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Simple Summary: Alpha-2 agonists are commonly used sedatives in horses. They are known
for their inhibitive effects on gastrointestinal motility, which limits their use in horses with colic.
Dexmedetomidine belongs to the α2 agonist drug class, and studies in human patients have reported
that it may enhance gastrointestinal function instead of inhibiting it. Therefore, the aim of this study
was to investigate the effect of dexmedetomidine on intestinal smooth muscle function in horses.
To evaluate this in varying degrees of intestinal damage, tissue samples were taken from 12 horses
prior to and during the disruption of small intestinal blood flow (pre-ischaemia and ischaemia),
as well as following the reinstatement of blood supply (reperfusion). We found that the circular
smooth muscle (CSM) contractility was not affected by ischaemia, whereas the longitudinal smooth
muscle (LSM) showed an increase in both spontaneous and nerve mediated contractile activity. The
addition of dexmedetomidine caused a decrease in the spontaneous contractile activity of CSM, but
an increase in that of LSM. During ischaemia, dexmedetomidine also mildly increased the nerve
mediated contractile activity. These results may indicate a stimulatory effect of dexmedetomidine on
small intestinal contractility. However, the influence of dexmedetomidine administration on intestinal
motility in vivo needs to be further investigated.

Abstract: α2 agonists are frequently used in horses with colic, even though they have been shown to
inhibit gastrointestinal motility. The aim of this study was to determine the effect of dexmedetomidine
on small intestinal in vitro contractility during different phases of ischaemia. Experimental segmental
jejunal ischaemia was induced in 12 horses under general anaesthesia, and intestinal samples were
taken pre-ischaemia and following ischaemia and reperfusion. Spontaneous and electrically evoked
contractile activity of the circular and longitudinal smooth muscles were determined in each sample
with and without the addition of dexmedetomidine. During a second experiment, tetrodotoxin was
added to determine if the effect was neurogenic. We found that the circular smooth muscle (CSM)
contractility was not affected by ischaemia, whereas the longitudinal smooth muscle (LSM) showed
an increase in both spontaneous and induced contractile activity. The addition of dexmedetomidine
caused a decrease in the spontaneous contractile activity of CSM, but an increase in that of LSM,
which was not mediated by the enteric nervous system. During ischaemia, dexmedetomidine also
mildly increased the electrically induced contractile activity in LSM. These results may indicate a
stimulatory effect of dexmedetomidine on small intestinal contractility. However, the influence of
dexmedetomidine administration on intestinal motility in vivo needs to be further investigated.

Keywords: intestine; motility; postoperative ileus; ischaemia; reperfusion; organ bath; basal contractile
activity; α2 agonist; sedation; colic
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1. Introduction

Motility disorders of the small intestine are associated with high mortality rates in
horses [1–3]. The most common manifestation is a post-operative ileus following colic
surgery for strangulating intestinal lesions, with an initial neurogenic and subsequent
inflammatory phase inhibiting intestinal motility [4,5]. Many factors can contribute to
reduced gastrointestinal (GI) motility, such as intestinal manipulation or anastomosis and
the use of opioids or sedatives [6–8]. Even though α2-adrenergic agonists can inhibit
intestinal motility, the use of these drugs for sedation or analgesia during the perioperative
period of colic surgery may be inevitable in some cases. Looking more closely at the
evidence available for the inhibition of intestinal motility by α2 agonists, experimental
trials in healthy horses have shown that xylazine, detomidine, and romifidine decrease
the myoelectrical and/or mechanical activity of the small intestine in an experimental
setting [9–14]. Other reported GI effects of this drug class are decreased borborygmia
following detomidine administration [15] and dose-dependently reduced intestinal smooth
muscle contractions caused by xylazine and detomidine addition in vitro [16]. A peripheral
α2-adrenoceptor antagonist Vatinoxan was shown to prevent (me)detomidine mediated
decrease in borborygmia, indicating that this hypomotility is most likely mediated through
activation of the peripheral α2-adrenoceptor [15,17].

Medetomidine and its active D-isomer dexmedetomidine are more selective α2 ago-
nists that are not as commonly used in horses, yet are known produce effective and safe
sedation [18–20]. These drugs have also been shown to affect intestinal function, with
medetomidine decreasing intestinal circular smooth muscle contractility in vitro [16], and
decreased borborygmia being documented the first hour after dexmedetomidine adminis-
tration in horses and donkeys [18,21].

Remarkably, clinical studies in humans have found that dexmedetomidine may en-
hance intestinal motility peri-operatively or during the continuous sedation of patients
in intensive care. These studies reported a variety of improved clinical GI parameters
such as increased intestinal sounds and decreased passage time with dexmedetomidine
administration compared with treatment with saline as placebo, lidocaine, morphine, and
propofol [22–27]. Different mechanisms of action have been proposed for this phenomenon,
such as the attenuation of inflammation and ischaemic injury or vagal stimulation [28–30];
however, there is no direct evidence available to validate these theories. Experimental
trials investigating this phenomenon have yielded conflicting results. Studies performed in
laboratory animals have reported both inhibitive and stimulating GI effects of dexmedeto-
midine [29,31–34], and one study in healthy human individuals found decreased GI pas-
sage [35].

With uncertainty surrounding the topic of dexmedetomidine and its effect on intestinal
motility, this brings up the question of how dexmedetomidine influences GI motility in
horses. If dexmedetomidine could elicit a comparable stimulation of GI function, as seen in
humans, this could offer an alternative to the commonly used GI inhibiting α2 agonists.
Therefore, the objective of this study was to investigate the effect of dexmedetomidine on
the in vitro contractility of equine jejunal smooth muscle during pre-ischaemia, ischaemia,
and reperfusion. The second objective was to compare the response of circular smooth
muscle (CSM) and longitudinal smooth muscle (LSM), as these play a different role in
intestinal motility and may show different responses to the addition of pharmacological
substances, as shown in other species [36]. Further objectives were to investigate if the effect
is mediated by the enteric nervous system (ENS), and to assess how ischaemic injury affects
intestinal contractility. We hypothesized that dexmedetomidine addition would negatively
affect contractility, and that this would be more pronounced in CSM. Furthermore, we
hypothesized that this would be independent of ENS, and that ischaemic injury of the
intestine would further decrease contractility.
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2. Materials and Methods
2.1. Animals

Twelve horses were subjected to experimental segmental jejunal ischaemia under
general anaesthesia. The intestinal tissue samples taken during the different ischaemia
phases were used for this controlled in vitro experimental trial. Seven mares, two geldings,
and three stallions were selected for this terminal study because of severe musculoskeletal
issues. The horses were warmbloods with a mean age of 15.9 ± 7.4 years and weight of
547 ± 53 kg. Physical examination, blood cell count, and faecal egg count were performed
to assess the general health of the horses prior to the experiment. At least 2 weeks prior
to surgery, the horses were stabled at the facilities of the equine clinic of the University of
Veterinary Medicine Hannover, with free access to hay and water. On the day of the trial,
food but not water was withheld for 6 h prior to anaesthesia.

2.2. Surgical Procedure

Following premedication with 5 µg/kg dexmedetomidine (Dexdomitor, Orion Corpo-
ration, Espoo, Finland), general anaesthesia was induced (0.05 mg/kg diazepam, Diazedor,
WDT eG, Garbsen, Germany; 2.2 mg/kg ketamine, Narketan, Vétoquinol GmbH, Ismaning,
Germany). Isoflurane (Isofluran CP, CP-Pharma GmbH, Burgdorf, Germany) in 100%
oxygen combined with a continuous rate infusion of dexmedetomidine (5 µg/kg/h) was
used to maintain general anaesthesia. Direct blood pressure measurements were per-
formed in the facial artery, and the mean arterial pressure was maintained between 60
and 80 mmHg by administrating lactated Ringer’s solution (RingerLaktat EcobagClick, B.
Braun Melsungen AG, Melsungen, Germany) and dobutamine (Dobutamin-ratiopharm
250 mg, Ratiopharm GmbH, Ulm, Germany) to effect. A pre-umbilical median laparotomy
was performed in dorsal recumbency. After checking the intestines for pre-existing ab-
normalities, a jejunal segment located 7 m oral to the ileocecal fold was taken as control
(pre-ischaemia sample). Forty-five minutes after induction, segmental ischaemia was in-
duced by occlusion of the mesenteric arteries and veins with umbilical tape in 2 m of aboral
jejunum that was located 1 m oral to the ileocaecal fold. In six horses, no flow ischaemia was
induced by complete tightening of the ligatures. In the other six horses, low flow ischaemia
was implemented with 80% reduction in intestinal blood flow under monitoring with Laser
Doppler fluxmetry (O2C, LEA Medizintechnik GmbH, Giessen, Germany). Ischaemia was
maintained for 120 min, and prior to removal of the ligatures, another tissue sample was
taken from the ischaemic segment (ischaemia sample). Subsequently, reperfusion was
initiated, followed by resection of the reperfusion sample after 120 min of reperfusion. The
horses were euthanized with 90 mg/kg pentobarbital administered intravenously (Release
50 mg/mL, WDT eG, Garbsen, Germany) after the final sample was taken.

2.3. Organ Bath
2.3.1. In Vitro Experiment—Day 1

The jejunal samples were placed in a modified Krebs−Henseleit buffer (117.0 mmol/l
NaCl, 4.7 mmol/l KCl, 2.5 mmol/l CaCl2, 1.2 mmol/l MgCl2, 1.2 mmol/l NaH2PO4,
11.0 mmol/l Glucose, and 25 mmol/l NaHCO3) at 4 ◦C and transferred to the Institute
for Physiology and Cell Biology. For each time point (pre-ischaemia, ischaemia, and
reperfusion) from all horses (n = 12), eight smooth muscle tissue strips including CSM
and LSM of equal size (1 × 0.5 cm) and weight were prepared from each jejunal sample.
Consequently, there were two tissue strips used as the control samples and two tissue strips
used to test the effect of dexmedetomidine for each type of smooth muscle tested (Figure 1).
In the analyses following the experiment, the values of these duplicates were averaged.
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Figure 1. Diagram depicting the timing of the experiment on day 1 including the original traces of 
representative samples of circular and longitudinally oriented jejunal smooth muscle strips (CSM 
and LSM, respectively) with and without dexmedetomidine (Dexmed) addition. The oval shaded 

Figure 1. Diagram depicting the timing of the experiment on day 1 including the original traces of
representative samples of circular and longitudinally oriented jejunal smooth muscle strips (CSM
and LSM, respectively) with and without dexmedetomidine (Dexmed) addition. The oval shaded
areas represent the induced contractile activity following electrical field stimulation (EFS) at t65 and
t110. The rectangular shaded areas represent the basal contractile activity at t75–80 and t105–110
(additional t~85 for LSM Dexmed).
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The tissue strips were placed into an organ bath filled with 12 mL of modified
Krebs−Henseleit buffer (117.0 mmol/l NaCl, 4.7 mmol/l KCl, 2.5 mmol/l CaCl2, 1.2 mmol/l
MgCl2, 1.2 mmol/l NaH2PO4, 11.0 mmol/l Glucose, and 20 mmol/l NaHCO3) with con-
stant aeration with 95% O2 and 5% CO2, and mounted on an isometric force transducer
(Hottinger Baldwin Messtechnik, Darmstadt, Germany). The initial tension of the muscle
strips was adjusted to 2 g, which corresponds to 20 mN. Isometric contractile forces of
smooth muscle tissues were continuously measured using a chart recorder (4.8 kHz/direct
current; Spider 8 chart recorder, Hottinger Baldwin Messtechnik) until the end of the ex-
periment at 120 min, and data were collected with data acquisition software (catmanEasy
software, version 1.01, Hottinger Baldwin Mess-technik). The viability and response of the
enteric nervous system and smooth muscle cells was tested with electrical field stimulation
(EFS) with pulses of 0.5 ms during 10 s with 10 Hz and 30 V at 65, 95, and 110 min (Figure 1).
At 80 min (t80), 1 µM dexmedetomidine hydrochloride (Dexdomitor, Orion Corporation)
was added to the organ bath chambers. Spontaneous contractile activity was determined
based on baseline tension (g), frequency (peak/min), amplitude (mN), and mean active
force (MAF; mN) at t75–80 and t105–110 (Figure 1). These time points were selected for the
analysis, after visual inspection of all of the results, because this time frame included repre-
sentative spontaneous intestinal motility before and following dexmedetomidine addition.
In the dexmedetomidine-treated LSM samples, these values were also determined at t~85,
because the visual inspection of the original traces indicated an intense response in the
LSM directly following the addition of dexmededetomidine. Induced contractile activity as
a response to EFS was expressed in amplitude (mN), which was quantified at t65 and t110.

2.3.2. In Vitro Experiment—Day 2

The full thickness intestinal tissue of the pre-ischaemia samples was stored in the
refrigerator at 4 ◦C overnight, and on day 2 of the experiment, the tissue strips of smooth
muscle were freshly prepared. The aim of this experiment was to test the response to
dexmedetomidine with and without tetrodotoxin (TTX) to determine if the changes elicited
by dexmedetomidine were nerve dependent. This part of the experiment was only per-
formed with the pre-ischaemia samples of eight horses. The vitality of the tissues was
tested by EFS. Then, 1 µM dexmedetomidine was added to all of the samples, with and
without 1 µM TTX. The time schedule was comparable to that of the experiment on day 1,
with the addition of TTX at t70 and the addition of dexmedetomidine at t80. Successful
inhibition was verified by a lack of response to EFS.

2.4. Data Analysis

A power analysis was performed before commencing the study (G*Power 3.1.9.1s). To
detect a difference of 10 mN in amplitude between the treatment groups with a standard
deviation of 5 mN, based on a power of 0.8 and alpha of 0.05 through the use of a two-tailed
unpaired two sample t-test, a total sample size of 12 horses was required.

Statistical analysis and graph design were performed using commercially available
software (Excel 2016, Microsoft, Redmond, WA, USA; Graphpad Prism 9.4.1, Graphpad
Software Inc., San Diego, CA, USA). Data were presented as mean (±standard deviation).
Data were tested for normal distribution using a Shapiro−Wilk test. The values for basal
contractile activity and response to EFS were compared between the groups subjected to
low flow and no flow ischaemia using a two-tailed unpaired two sample t-test. As there
were no significant differences between the horses subjected to the different low-flow and
no-flow ischaemia types, the results of both groups were combined for further statistical
analysis. Statistical significance was set at p < 0.05.

Differences between the different ischaemia phases at t75–80 were compared using a
repeated measures ANOVA with Greenhouse–Geisser correction of the p-values, followed
by a post hoc Tukey test for multiple pairwise comparisons. To evaluate the development
over time in the organ bath with or without dexmedetomidine, the basal contractility was
compared between t75–80 and t105–110 and the response to EFS between t65 and t110
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using a two-tailed paired t-test. A comparison between the samples treated with and
without dexmedetomidine was performed for each time point using a two-tailed unpaired
two sample t-test.

3. Results
3.1. Ischaemia Model

There were no significant differences between the groups subjected to low-flow and
no-flow ischaemia. Therefore, the results of the two ischaemia groups were pooled for
further data presentation and analysis.

3.2. Basal Contractile Activity
3.2.1. Ischaemia Phases

Comparing the different ischaemia phases at t75–80, ischaemia and reperfusion did
not affect the contractility of the CSM in any of the tested variables. In contrast, the
ischaemic and reperfused LSM showed a significantly higher frequency, amplitude, and
MAF compared with the pre-ischaemic values (Figure 2).
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Figure 2. Box plot diagram of the basal contractile activity of jejunal circular smooth muscle (CSM)
and longitudinal smooth muscle (LSM) of 12 horses during pre-ischaemia (P), ischaemia (I), and
reperfusion (R) at t75–80 in the organ bath. Significant differences between the ischaemia phases
(repeated measures ANOVA) are marked with an asterisk (* p < 0.05; ** p < 0.01; **** p < 0.0001). The
horizontal bar displays the median and the plus is the mean, the interquartile range is represented by
the box and the minimum and maximum by the whisker plots. MAF is the mean active force.

3.2.2. Development over Time without the Addition of Dexmed

Comparing the different time points t75–80 and t105–110 of the organ bath experiment,
CSM showed an elevated amplitude in the ischaemia samples and an elevated MAF in the
reperfusion samples at t105–110 (Figure 3). LSM showed a significant increase in amplitude
over time in all of the samples. LSM frequency was elevated in the ischaemia samples only,
whereas MAF increased over time in the ischaemia and reperfusion samples.

3.2.3. Effect of Dexmedetomidine Addition

Evaluating the initial response to dexmedetomidine addition at t~85, all of the tested
variables of the basal contractile activity were significantly increased in the LSM of all
ischaemia phases, whereas no significant initial response of CSM was observed.

Comparing the basal contractility at t105–110 between the samples with and without
dexmedetomidine addition, the pre-ischaemia and ischaemia CSM exhibited a significantly
lower frequency in the dexmedetomidine-treated samples (Figure 4). Furthermore, the
ischaemia CSM showed a significantly lower MAF with dexmedetomidine. Dexmedeto-
midine did not affect the frequency of LSM. In contrast, LSM amplitude and MAF were
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significantly higher in the dexmedetomidine-treated samples of all of the ischaemia phases
(Figure 4).
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Figure 3. Box plot diagram of the basal contractile activity of jejunal circular smooth muscle (CSM)
and longitudinal smooth muscle (LSM) of 12 horses during pre-ischaemia (P), ischaemia (I), and
reperfusion (R) at different time points t75–80 and t105–110 during the organ bath experiment.
Significant differences between the time points (paired two tailed t-test) are marked with an asterisk
(* p < 0.05; ** p < 0.01; *** p < 0.001). The horizontal bar displays the median and the plus is the mean,
the interquartile range is represented by the box and the minimum and maximum by the whisker
plots. MAF is the mean active force.

3.3. Electrical Field Stimulation
3.3.1. Ischaemia Phases

The amplitude of EFS that induced the contractile activity of CSM was comparable
during the different ischaemia phases. In LSM, the ischaemia and reperfusion samples
exhibited higher amplitudes than the pre-ischaemia samples (Figure 5).

3.3.2. Development over Time without the Addition of Dexmed

CSM and LSM showed a significant change in response to EFS comparing t110 with
t65, with an increased amplitude in all of the ischaemia phases (Figure 6).
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Figure 4. Box plot diagram of the basal contractile activity of jejunal circular smooth muscle (CSM)
and longitudinal smooth muscle (LSM) with and without the addition of dexmedetomidine (Dexmed)
during pre-ischaemia (P), ischaemia (I), and reperfusion (R) at t105–110. Significant differences
between the control group and the Dexmed-treated group (two sampled t-test) are marked with an
asterisk (* p < 0.05; ** p < 0.01). The horizontal bar displays the median and the plus is the mean, the
interquartile range is represented by the box and the minimum and maximum by the whisker plots.
MAF is the mean active force.
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Figure 5. Box plot diagram of the nerve mediated contractile activity of the jejunal circular smooth
muscle (CSM) and longitudinal smooth muscle (LSM) of 12 horses during pre-ischaemia (P), ischaemia
(I), and reperfusion (R) at t65. Significant differences between the ischaemia phases (repeated
measures ANOVA) are marked with an asterisk (* p < 0.05). The horizontal bar displays the median
and the plus is the mean, the interquartile range is represented by the box and the minimum and
maximum by the whisker plots.
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Figure 6. Box plot diagram of the nerve mediated contractile activity of jejunal circular smooth muscle
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3.3.3. Effect of Dexmedetomidine Addition

There were no significant differences in response to EFS of CSM for any of the is-
chaemia phases. In LSM, the amplitude was significantly higher in the dexmedetomidine-
treated ischaemia samples (p = 0.02) compared with the untreated ischaemia samples
(Figure 7). During the other ischaemia phases, this did not reach statistical significance
(p = 0.059 and p = 0.80 for pre-ischaemia and reperfusion, respectively).
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muscle (CSM) and longitudinal smooth muscle (LSM) during pre-ischaemia (P), ischaemia (I), and
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3.4. Day 2 of the In Vitro Experiment—Dexmedetomidine with and without TTX

All of the tissue samples used in these experiments showed vitality, as they exhibited
spontaneous motility and they responded to EFS. Comparing the basal contractile activity
at t105–110 of the pre-ischaemia samples that were treated with dexmedetomidine with and
without the addition of TTX, there were no significant differences between these groups
(Figure 8).
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4. Discussion

The main finding of the study was that the in vitro addition of dexmedetomidine
caused a decrease in the spontaneous contractile activity of CSM, but an increase in that
of LSM. The in vitro addition of dexmedetomidine also stimulated the nerve-mediated
contractile activity of LSM, yet to a lesser extent. Therefore, we partially rejected the
first hypothesis that dexmedetomidine addition would negatively affect contractility. The
changes in basal contractile activity were not affected by the addition of TTX, indicating
that this was not mediated by ENS, confirming the second hypothesis. The contractility of
CSM was not affected by the different phases of ischaemia. In contrast, LSM showed an
increased basal and EFS induced contractile activity following ischaemia and reperfusion,
leading to the rejection of the third hypothesis.

The stimulating effect of ischaemia on the spontaneous contractile activity of LSM
found in the current study is in contrast with studies performed in various species report-
ing that ischaemia reduced the intestinal contractility of the affected and neighbouring
intestinal segments [29,37–40]. Discrepancies between some of these studies and the current
investigation could be attributed to differences between species, in which the SM layer was
investigated, or for the variance in ischaemia duration (15 min vs. 2 h). The increase in LSM
contractile activity may be caused by a stress response with sympathetic activation leading
to initial hypermotility. Circulating catecholamines could affect SM directly, considering
that norepinephrine has been shown to elicit excitatory effects in the human colon when
binding at α1-adrenoceptor D subtypes [41]. Furthermore, the stress-related activation of
intestinal corticotropin-releasing factor (CRF) receptors could mediate the stimulation of
motility [42]. Regarding the clinical occurrence of a postoperative ileus in the horse, there
is only sparse evidence for the pathophysiologic mechanism in this species [5]. In general,
rodent models have shown that sympathetic stimulation can lead to decreased motility in
this disease entity [43].

Dexmedetomidine increased the spontaneous and nerve-mediated contractile activity
of LSM. This response differed from the effect on the circular layer, where it decreased CSM
contractile activity. This corresponds with previous investigations in horses and rats that
have shown a varying response to α2-adrenoceptor agonists in the different muscle layers,
with inhibited or unchanged CSM contractility, as well as unchanged or enhanced LSM
contractility [36,44,45]. These differences may be caused by asymmetric innervation of
CSM and LSM with possible variation in α-adrenoreceptor distribution, and may facilitate
a reciprocal contractile activity of the two muscle layers [46,47].
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In the current study, TTX addition did not change the effect of dexmedetomidine,
hence it can be concluded that the observed effect on the spontaneous contractile activity
was not mediated through ENS. In line with our results, other studies have also shown
that spontaneous contractile activity in equine jejunum and ileum was independent of
ENS [16,48]. The effect of dexmedetomidine in this context could be elicited through direct
stimulation of receptors on the smooth muscle itself [49]. In the rat ileum, α2 adrenoceptors
were shown to be negligible in direct muscular effects of adrenergic agonists. However,
this may not be the case for other species, considering the major interspecies differences
in α2-adrenoceptors’ subtypes and distribution [45,50]. There are no data available on the
distribution of α2-adrenoceptor subtypes in horses, complicating direct comparison and
the extrapolation of the results obtained in other species. Apart from direct stimulation of
the smooth muscle, other possible explanations for the observed effect on the spontaneous
contractile activity may include the activation of adrenoreceptors on the platelet-derived
growth factor receptor α+ cells (PDGFRα+ cells), which are electrically coupled with smooth
muscle cells in the intestine [41]. Alternatively, it could influence the pacemaker activity of
the interstitial cells of Cajal (ICC), which can be independent of ENS [51]. However, the
presence of α adrenoceptors on intestinal ICC has not been clarified completely [41,52], and
there are no studies available investigating this in horses. Another possible mechanism of
action of dexmedetomidine could be an effect on the enteric glia Ca2+ response [31], which
alters the membrane potential of the smooth muscle cell.

The increased nerve mediated contractile activity may be caused by dexmedetomidine
enhanced stimulation of α receptors located on cholinergic neurons of ENS [45,53]. Another
possible mechanism of action may be the activation of nonadrenergic imidazoline receptors
by dexmedetomidine [54], considering that presynaptic imidazoline receptors have been
indicated as a pathway to attenuate ENS response by modulating intestinal cholinergic neu-
rotransmission [54]. However, this could not be confirmed in guinea pig ileum, revealing
that imidazoline-like compounds only modulated cholinergic neurotransmission through
the interaction with presynaptic α2 adrenoceptors instead of imidazoline receptors [53].
Therefore, this theory is less plausible, yet again, with the limitation of the extrapolation of
experimental data between different species.

Reviewing the previous studies investigating dexmedetomidine and other α2 agonists
on in vitro contractility, both enhanced and inhibited contractility have been reported.
Xylazine, detomidine, and medetomidine reduced spontaneous and/or evoked contrac-
tility in horse jejunum, guinea pig duodenum, and mice ileum [16,55,56]. On the other
hand, two studies in the rat ileum found that dexmedetomidine increased the amplitude
of spontaneous contractions without affecting the frequency [34], and that dexmedetomi-
dine reduced the ischaemia induced inhibition of contractility [29]. Differences between
experiment duration, species, and the small intestinal segments that were used, complicate
the exact comparison of the studies. Furthermore, different tissue preparations were used,
with full thickness intestinal samples as well as combined CSM and LSM layers, and not all
of the studies investigated both the CSM and LSM contractile activity.

This study found increased in vitro contractility of the LSM with dexmedetomidine
treatment, which conflicts with two in vivo studies that found decreased gut sounds
following dexmedetomidine administration in horses [18,21]. This illustrates the fact that
in vitro contractile activity does not necessarily translate to an increased motility in vivo.
Regarding our results, this difference may be due to CSM playing a more dominant role than
LSM in equine small intestinal motility, considering the relative thickness of CSM compared
with LSM. Apart from the local effects of dexmedetomidine on the intestinal smooth muscle,
its influence on other parts of the intestine or organs may also be of relevance for its ultimate
effect on GI motility. The anti-inflammatory properties of dexmedetomidine may reduce
the leukocytic inhibition on motility [28,30], and its reduction in ischaemia reperfusion-
related injury of the mucosa [57,58] could indirectly ameliorate both the neurogenic and
inflammatory inhibition of motility. Moreover, dexmedetomidine can alter the intestinal
perfusion, with different authors reporting both improvement and deterioration of intestinal
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circulation [59–61]. Considering that pain is a significant motility inhibiting factor, the
analgesic effects of α2 agonists may also be of significance in this matter [13,62]. Finally,
there are many differences between the in vitro situation compared to in vivo that influence
the extrapolation of the results, such as the migrating myoelectrical complex, luminal
filling, intraluminal pressure, and an interaction between the intact muscle layers and the
myenteric plexus [46,51,63,64].

A limitation of the study is the use of systemic dexmedetomidine during anaesthesia
as premedication and as continuous rate infusion during anaesthesia. This was selected
because it is considered unethical to induce general anaesthesia without proper premedica-
tion. The continuous rate infusion during the maintenance of anaesthesia was elected as
part of the analgesic protocol and as isoflurane sparing anaesthetic management. Conse-
quently, dexmedetomidine was elected to rule out the influence of any other anaesthetics.
Any effect would be present in both groups and most likely be temporary, considering that
rapid wash-out has been described in organ baths [65]. The measurement of dexmedeto-
midine levels in the intestinal tissue prior to the organ bath experiment or at the end of
the in vitro experiment could have given more information on the relevance of this in vivo
dexmedetomidine CRI. The administration of dexmedetomidine prior to ischaemia could
have ameliorated the intestinal injury by pharmacological preconditioning, which could
have influenced the effect of the ischaemia model [57]. On the other hand, it is unlikely
that this affected the comparison of the treatment groups in the contractility measurements,
considering this affect would be present in both groups. Furthermore, we confirmed the
presence of significant intestinal injury during histological examination of these samples,
as published elsewhere [66].

Comparing the in vitro applied concentration of dexmedetomidine with clinical doses,
the dexmedetomidine plasma concentrations reached after commonly applied doses of
3.5–5 µ/kg are around 5 ng/mL [18,19], corresponding to approximately 25 nM. This
is lower than the concentrations used in the current study, and thus represents another
limitation of this work. For this in vitro study, a concentration was elected within the lower
range of those previously described in in vitro studies in other species. Even though the
investigated drug concentrations are not directly transferable to the clinical situation, the
current observations serve as a first step in elucidating the mechanism of dexmedetomidine
induced changes on the small intestinal contractility in horses. Further limitations of this
study include the small sample size, the individual variation between the horses, and the
relatively short reperfusion time.

5. Conclusions

The contractile activity of CSM was not affected by ischaemia, yet the LSM contrac-
tility increased following ischaemia and reperfusion. Dexmedetomidine inhibited the
spontaneous contractile activity of CSM, whereas it stimulated that of LSM. This was not
mediated by the enteric neurons, possibly indicating a direct effect on the smooth muscle
cells. Dexmedetomidine also mildly increased the electrically induced contractile activity
in LSM, which most likely indicates a differential distributionof the α-receptors between
the two muscle layers. How the inhibitive effect on CSM and the excitatory effect on the
LSM translate to motility in the clinical patient remains unclear, yet CSM may play a more
dominant role in peristalsis due to its thickness in relation to that of LSM. Many other
factors such as pain, inappetence, or the primary disease may also influence the final effect
of dexmedetomidine on the case outcome. To fully comprehend the impact of dexmedeto-
midine on motility, investigations in perfused ex vivo models or in vivo techniques may be
performed in future studies to clarify the many remaining questions. If dexmedetomidine
could elicit a comparable stimulation of GI function as seen in man, this could offer an
alternative to the commonly used GI inhibiting α2 agonists.
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