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Simple Summary: Recently, increasing the efficiency of porcine embryo cultures by promoting
oocyte maturation in vitro has attracted much attention. Brain-derived neurotrophic factor (BDNF)
was beneficial to oocyte maturation and increased the developmental potential of porcine embryos.
Although the effects of BDNF on porcine follicular development and the maturation of oocyte have
been previously demonstrated, no literature was available, at the time of this work, relating to miRNA-
regulated gene expression and signal pathways in mechanisms of BDNF, promoting porcine GCs
proliferation. Therefore, this study explored the miRNAs involved in BDNF-induced proliferation of
porcine GCs, as well as the involvement of the MAPK-ERK signaling pathway.

Abstract: As a member of the neurotrophic family, brain-derived neurotrophic factor (BDNF) provides
a key link in the physiological process of mammalian ovarian follicle development, in addition to
its functions in the nervous system. The emphasis of this study lay in the impact of BDNF on the
proliferation of porcine follicular granulosa cells (GCs) in vitro. BDNF and tyrosine kinase B (TrkB,
receptor of BDNF) were detected in porcine follicular GCs. Additionally, cell viability significantly
increased during the culture of porcine GCs with BDNF (100 ng/mL) in vitro. However, BDNF
knockdown in GCs decreased cell viability and S-phase cells proportion—and BDNF simultaneously
regulated the expression of genes linked with cell proliferation (CCND1, p21 and Bcl2) and apoptosis
(Bax). Then, the results of the receptor blocking experiment showed that BDNF promoted GC
proliferation via TrkB. The high-throughput sequencing showed that BDNF also regulated the
expression profiles of miRNAs in GCs. The differential expression profiles were obtained by miRNA
sequencing after BDNF (100 ng/mL) treatment with GCs. The sequencing results showed that, after
BDNF treatment, 72 significant differentially-expressed miRNAs were detected—5 of which were
related to cell process and proliferation signaling pathways confirmed by RT-PCR. Furthermore,
studies showed that BDNF promoted GCs’ proliferation by increasing the expression of CCND1,
downregulating miR-127 and activating the ERK1/2 signal pathway. Moreover, BDNF indirectly
activated the ERK1/2 signal pathway by downregulating miR-127. In conclusion, BDNF promoted
porcine GC proliferation by increasing CCND1 expression, downregulating miR-127 and stimulating
the MAPK-ERK1/2 signaling cascade.

Keywords: BDNF; porcine; proliferation; microRNA; CCND1; ERK

1. Introduction

Ovarian follicle development is a fundamental process of reproductive physiology in
female mammals. Germ stem cells differentiate into oogonia in the genital ridge and the
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oogonia divide and become primary oocytes via mitosis. The primordial follicles are formed
during the process of differentiation. Thus, primordial follicle assembly is crucial for the
acquisition of fertility during female mammalian reproduction [1]. Primordial follicles
are composed of primary cells and surrounding GCs and basement membrane [2]. The
proliferation of GCs can effectively promote follicle development and the formation of the
antral cavity. As such, improving the effectiveness of in vitro porcine embryo production
by promoting the maturation of oocytes has become a research hotspot.

Neurotrophins (NTs) are soluble polypeptides known for their effects in regulation of
synaptic growth, revival, differentiation and functionalization in the nervous system [3–5].
The NTs not only affect nervous system development, but also participate in ovarian
development [6,7]. During embryogenesis in pigs, various NTs play important roles
in folliculogenesis [8,9], oocyte maturation [10,11], steroid synthesis [9] and embryonic
development [11]. Brain-derived neurotrophic factor (BDNF) is a well-known member of
the NT group and may also increase oocyte maturation and porcine embryonic growing
potential in vitro [10,11]. In adult mammalian ovaries, BDNF expression, and its high-
affinity TrkB receptor, have both been detected [12]. Moreover, the expression of BDNF
differed in porcine Germinalvesic oocytes and in vitro mature MII oocytes, implying that
BDNF might be involved in porcine oocyte development and maturation [13]. Previous
data from our laboratory showed that BDNF promoted GC growth in cocultured bovine
early embryos [14] and regulated GC proliferation and progesterone synthesis via the
TrkB-AKT signaling pathway [15]. Additionally, BDNF-TrkB signaling was involved in
oogenesis, follicle recruitment, germ cell survival and oocyte nuclear and cytoplasmic
maturation [16–19]. Thus, BDNF was shown to regulate the reproductive function of
mammals along with TrkB.

As an important epigenetic regulatory mechanism, microRNAs (miRNAs) inhibit
target genes’ expressions by binding to their 3′UTR region and are related to the key
regulation of many biological processes. Indeed, miRNAs play critical roles in spermato-
genesis [20,21], follicle development [22–24], maturation of oocytes [25,26] and primary
embryonic growth [26,27] during mammalian reproduction. Regulation of miRNAs with
BDNF involvement has been demonstrated in the nervous system [28–30]. In the ovary,
BDNF affects oocyte–cumulus cell interaction and granulosa cell function by regulating
miRNAs. For example, miR-NA-10b inhibits goat GC proliferation by targeting BDNF [31].
Moreover, BDNF promotes the expansion of porcine cumulus–oocyte complex by downreg-
ulating miR-NA-205 [11]. miR-127, as a tumor suppressor, plays a role in inhibiting tumor
cell growth and migration in various types of cancer [32–35]. In mammalian reproductive
systems, miR-127 inhibits the progression of ovarian cancer by regulating MAPK4 expres-
sion [36]. In addition, miR-127 affects placental development by targeting Rtl1 [37–39].
Notably, miR-127 was differentially-expressed in follicular fluid of polycystic ovary syn-
drome (PCOS) patients, compared with normal controls [40]. Therefore, the influence and
role of miR-127 in the ovarian follicle is worthy of attention.

Although the impacts of BDNF on follicular development and maturation of oocytes
in pigs have been demonstrated, there has been, to the best of our knowledge, no report on
miRNA-regulated gene expression and signaling pathways related to BDNF mechanisms
promoting porcine GC proliferation. Therefore, this study explored the mechanishms
by which miRNAs were regulated by BDNF and MAPK-ERK1/2 signaling pathways in
porcine GCs proliferation.

2. Materials and Methods
2.1. Cell Isolation and Culture

Porcine ovaries, from prepubertal gilts, were gathered at a local slaughter abattoir
and kept at 37 ◦C in sterile saline, with penicillin and streptomycin at concentrations of
100 IU/mL. The ovaries were transported within 2 h to the laboratory. GCs were isolated
and collected from the follicular fluid, as previously stated [15]. Concisely, the collected
ovaries were rinsed three times with water to eliminate blood stains, then placed in sterile
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normal saline after being washed three times with 75% ethanol for disinfection. Follicular
fluid was aspirated between 3 mm and 5 mm follicles using a 10 mL sterile syringe, and
about 8–10 mL was acquired from twenty porcine ovaries. The collected follicular fluid
was transported into 20 mL PBS and centrifuged at 300× g for 1 min to eliminate the
oocytes. The isolated supernatant was transferred into a 50 mL sterile centrifuge tube,
followed by centrifugation at 500× g for 6 min to separate GCs. The trypan blue exclusion
test was performed to examine the viability of GCS. Approximately 1 × 106 GCs per well
were seeded in 6-well plates within 2 mL culture medium (Dulbecco’s Modified Eagle
Media/Nutrient Mixture F12 (DMEM/F12)), comprising of 10% fetal bovine serum (FBS)
for 24 h at 37 ◦C with 5% CO2.

2.2. Immunofluorescence Staining

Fresh porcine follicle granulosa cells were cultured in 24-well (2 × 105 cells/well)
optical bottom plates for 24 hand then triple-washed with PBS (5 min each). Cells were
preserved for 20 min in precooled absolute methanol and then permeabilized with 0.1%
Triton X-100 for 30 min. Cells were blocked with 1% goat serum at ambient temperatures
for 30 min, followed by incubation at 4 ◦C overnight in the following primary antibodies:
anti-FSHR (BS2618, Bioworld, Nanjing, China, 1:200 for rabbit anti-mouse), anti-BDNF
(BS6533, Bioworld, 1:200 for rabbit anti-mouse), or anti-TrkB (BS94070, Bioworld, 1:100 for
rabbit anti-mouse). They were then rinsed three times with PBS. After that, the cells were
incubated in goat anti-rabbit immunoglobulin G (IgG) combined with fluorescein (FITC)
antibody (BS10950, Bioworld, 1:1000) at ambient temperatures for 1 h and triple-washed
with PBS. After that, cells were stained for 10 min using PI solution (1:1000; Beyotime,
Shanghai, China) and observed with a fluorescence microscope (IX71; Olympus, Tokyo,
Japan). The porcine GCs were presented in two colors: green for FSHR and red for nucleus.

2.3. Cell Treatment

GCs were cultured in 6-well plates, with 106 cells per well, until cell density reached
70% and then washed twice with PBS to eliminate the suspended cells. The culture media
were replaced with serum-free DMEM/F12 for 4 h, and then cells were treated with BDNF,
K252α (TrkB-specific inhibitor; 100 ng/mL; Invitrogen, Carlsbad, CA, USA) or PD98059
(MAPK suppressor; 15 µM; Beyotime). BDNF (0, 10, 20, 50, 100 and 200 ng/mL; PeproTech,
London, UK)-treated GCs were used, for different times (12, 24, or 48 h). K252α (100 ng/mL)
were used for 24 h, PD98059 (15 µM), for 30 min.

2.4. Cell Transfection

The siRNA for BDNF (si-BDNF sequence: 5′-GCGGTTCATAAGGATAGAC-3′) was
synthesized from RiboBio (Guangzhou, China). Transfection of porcine GCs with 50 nM
siRNA was accomplished using FuGENE® HD (Roche, Basel, Switzerland) reagent for
transfection and Opti-MEM medium (Gibco, Paisley, Scotland, UK), as directed by the
manufacturing company. GCs were transfected with siRNA for 24 h to extract RNA
and protein.

The mimics and inhibitors of miRNAs (miR-185, miR-1273, miR-7047, miR-127 and
miR-532) were acquired from Genepharma (Shanghai, China). Based on the manufacturer’s
guidelines, mimics of the five miRNAs or miR-127 inhibitors were transfected into the
GCs using FuGENE® HD transfection reagent for 24 h. The transfection concentration was
50 nM.

2.5. Cell Viability Assay

The capacity of GCs’ viability was evaluated by CCK-8 kit (Dojindo, Shanghai, China).
Briefly, 100 µL of medium, containing 1 × 104 GCs, were grown in 96-well plates. After
treatment (BDNF, K252α or PD98059) or transfection (miRNAs or si-BDNF), CCK8 reagent
was added into medium for 10 µL of each well. After 2 h of incubation, the absorbance was
detected at 450 nm with a microplate reader (BioTek, Winooski, VT, USA).
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2.6. RNA Extraction and Reverse Transcripton-Quantitative Polymerase Chain Reaction
(RT-qPCR)

Total RNA was extracted from GCs using Trizol reagent (Invitrogen, Carlsbad, CA,
USA) and reverse transcription was done using a PrimeScript RT Reagent Kit (Takara,
Tokyo, Japan) based on manufacturer instructions. qRT-PCR was performed with a SYBR
Green Master Mix (Takara, Tokyo, Japan) and real-time quantitative fluorescence PCR
instrument (Mx3005P; Agilent, Santa Clara, CA, USA). The reaction criteria were as follows
for temperature profile: denaturation at 95 ◦C for 15 min, then amplification for 40 cycles of
35 s at 95 ◦C and 40 s at 60 ◦C. Using GAPDH or U6 as reference genes, the relative mRNA
expressions of indicated genes were calculated using 2−∆∆CT methods. All sequences of
primer synthesis were completed by Comate Bioscience Co., Ltd. (Changchun, China) as
shown in Supplementary Table S1.

2.7. Western Blotting

Cell lysis and protein collection were done using a RIPA buffer (Beyotime) containing
phosphatase inhibitor cocktail A (Beyotime). The concentrations of proteins were deter-
mined using a BCA Kit (Beyotime). Then, 12% SDS-PAGE gel electrophoresis was used to
separate a total of 20 µg protein in each sample and the separated proteins were transferred
to polyvinylidene difluoride (PVDF) membranes (Millipore Co., Ltd., Norwood, OH, USA).
The unspecific bands of membranes were blocked with 5% skim milk at ambient tempera-
ture for one hour. Subsequently, the membranes were stored at 4 ◦C overnight with the
primary antibodies listed below: anti-BDNF (BS6533, Bioworld, 1:1000, Rabbit anti-mouse),
anti-CCND1 (ab16663, 1:1000), anti-P21 (ab109520, 1:500, Rabbit anti-human), anti-BCL2
(ab182858, 1:50), anti-Bax (ab32503, 1:50), anti-ERK1/2 (ab184699, 1:100), anti-p-ERK1/2
(ab278538, 1:50) or anti-beta-actin (ab179467, 1:80). After rinsing with TBST (4 × 8 min),
peroxidase (HRP), coupled with secondary antibody (1:800), was used to incubate the mem-
branes for 1 h. The bands were visualized using a BeyoECL Plus kit (Beyotime) and tested
using a chemiluminescent detector (Tanon, Shanghai, China), based on the manufacturer’s
instructions. Unless otherwise noted, all antibodies were rabbit anti-mouse and purchased
from Abcam (Cambridge, MA, USA). Intensity of bands were analyzed via grey scanning
using the Tanon Gel Imaging System (Tanon).

2.8. Flow Cytometric Analysis (FACS)

FACS was used to measure the cell cycles of the porcine GCs. GCs were digested
by trypsin and the collected cells were twice-rinsed with precooled PBS, then fixed and
refrigerated in 70% ethanol for more than 24 h. The fixed cells were resuspended in 500 µL
staining buffers containing PI (50 µg/mL) and RNaseA (1 mg/mL) after rinsing with PBS.
Subsequently, after 30 min incubation in the dark, BD-LSR flow cytometry (BD Biosciences,
Franklin Lakes, NJ, USA) was performed to determine cell cycle kinetics.

2.9. Sequencing of miRNAs

GCs were collected after treatment with BDNF (100 ng/mL) for 24 h. The library
operation and sequencing experiments were performed following standard Illumina pro-
cedures. The Small RNAs Sample Pre Kit (Illumina, San Diego, CA, USA) was used to
structure libraries of small RNA sequencing and Illumina HiseQ2000/2500 was performed
for sequencing. A sequence length of 1 × 50 bp was collected for bioinformatics analysis.

2.10. Bioinformatics Analysis

The Illumina HiSeq 4000 sequencing platform (Illumina, Inc., San Diego, CA, USA)
was used to sequence RNA from pig GC specimens and construct cDNA libraries. Dena-
tured libraries were converted into single-stranded DNA molecules and sequenced over
51 cycles on Illumina HiSeq, based on the manufacturer’s directions. The analyses were
performed with the help of Beijing Yuanyi Gene Technology Co., Ltd. (Beijing, China).
After sequencing, Solexa CHASTITY [41] quality filtered reads were harvested as clean
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reads. Then, clean reads were screened for siRNA through BLAST and Rfam databases and
classified siRNA were annotated or predicted as mature miRNA. The miRBase database
was used for sequence alignment of mature miRNA. We calculated miRNA expression us-
ing the most readily available isoforms; miRBase was used to identify the mature miRNAs
and all miRNA isoforms (5p or 3p). When miRNA profiles were differentially-expressed,
comparisons between the two groups, fold changes, p-values and FDRs were calculated and
used to identify significantly differentially-expressed miRNAs. log2 (fold change) > 1 or
log2 (fold change) < −1 were selected for differentially-expressed miRNAs. The differences
were statistically significant (p < 0.05) after R package comparison.

2.11. Data Analysis

Statistical analyses were performed with SPSS (Windows version 19). Data analysis
between the two groups was done using the unpaired t-test. Three or more groups of data
were evaluated for significant differences using ANOVA. Statistical significance was shown
at * p < 0.05 and ** p < 0.01. Data were shown as mean ± standard deviation (SD).

3. Results
3.1. Effects of BDNF on the Proliferation of Porcine GCs

The effects of BDNF on GC proliferation were determined. Figure 1A revealed that
BDNF increased porcine GCs’ viability in a dose-dependent manner (p < 0.05) and a
concentration of 100 ng/mL was the most effective after 24 h. Unless otherwise noted, all
BDNF described in our results were treated at 100 ng/mL for 24 h.
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Figure 1. Effects of BDNF on the proliferation of porcine GCs. (A) Porcine GCs are cultured with
various concentrations of BDNF (0, 10, 20, 50,100, 200 ng/mL) for different times (12, 24, 48 h);
CCK-8 assay is performed to examine GC viability. (B) Porcine GCs are transfected with si-BDNF or
nonspecific siRNA (si-NC) for 24 h. RT-qPCR and Western blotting are performed to assess mRNA
(B-a) and protein (B-b,B-c) expression levels of BDNF. (C) GC viability is examined by CCK-8 after
BDNF knockdown. (D-a,D-b) The distribution of cell cycle in porcine GCs is determined using FACS.
(E) The mRNA (E-a) and protein (E-b,E-c) expression levels of Bcl2, Bax, p21 and CCND1 are detected
by RT-qPCR and Western blotting after transfection with si-BDNF for 24 h. Data are presented as
mean ± SD, n = 3; * p < 0.05, ** p < 0.01. BDNF, brain-derived neurotrophic factor; Bcl-2, B-cell
lymphoma-2; Bax, Bcl2-Associated X; p21, cyclin-dependent kinase inhibitor 1A; CCND1, cyclin D1.
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In addition, BDNF knockdown (Figure 1B) in GCs significantly decreased GC viability
(Figure 1C). The proportion of S-phase cells in the si-BDNF group (7.55 ± 0.1%) was
considerably reduced, compared with the si-NC group (9.47 ± 0.42%) (Figure 1D). The
levels of proliferation-related genes’ (including CCND1, p21 and Bcl2) expression and
apoptosis-related genes (Bax) in porcine GCs cells were evaluated. As shown in Figure 2E,
after BDNF knockdown, the mRNA and protein expression levels of CCND1, p21 and Bcl2
were significantly reduced. On the contrary, the expression levels of Bax were considerably
elevated (Figure 1E).
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Figure 2. The BDNF/TrkB pathway affects the proliferation of porcine GCs. After 30 min of prein-
cubation with K252a (100 ng/mL) porcine GCs are incubated with BDNF (100 ng/mL) for 24 h.
(A) CCK-8 assay is then performed to assessed the viability of the GC. (B-a,B-b) FASC is employed to
analyze the cell cycle in porcine GCs. (C) RT-qPCR and Western blotting are performed to determine
the mRNA (C-a) and protein (C-b,C-c) expression levels of Bcl2, Bax, p21 and CCND1. Data are
presented as mean ± SD, n = 3; * p < 0.05, ** p < 0.01.

3.2. The BDNF/TrkB Pathway Affects the Proliferation of Porcine GCs

The effects of BDNF on GC proliferation after K252α treatment were assessed. The
results showed that the viability of porcine GCs (Figure 2A) and the distribution of cells in
S-phase (Figure 2B) were significantly decreased with K252α treatment alone. Moreover,
K252α reduced BDNF-induced porcine GC viability, and the proportion of cells in S-phase,
when K252a and BDNF treatment were undertaken together in GCs (Figure 2A,B).

The expression levels of genes connected with cell proliferation and apoptosis were
measured. BDNF significantly increased mRNA (Figure 2C-a) and protein (Figure 2C-b,C-c)
expression levels for CCND1, p21 and Bcl2. Additionally, the Bax mRNA and protein
expression levels were reduced dramatically. Figure 2C shows that BDNF, in combination
with K252a, weakened the effects of BDNF on the expression of the above genes in GCs.

3.3. BDNF Promotes GCs Proliferation through Increase of CCND1 by Downregulating miR-127

miRNA sequencing was performed. According to the sequencing results, 72 differentially-
expressed miRNAs were detected, including 34 upregulated and 38 downregulated, as
shown in Figure 3A-a,A-b (fold change > 2, p < 0.05). Additionally, 5 miRNAs (miR-185,
miR-1273, miR-7047, miR-127 and miR-532) associated with cellular processes (Figure 3A-c)
and cell proliferation signaling pathways (Figure 3A-d) were significantly downregulated
in GCs after BDNF treatment (Figure 3B).
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Figure 3. BDNF promotes GC proliferation, increasing CCND1 by downregulating miR-127. (A) miR-
NAs sequencing. (A-a) Proportion of upregulated and downregulated miRNAs in GCs. (A-b) Hier-
archical cluster analysis of the expression pattern of significantly differentially-expressed miRNAs.
The highest and lowest fold changes are marked from red to green. (A-c) Assessment of miRNA GO
enrichment. (A-d) miRNA KEGG pathway investigation. (B) Relative mRNA expression levels of
miR-185, miR-1273, miR-7047, miR-127 and miR-532 in GCs after BDNF (100 ng/mL) treatment for
24 h. (C) Transfection of porcine, with miRNAs mimics or negative control, for 24 h. CCK-8 assay
performed to investigate the viability of GCs (C-a) and FASC performed to analysis the cell cycle
(C-b). (D) Relationship of mRNA expression levels between miR-127 and CCND1. (E-a,E-b) Porcine
GCs transfected with mimics or inhibitors of miR-127 for 24 h. Western blotting is performed to
determine the protein expression level of CCND1. Date are presented as mean ± SD, n = 3; * p < 0.05,
** p < 0.01.

Subsequently, to ascertain the consequences of these miRNAs on GC proliferation,
GCs were transfected with the above 5 miRNA mimics for 48 h, respectively. Overex-
pression of miR-185 and miR-532 inhibited GC viability, while overexpression of miR-127
significantly reduced the viability of GCs and the proportion of cells in S-phase simultane-
ously (Figure 3C). Therefore, we selected miR-127 as the key miRNA in BDNF-induced GC
proliferation to continue our research.

BDNF significantly decreased miR-127 expression (Figure 3B) and increased CCND1
expression (Figure 2C). To confirm the regulatory relationship between miR-127 and
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CCND1, the mRNA expression relationship was determined. As shown in Figure 3C,
miR-127 inhibited the expression of CCND1. The protein expression levels of CCND1 were
compatible with RT- qPCR after miR-127 was overexpressed or inhibited in porcine GCs
(Figure 3D,E).

3.4. BDNF Promotes GC Proliferation via the ERK1/2 Signaling Pathway Mediated by miR-127

To determine whether the MAPK-ERK1/2 pathway was entangled in proliferation
by porcine GCs after BDNF treatment, the phosphorylation and total protein levels of
ERK1/2 in porcine GCs were assessed. The results indicated the phosphorylation levels of
ERK1/2 increased after BDNF supplementation for 15 (p < 0.05), 30 (p < 0.01) and 60 min
(p < 0.05; Figure 4A). Moreover, GCs were treated with BDNF in combination with PD98059;
the effects of BDNF on the viability of GCs (Figure 4B-a) and the distribution of cells in
S-phase (Figure 4B-b) were diminished by a blockade of the MAPK-ERK1/2 pathway.
Secondly, the expression levels of CCND1 were assessed. Inhibition of ERK1/2 decreased
the expression levels of CCND1 mRNAs and proteins (Figure 4B-c–B-e). Thirdly, MAPK-
ERK1/2 suppression had no impact on the expression levels of miR-127 (Figure 4B-f), but
the phosphorylation of ERK1/2 was stimulated after transfection of miR-127 inhibitor
with GCs. Then, after treatment with BDNF, the expression level of p-ERK1/2 was further
increased (Figure 4C).
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revealed the presence of the phosphorylation (p-ERK1/2) and total protein (t-ERK1/2) of ERK1/2.
(B) Porcine GCs are pretreated with PD98059 (15 µM) for 30 min, before treatment with BDNF
(100 ng/mL) for 24 h. The viability of GCs is then investigated using CCK-8 assay (B-a). The cell cycle
of GCs is studied using FASC (B-b,B-c). Relative mRNA expression (B-d) and protein expression
(B-e,B-f) levels of CCND1 are determined by RT-qPCR and Western blotting. (B-g) RT-qPCR is
performed to detect the expression of miR-127. (C-a,C-b) The GCs are transfected with miR-127
inhibitors and then treated with BDNF; the phosphorylation levels of ERK1/2 are detected by Western
blotting. Data are presented as mean ± SD, n = 3; * p < 0.05, ** p < 0.01.

4. Discussion

In ovaries, BDNF is mainly presented in follicular granulosa cells and oocytes [16],
while BDNF and its receptor TrkB are mainly expressed in granulosa cells and membrane
cells of porcine follicles [42]. In this study, the expression levels of BDNF and trkB in
GCs were verified by immunofluorescence (Supplementary Figure S1). BDNF regulates
early follicle development in various mammals and directly affects ovulation, as shown in
previous studies [10,17]. BDNF has also been associated with different causes of infertility
during in vitro fertilization [12,43–45]. Additionally, BDNF regulates the maturation of
cytoplasmic and nuclear in porcine oocytes by paracrine and/or autocrine signaling systems
and promotes potential embryo growth following in vitro fertilization and somatic cell
nuclear transfer [10]. Thus, elucidating the transcriptional mechanisms regulated by BDNF
in GCs will be beneficial for improving the IVM of porcine oocytes.

Transfection of specific siRNA interfering with BDNF expression in cells will be
beneficial to studies of the role of BDNF in the proliferation of porcine GCs. With the
extension of transfection time, the interference efficiency of siRNA was enhanced, but
further inhibition of GCs proliferation had no significant effect. These findings suggested
that the continuous decreases in the secretion of BDNF in porcine GCs did not inhibit cell
proliferation at all times.

miRNAs are small noncoding RNAs. They play a vital role in hormone-induced ovar-
ian development [46,47]. In previous studies, the primary role of miR-127 was described as
a tumor inhibitor, involved in a series of cellular processes—for instance proliferation, senes-
cence, migration and invasion [48–50]. Moreover, miR-127 mediated the differentiation
of mouse embryonic endoderms and promoted placental development [38,51]. However,
the potential functions of miR-127 in porcine reproduction remain ambiguous. To our
knowledge, this study revealed the expression of miR-127 in porcine GCs for the first time,
and demonstrated that miR-127 was involved in porcine granulosa cell proliferation as a
negative regulator.

Cell proliferation and differentiation are regulated by the progression of the cell
cycle. This progression is controlled by cyclins and Cdks complexes [52]. Cyclin D1
(CCND1), a member of the cyclin family, promotes the transition of cells from G1 phase
to S phase by interacting with CDK4 and CDK6 [53–57]. CCND1 is also a key regulator
of cell proliferation [58]. Due to the inhibition of miR-127 on the proportion of cells in
S-phase, the regulatory relationship between miR-127 and CCND1 was examined. The
overexpression and knockdown of miR-127 showed that miR-127 significantly negatively
regulated CCND1. It also revealed the regulatory pathway, in which BDNF downregulated
miR-127 to promote CCND1 expression during porcine GC cell proliferation.

MAPK-mediated signal transduction is a key factor affecting cell fate processes [59].
As the core module of the MAPK signal cascade, the MAPK-ERK1/2 signaling pathway
is highly conservative [60]. The extracellular signals are transmitted into the nucleus
by ERK1/2 and trigger modifications in the expression of certain proteins in cells [61].
MAPK-ERK12 is also connected with several cellular activities, comprising differentiation,
proliferation, apoptosis, transcription and adhesion [62–67]. Hence, it was necessary to
examine this intracellular signaling pathway to further substantiate the molecular mech-
anisms underlying BDNF-induced cell proliferation and increased CCND1 expression
in GCs. According to our data, phosphorylation of ERK1/2 was increased by BDNF,
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and porcine GC proliferation was inhibited by blockades of TrkB or ERK1/2. Thus, we
concluded that BDNF-induced cell proliferation also depended on MAPK-ERK1/2 signal-
ing activation and that BDNF promoted GC proliferation by regulating CCND1 through
MAPK-ERK1/2 signaling cascade. A study on the promotion of bovine GC proliferation
by the BDNF-MAPK-ERK1/2 signaling pathway was previously reported [15]. Notably,
however, miRNAs (especially miR-127) were found to be involved in the transduction
of the BDNF-MAPK-ERK1/2 signaling pathway in this study. Downregulating miR-127
facilitated the stimulation of the MAPK-ERK1/2 signaling pathway. This result suggested
that CCND1 upregulation by BDNF indirectly actuated the MAPK-ERK1/2 pathway by
downregulating miR-127. These findings provided novel insights for future studies on the
function of BDNF and revealed the molecular mechanisms underlying mammalian follicle
development. In addition, these findings could provide a new target for the treatment of
follicular dysplasia, such as PCOS.

5. Conclusions

In conclusion, we determined that BDNF stimulated GC proliferation by increas-
ing CCND1 expression through miR-127 downregulation and MAPK-ERK1/2 pathway
activation (Figure 5). Notably, BDNF stimulated the MAPK-ERK1/2 pathway directly
and indirectly by downregulating miR-127. Our current findings provided insights that
could aid in efforts to effectively promote porcine oocyte maturation and improve embryo
production efficiency in vitro.
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