA analyses for lineage W. White numbers in black circles show the
clusters found by SAMOVA analyses for lineage DW.

Haplogroup W showed a split, roughly corresponding to node 5 of the BT tree (Figure 2c),
which separated a clade IV, shared among 85 individuals, most of them collected in Italy (63.2%)
and the Iberian peninsula (18.2%) macro-regions and a clade V, shared among 182 individuals,
mostly collected in Central Europe (62.6%), and in the Balkan (23%) macro-regions (Figure 2c)
(see Supplementary Material and Supplementary Table S3 for details).

The spatial analysis of molecular variance (SAMOVA) showed that the most statistically-
supported geographic partition within haplogroup W corresponded to K = 4 population
groups, with an overall FCT = 0.64 (p < 0.01) and 63.2% of variation explained among the
detected repartitions. The four groups included Italy and South-Eastern Europe (Cluster 1),
Central and North-Eastern Europe, the Balkans (Cluster 2), Scotland (Cluster 3), and the
Iberian Peninsula (Cluster 4) (Figure 3).

Conversely, haplogroup DW was optimally structured in K = 3 clusters, including
Scotland (Cluster 1), the Iberian Peninsula (Cluster 2), and the remaining European pop-
ulations (Cluster 3) (Figure 3), with a lower overall FCT = 0.28 (p < 0.05) and most of the
variation explained within populations (63.06%).

The independent AMOVAs performed considering six biogeographic repartitions
([25]; Figure 1), yielded concordant results but with a slightly lower proportion of variation
explained among macro-regions (58.24%) for the haplogroup W and a higher proportion of
variance within populations (82.8%) in haplogroup DW (Table 2).

3.3. Demographic Analyses

A weak significant sign of population expansion was detected in the domestic cats
of lineage D with a near bell-shaped curve in the mismatch plot (Figure 4), a Tajima’s
D = −0.413 (p = 0.078) and a Fu and Li’s F = −2.337 (p < 0.05) (Table 2). The mismatch
distribution curve (Figure 4) and the slightly significant negative values of Tajima’s and
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Fu and Li’s estimators suggested a low degree of population expansion also for lineage
W (Table 1). However, within this haplogroup, only Italy and the Balkan macro-regions
presented an increasing trend in the mismatch plot consistent with significant negative
values of Tajima and Fu and Li’s statistics (Table 1, Figure 4), although these values were
lower than two, suggesting caution in considering a hypothesis of actual expansion [67].
Among dw haplotypes, only those of Central Europe showed traces of an actual expansion
trend with significant negative values of the statistics (Tajima’s D = −2.002; p < 0.01 and FU
and Li’s F = −1.106; p < 0.05; Table 1) and a low peak in the mismatch plot (Figure 4).
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3.4. Approximate Bayesian Computation Analyses

ABC simulations for haplogroup W provided the best support for scenario 4 (simul-
taneous population splitting with the following gene flow, Figure 5a) with a posterior
probability of 0.372 (95% C.I. 0.000–0.796). Under this scenario, the median values of the
divergence time showed that Cluster 1, Cluster 2, and Cluster 3 started isolating about
40,800 generations ago (5–95% quartile: 13,900–53,600). Considering a wildcat generation
time of two years [16], the time from the most recent common ancestor (TMRCA) of these
populations was estimated at about 81,600 years ago (5–95% quartile: 27,800–107,200 years
ago). The following admixture event between Cluster 1 and Cluster 2 contributed to
generating Cluster 4 approximately 8920 years ago. Simulations on the DW haplotype
(Figure 5b) showed the best posterior probability for scenario 1 (simultaneous splitting
in recent times) with a posterior probability of 0.748 (95% C.I. 0.367–1.000). Median val-
ues of the divergence time from TMRCA suggested 540 generations ago (5–95% quartile:
42.2–5250), corresponding to about 1080 years ago (5–95% quartile: 84.4–10,500).
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Figure 5. Graphical representation of the resulting population sizes and divergence times estimated
for the two best-simulated scenarios inferred by ABC simulations, using a generation time g = 2
years. The width of branches is proportional to the inferred effective population sizes. (a) The best
scenario was inferred using lineage W haplotypes. (b) The best scenario was inferred using lineage
DW (lineage D pruned by domestic cats) haplotypes. Cluster numbers refer to the best K repartition
obtained by SAMOVA analyses for each of the two lineages.

4. Discussion

Pleistocene climate oscillations significantly shaped the biogeographic patterns and
genetic structure of many mammal species within the Palaearctic region [5]. Several exam-
ples of shifts in the distribution and genetic composition of mammal populations following
glacial and sea-level cycles have been clearly described, highlighting how recurring east–
west colonization waves introduced new genetic variants, and subsequent post-glacial
recolonizations from Mediterranean and extra-Mediterranean refugia further modified
their genetic makeup [5,10,68–70]. In addition, for some species affected by anthropogenic
hybridization, such as the European wildcat (Felis silvestris), the wolf (Canis lupus), or the
wild boar (Sus scrofa), the genetic mosaic has been further altered by the introgression of do-
mestic variants [31,71,72]. Therefore, here we describe phylogenetic and phylogeographic
patterns obtained by analyzing a diagnostic fragment of the mtDNA on a wide sampling of
European wildcats collected across Europe to (i) detect clear signs of genetic differentiation
between central and southern European wildcat populations, likely resulting from glacial
isolation and consequent post-glacial recolonization processes, and (ii) disentangle the
origin of shared haplotypes between wild and domestic cats.

4.1. Phylogenetic Patterns

Although based on partial ND5 sequences, our phylogenetic reconstructions on Eu-
ropean wild and domestic cats well reflected their evolutionary relationships confirming
previous studies on larger portions of the mitochondrial DNA [20,31,73], as well as en-
tire mitogenomes [74]. Indeed, we detected four main F. catus/lybica haplogroups (D: Ia,
Ib, II, and III), showing an overall high level of haplotype diversity (0.735 ± 0.018) and
originating about 80,000 years ago. According to Driscoll et al. [20], such clades might
reflect the multiple origins of the F. catus/lybica lineage, whose estimated coalescence time,
although older, is largely included within our confidential intervals. Whitin F. catus/lybica
lineage, clades I and II showed a higher haplotype richness and frequency among samples
(in particular, they included 58.2% of all domestic cats). Such haplogroups could be roughly
associated with lineages A/B, previously found by Driscoll et al. [20] and Ottoni et al. [31],
which represent the Near Eastern Felis contribution to the mtDNA pool of present-day
domestic cats. On the other hand, clade III, showing a basal phyletic position, might corre-
spond to lineage C described by Driscoll et al. [20] and Ottoni et al. [31], which includes
north African wildcat haplotypes (possibly of ancient Egypt derivation) later spread in
Europe [31].

Concordant results with previous studies [20,31,73] were further found for the F. silvestris
lineage W, which showed two main clades, IV and V, dating back about 62,400 years ago. Similar
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divergent times and phylogenetic patterns have been observed also in other species, such as
the pine marten (Martes martes) [69] and the wolf (Canis lupus) [75] and might be the result of
Pleistocene climatic oscillations on mammal population distribution and evolution [5,69,75,76].

4.2. Phylogeographic Patterns

A spatial analysis of molecular variance (SAMOVA) was performed to clarify phylo-
geographic patterns within the European wildcat lineage W, showing that its haplotypes
were spatially clustered into at least four main geographic groups roughly concordant with
the biogeographic regions previously detected analyzing nuclear markers [25,38]: (1) a
South-Eastern European cluster, spanning from Italy to Hungary; (2) a Central European
cluster, spanning from the Italian and Balkan Alps to Germany; (3) a cluster including the
isolated Scottish population; (4) a cluster including the Iberian population. In particular,
Cluster 1 showed the overall lowest genetic variability. However, further analyses, includ-
ing additional wildcat samples from other unsampled and formerly in contact with eastern
Countries, such as Anatolia, might reveal increased genetic variability levels and shed light
on the possible contributions of such populations in shaping the current European wildcat
evolutionary history in eastern European populations, such as that living in Hungary. This
cluster was mainly represented in clade IV with (a) the dominant haplotype w1, shared at
low frequencies also with the Iberian Peninsula wildcats, which could be the result of a col-
onization wave from eastern Europe during glacial periods and subsequent isolation south
of the Alps, which acted as a natural barrier to gene flow [23,25,77], and (b) the presence
of a private haplotype w5 in Sicily, that could result from the long-lasting isolation of the
Island from the Peninsula [78]. These recolonization and subsequent isolation patterns are
further confirmed by the presence of shared mtDNA haplotypes in other mammal species,
such as the pine marten (Martes martes) [69], the red deer (Cervus elaphus) [79], the roe deer
(Capreolus capreolus) [5], and the brown bear (Ursus arctos) [80] in southern Europe.

Cluster 2 showed a higher genetic variability, and was mainly represented in clade V,
characterized by the predominance of haplotype w4, which might have originated in extra-
Mediterranean or in the Dinaric–Alpine refugia and successively widespread in Central Europe,
as hypothesized through molecular studies carried out also on the hedgehog (Erinaceus eu-
ropaeus) [81], the Eurasian lynx (Lynx lynx) [82] and the red deer (Cervus elaphus) [9] and
confirmed by the absence of Pleniglacial wildcat archaeological findings [23].

Cluster 3 showed a single unique haplotype w3, which might be the legacy of the
mtDNA gene pool of a continental wild ancestor which migrated to Britain via land
bridge approximately 10,000 years ago [83] and originated the Island population, which
successively experienced recurrent bottlenecks during glacial maximums, more recent de-
mographic declines, and a compromising anthropogenic admixture with domestic cats [84].
Finally, Cluster 4 showed a) the balanced presence of haplogroups IV and V, which might
derive from the Pleistocene population migration waves from Central Europe, as supported
also by ABC analyses, and b) the occurrence of three private haplotypes, w9 and w12 in
Spain and w8 in Portugal, which might have originated during the subsequent isolation
south of the Pyrenes [85,86].

4.3. Mito-Nuclear Discordance and Evolutionary Hypotheses

Our phylogenetic and phylogeographic history of the European wildcat assessed by
partial mitochondrial sequences revealed the widespread presence of haplotypes shared
between wild and domestic cat populations. Indeed, a consistent proportion of indi-
viduals previously assigned to the wildcat population through STR Bayesian clustering
analyses [25] were included in the mitochondrial lineage D. Cases of Felis mito-nuclear
discordances have been already described and generally attributed to recent F. catus mito-
chondrial introgressions, which may have likely eroded domestic ancestry at the nuclear
loci after a few backcrossing generations [87], leaving exogenous traces only at the mtDNA
or at a small portion of the nuclear genome [16]. Accordingly, our mtDNA data showed
several shared haplotypes (dw1, dw2, dw3, dw5, dw7), mostly frequent within domestic cats,
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which seem to have recently differentiated and simultaneously split about 1000 years ago,
as further revealed by the best ABC evolutionary scenario, supporting the hypothesis of an
F. catus introgression.

However, other two shared haplotypes, belonging to the D subclade Ia (dw4 and dw6),
mostly frequent within wildcats, seem to have originated about 37,000 years ago, which,
according to the last available archaeological and genetic findings, long pre-dated any
evidence for cat domestication [20,30,88], thus suggesting their possible natural F. lybica
derivation. This latter hypothesis fits well with the scenario of a late Pleistocene European
wildcat migration toward the Levant and Anatolia regions already occupied by F. lybica pop-
ulations [89,90]. Such a syntopic event might have promoted a natural inter-taxon gene flow
introgressing F. lybica mitochondrial signatures in some European wildcat individuals [31].

A possible female-biased directionality of the admixture patterns might justify the high
numbers of F. catus/lybica mtDNA hyplotypes found in the European wildcats analyzed in
this study, though this hypothesis should be confirmed or denied by further Y-chromosome
haplotype analyses.

5. Conclusions

In this study, using a short but highly diagnostic portion of the mtDNA, we provide
the first exhaustive description of the European wildcat phylogenetic and phylogeographic
structure across the entire species’ range in the continent. Our results suggest the presence
of at least three main continental biogeographic clusters, roughly corresponding to the
Iberian Peninsula, the South-Eastern European Mainland, and Central Europe, whose
origin fits well with a model of species glacial isolation and post-glacial re-expansion from
the Mediterranean and extra-Mediterranean refugia during the late Pleistocene. As ex-
pected, a fourth biogeographic cluster was identified in the isolated and almost genetically
compromised Scotland wildcat population [84], which showed unique wild and domestic
haplotypes. Based on their wild ancestry content, such biogeographic clusters could be
used to identify four possible preliminary corresponding Conservation Units (CU, [91]) to
be treated as different management priorities and preserved through well-planned conser-
vation actions, depending on their wild genomic mito-nuclear concordance. Interestingly,
our data also show the presence of mtDNA haplotypes shared between wild and domestic
cat populations, likely resulting from two different independent evolutionary processes,
historical natural gene flow among wild lineages, and recent wild x domestic anthropogenic
hybridization. Future studies, based on the analyses of entire mitogenomes and whole
nuclear genomes of early domesticated cats from museum collections, modern and ancient
European and African wildcats collected also in their overlapping distribution ranges (from
Turkey to the Near East), could undoubtedly help researchers to disentangle this complex
biogeographic mosaic, clarify the evolutionary histories and admixture patterns, as well
as shed light on the origin of the current mito-nuclear variability of the European wildcat
populations and their long-term adaptive potential.
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81. Černa Bolfíková, B.; Eliášová, K.; Loudová, M.; Kryštufek, B.; Lymberakis, P.; Sándor, A.D.; Hulva, P. Glacial Allopatry vs.
Postglacial Parapatry and Peripatry: The Case of Hedgehogs. PeerJ 2017, 5, e3163. [CrossRef]

82. Lucena-Perez, M.; Marmesat, E.; Kleinman-Ruiz, D.; Martínez-Cruz, B.; Węcek, K.; Saveljev, A.P.; Seryodkin, I.V.; Okhlopkov, I.;
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