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Simple Summary: Shoulder lesions present a significant welfare concern, particularly among breed-
ing sows. They are frequently linked to decreased mobility and loss of body condition during
lactation. This research explores using RGB cameras and the potential of different computer vision
methods for detecting and estimating their size. Findings indicate that these techniques hold promise
in effectively identifying and quantifying lesion size. This could empower producers to proactively
monitor sow welfare, facilitating timely detection and intervention for these lesions.

Abstract: Shoulder sores predominantly arise in breeding sows and often result in untimely culling.
Reported prevalence rates vary significantly, spanning between 5% and 50% depending upon the type
of crate flooring inside a farm, the animal’s body condition, or an existing injury that causes lameness.
These lesions represent not only a welfare concern but also have an economic impact due to the labor
needed for treatment and medication. The objective of this study was to evaluate the use of computer
vision techniques in detecting and determining the size of shoulder lesions. A Microsoft Kinect V2
camera captured the top-down depth and RGB images of sows in farrowing crates. The RGB images
were collected at a resolution of 1920 × 1080. To ensure the best view of the lesions, images were
selected with sows lying on their right and left sides with all legs extended. A total of 824 RGB images
from 70 sows with lesions at various stages of development were identified and annotated. Three
deep learning-based object detection models, YOLOv5, YOLOv8, and Faster-RCNN, pre-trained with
the COCO and ImageNet datasets, were implemented to localize the lesion area. YOLOv5 was the
best predictor as it was able to detect lesions with an mAP@0.5 of 0.92. To estimate the lesion area,
lesion pixel segmentation was carried out on the localized region using traditional image processing
techniques like Otsu’s binarization and adaptive thresholding alongside DL-based segmentation
models based on U-Net architecture. In conclusion, this study demonstrates the potential of computer
vision techniques in effectively detecting and assessing the size of shoulder lesions in breeding sows,
providing a promising avenue for improving sow welfare and reducing economic losses.

Keywords: shoulder lesions; ulcers; sows; deep learning; YOLO; U-Net

1. Introduction

Shoulder lesions, amongst lactating sows, are commonly seen in the swine industry.
Lesions commonly develop during the first two weeks of farrowing [1]. These are formed
due to the deficiency of oxygen to the underlying shoulder tissue caused by pressure
incited from the flooring. The tissues lose blood supply and die similar to human pressure
ulcers [2]. The anatomy of a sow’s scapula bone has a large ridge known as the scapular
spine. When the differences in the structure of the scapula in sows were analyzed, sows with
a prominent scapula spine were found to be at a higher risk of lesion formation [3]. When a
sow lies on its side, extra pressure is exerted on the tissue surrounding the spine making
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it vulnerable to ulcer formation [4]. Though the lesions are described as shoulder sores,
they develop near the dorsal aspects of the spine of the scapula, not at the scapulohumeral
joint [5]. The dorsal aspect of the spine is a common location of ulcer development, but
lesions may develop over any bony prominence such as the tarsus or cubital joint. The
severity of lesions can vary from mild lesions to bone-deep ulcers if left untreated. They
are associated with poor animal welfare because of the pain and increased infection risk
that can lead to euthanizing the animal. In addition to the welfare-associated problem,
shoulder lesions increase production costs due to the treatment and increased culling
rate [6]. Bone-deep ulcers often negatively affect the sow’s carcass value as they lead to
failure of the final quality check. Therefore, treating these ulcers early to reduce welfare
and economic concerns becomes highly important. Early lesion detection will result in
timely veterinary treatments, such as the application of zinc oxide to the affected area.
Most research regarding shoulder lesions has primarily concentrated on potential causes,
associated effects, and strategies to prevent or manage ulcerations. Implementing automatic
monitoring technology for shoulder lesions has the potential to alleviate the workload of
farm workers and facilitate prompt treatment. In recent times, innovative animal husbandry
solutions have emerged, which enable continuous and automated tracking of individual
animals’ well-being through the utilization of diverse sensors and cameras [7]. However,
limited research has been conducted on the monitoring of these lesions. One previous
study [8] investigated the use of thermal cameras to measure the related temperature
increase caused by an inflammatory response. This approach allowed for the early detection
of lesions up to 7 days before visual signs appeared. These advancements not only enhance
farm productivity but also enable the early detection of emerging health concerns.

While thermal imaging may be able to detect the beginning of a lesion, RGB cameras
have a cost advantage. Potentially, RGB images, in combination with machine learning
techniques, may be able to detect lesions shortly after they become visible and could
potentially track their progression. Machine vision techniques like deep learning-based
models have become increasingly effective in solving various problems. For example,
convolutional neural networks (CNNs) like Resnet101, Xception, and MobileNet have
already been successfully implemented to classify different postures in swine [9,10]. YOLO
(You Only Look Once) has been used for the early detection of estrus behavior in cattle by
modifying the spatial pyramid pooling (SPP) module in the architecture [11]. Although
there has not been much work conducted in lesion detection in animals using RGB cameras,
studies have been performed using deep learning models to detect and localize ulcers
from the images of diabetic human feet [12]. Recently, image segmentation based on deep
learning has become one of the main image segmentation methods. Different variations
of U-Net architecture have been commonly used for detecting various kinds of lesions
like skin [13,14], lungs [15], brain [16], etc. Another study presented a two-stage deep
learning method for accurately segmenting skin lesions from dermoscopic images based on
YOLO–DeepLab networks [17]. However, the images these studies used for model training
had a significantly larger lesion-to-background area ratio alongside uniform illumination
without much noise.

With shoulder lesions in sows, it is likely the lesion portion of the image could only
be a few pixels as cameras are mounted at a height to avoid interference with day-to-
day activities. In addition, for training any deep learning model from scratch, one needs
to have large amounts of supervised data; for example, the pictures of sows manually
annotated with bounded boxes around the lesion region to make the model understand
the difference between lesion and all other objects in an image. To make these algorithms
better at generalizing, focus should not only be on the dataset size but also on the data
quality so that the model can extract different patterns and features from the data during
the training phase.

Many applications with livestock species have the limitation of a small, annotated
dataset. To tackle the limitations of a small-sized dataset, transfer learning has been used
to minimize this gap. It is a machine learning technique which reuses a model trained for
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one task by applying it to another, related task. It uses the weights or features of a model
that has been trained on much bigger datasets like MS COCO or ImageNet and feeds them
into the target network. Then, modifications are performed in the initial and final layers
to accommodate predictions on the custom dataset. The middle layers of any CNN learn
general features of objects like specific edges, color patches, etc. and are applicable across
many datasets and tasks. The target model freezes its middle layers, uses the mid-layer
features from the base model, and retrains its initial and last layers to learn specific features
related to the custom dataset. Jensen and Pedersen used transfer learning to localize and
count pigs in slaughterhouses [18].

Therefore, the objectives of this study were to

• Compare the performance of deep learning models, including two versions of YOLO
(5s, 5m and 8s, 8m) and two versions of FRCNN (R50 Backbone and X-101 Backbone)
in the localization of shoulder lesions in various stages of development.

• Compare two traditional imaging segmentation methods (Adapting thresholding
and Otsu’s method thresholding) and two deep learning-based U-Net architectures
(Vanilla and Attention U-net) to segment lesion pixels and estimate size.

The paper is structured as follows: Section 1, “Introduction”, outlines previous work;
Section 2, “Materials and Methods”, includes details on the data collection (Section 2.1),
lesion localization (Section 2.2), and segmentation processes (Section 2.3), along with size
referencing techniques (Section 2.4); Section 3, “Results”, presents the findings on lesion
localization (Section 3.1) and segmentation (Section 3.2) and addresses the challenges
encountered (Section 3.3); Section 4 compares the findings with other studies under “Dis-
cussion” and the paper concludes in Section 5, “Conclusions”, which summarizes the key
findings and insights.

2. Materials and Methods
2.1. Data Collection

The experiment was conducted at the U.S. Meat Animal Research Centre (USMARC)
located outside Clay Center, NE, USA. All animal husbandry protocols were performed in
compliance with federal and institutional regulations regarding proper animal care prac-
tices and were approved by the USMARC Institutional Animal Care and Use Committee
(2015–2021). The facility at USMARC is a farrow to finish swine production unit. This
study utilized 360 sows of a Yorkshire–Landrace cross breed. This dataset was from a
study designed to test behavioural and production characteristics of sows housed in three
different crate sizes [19]. The images were captured in one of the two farrowing facilities.
The farrowing facility housed three farrowing rooms, with each room containing twenty
farrowing crates, totaling sixty crates per farrowing cycle. The facility was well lit, with
the lights being on for 12 h a day, from 5:30 a.m. until 5:30 p.m. An aluminium theatre
triangle truss, 21.6 m in length, was placed above each row of crates. The bottom end of
the truss was at an approximate height of 2.6 m above the ground. A time-of-flight depth
sensor with an integrated digital camera (Kinect V2™, Microsoft, Redmond, WA, USA)
was centred above each crate and mounted on the truss’s bottom at a height of 2.55 m
from the floor. Sensors were enclosed within a waterproof housing to protect the cameras
during pressure washing and disinfecting. Digital and depth images were collected every
5 s. Only the RGB images (resolution 1920 × 1080) were used for the experiment. The
setup can be seen in Figure 1. One mini-PC with Windows 10 Home Edition (Windows
10 Home, Microsoft, Redmond, WA, USA) was connected to a single camera. A total of
20 mini-PCs were connected to an external disk station (DS1517+, Synology Inc., Bellevue,
WA, USA), each having five 10 TB hard disk drives (ST10000VN0004, Seagate Technology
LLC, Cupertino, CA, USA). Only images collected during the lights-on period of the day
were used. The room was illuminated with 20 T-8 fluorescent bulbs.
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Figure 1. Image collection system utlizing a Kinect V2™ mounted on an aluminum truss.

An image capturing program was developed in MATLAB (R2017a, The Math-Works,
Inc., Natick, MA, USA). This program was designed to capture and store one digital image
approximately every 5 s, providing a view of lesion development across the four-week
period of sow confinement in crates. Out of all the sows, 70 animals developed lesions.
Within this timeframe, a total of 824 images were filtered, each depicting the progression of
shoulder lesions in 70 sows. The dataset was split in the 80:20 train to test ratio.

Table 1 offers insight into the distribution of images across different weeks of lactation.
Notably, data from the first week, where lesions are typically not visually evident, was also
included as part of the dataset to enhance the model’s capability to handle false positives.
This increase in data size aimed to enhance the model’s capability to handle false positives.

Table 1. Distribution of images by week in the dataset.

Week Number of Images

1 93
2 293
3 269
4 169

Throughout this study, the progression of lesions became apparent, with most lesions
manifesting visual signs during the 1–2-week phase. These initial stages are characterized
by minor wounds limited to the outer layer (epidermis) marked by reddening of the affected
area. As time progressed to week 3, more severe lesions emerged, causing abrasions and
reaching the lower skin layer (dermis) while growing in diameter and forming granulated
tissue. By the fourth week, the most severe cases exhibited signs of deep bone lesions.
Figure 2 shows the lesion progression of a severe lesion. It is important to highlight that
not all the sows followed the same timeline for lesion development. Benign cases might
undergo healing during later stages, often after forming scabs within the initial 2 weeks.



Animals 2024, 14, 131 5 of 14Animals 2024, 14, x FOR PEER REVIEW 5 of 15 
 

 
Figure 2. Lesion progression over the farrowing cycle. (a) Lesion in the first week—minimal visible 
signs. (b) Lesion in the second week—top layer affected. (c) Lesion in the third week—scab formed. 
(d) Lesion in the fourth week—increased lesion diameter with possible dermis damage. 

2.2. Lesion Localization 
Figure 3 shows a sample image. To minimize computation for training and inference, 

cropping was applied because the cameras’ positions were fixed, and the animals were 
confined to the center of the crate. Precise identification of lesion boundaries was crucial 
for size determination. This was achieved using deep learning-based object detection 
models, which could detect lesions from sow images for localization and output bounding 
box coordinates of the lesion within the frame. 

 
(a) (b) 

Figure 3. (a) Sample RGB images collected. (b) Cropped RGB image. 

Two object detection architectures were tested, named YOLO (You Only Look Once) 
and Faster R-CNN (Region-based Convolutional Neural Network). 
 YOLO (You Only Look Once) approaches object detection as a regression problem. 

These models are renowned for their exceptional balance between speed and 
accuracy, making them ideal for real-time applications. This is crucial in a production 
se ing where rapid and reliable detection of shoulder lesions is essential. The 
availability of various model sizes (small and medium) allowed for the tailoring of 
the model to the computational resources available and the optimization of either 

Figure 2. Lesion progression over the farrowing cycle. (a) Lesion in the first week—minimal visible
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2.2. Lesion Localization

Figure 3 shows a sample image. To minimize computation for training and inference,
cropping was applied because the cameras’ positions were fixed, and the animals were
confined to the center of the crate. Precise identification of lesion boundaries was crucial for
size determination. This was achieved using deep learning-based object detection models,
which could detect lesions from sow images for localization and output bounding box
coordinates of the lesion within the frame.
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Two object detection architectures were tested, named YOLO (You Only Look Once)
and Faster R-CNN (Region-based Convolutional Neural Network).

• YOLO (You Only Look Once) approaches object detection as a regression problem.
These models are renowned for their exceptional balance between speed and accuracy,
making them ideal for real-time applications. This is crucial in a production setting
where rapid and reliable detection of shoulder lesions is essential. The availability of
various model sizes (small and medium) allowed for the tailoring of the model to the
computational resources available and the optimization of either speed or accuracy. It
processes entire images in one step, providing direct predictions for bounding boxes
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and class probabilities. This study explored two different versions of YOLO developed
by Ultralytics [20] as seen in Figure 4, namely v5 and v8, with varying architecture
sizes (small “s” and medium “m”).

• Faster-RCNN is a two-stage detector, which uses a Region Proposal Network (RPN)
instead of using a selective search algorithm to output object proposals. Region-of-
Interest (ROI) pooling is applied to make all proposals the same size. Then, processed
proposals are passed to a fully connected layer that classifies the objects in the bound-
ing boxes. Two different backbone models, ResNet-50 and ResNet-101, pre-trained
on ImageNet classification tasks were implemented to leverage their deep residual
learning framework. This is particularly advantageous for capturing complex features
of shoulder lesions, which might be missed by shallower networks like YOLO.
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Due to limitations in the dataset size, transfer learning was employed. This method
fine-tuned a pre-trained detector with COCO or ImageNet weights to adapt it to a custom
dataset. Both the YOLO and FRCNN models utilized the PyTorch framework (Version 1.9).
Data preparation was conducted using OpenCV (Version 4.6.0), NumPy (Version 1.23),
and Pandas (Version 1.5.0). Matplotlib (Version 3.6.0) was employed for data visualiza-
tion. All models were trained for 300 epochs, with early stopping set to 50 consecutive
iterations without performance improvement to prevent overfitting. The hyperparameters
for FRCNN included a batch size of 8, a learning rate of 0.00025, and ReLU activation.
For FRCNN, the default image size range of (800, 1333) pixels was used. For YOLOv5
and YOLOv8, default hyperparameters from [21] were used and the input images were
resized to 1280 by 720. Object detection performance was measured by using mean average
precision (mAP), which takes classification and localization into account while evaluating.
The predicted bounding boxes are compared with the ground truth coordinate boxes and
if the overlap between them is more than the threshold value of Intersection-over-Union
(IoU), then it is considered a True Positive (TP) otherwise it gets classified as a False Positive
(FP). If the model fails to detect anything when the object is there, it is a False Negative (FN).
After this, precision and recall of a model are calculated. Then, the mean of all the average
precision values ranging across different IoU thresholds from 0.50 to 0.95 in increments of
0.05 was calculated as shown in Equation (1); for this research, n = 1, as the model had to
detect a single class.
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mAP =
1
n

n

∑
i=0

APi (1)

where: n = number of classes.

2.3. Lesion Pixel Segmentation

Following the localization of shoulder lesions within the frames using object detection,
the next crucial step involved segmenting the lesion pixels within the cropped bounding
boxes. Accurate pixel-level segmentation was essential for precisely quantifying the size
and extent of shoulder lesions. To obtain the segmented lesion pixels, both traditional and
DL-based techniques were tested on the detected regions.

Image-processing-based binarization techniques were first used to separate out the
lesion pixels from the sow’s body, as lesions were darker in color when compared to the
rest of the body. Python’s OpenCV module was used to implement two automatic image
thresholding techniques, namely Otsu’s method and Gaussian adaptive thresholding.
Otsu’s method returns a single intensity threshold that divides pixels into two classes:
foreground and background. The base value is calculated by maximizing or minimizing
the intensity variance between both classes. In adaptive thresholding, different thresholds
are calculated for different parts of the image for segregating all the pixels. This can handle
variations in lighting due to shadows from the crate bars and multiple lesion clusters,
ensuring robust pixel segmentation across the entire dataset.

Traditional image binarization might not work consistently when there is a lot of
shadow noise from crate bars in the image [20] or when the variation in the lesion and
the sow’s skin pixels is insufficient for it to differentiate between them, especially in
earlier stages of development. Deep learning-based techniques successfully addressed
these challenges where traditional image processing falls short. U-Net [22] is one such
architecture that has been extensively implemented in the biomedical field for pixel-level
segmentation. It is based on an encoder–decoder architecture. The vanilla U-Net alongside
a variation proposed in [23] were implemented, where attention gates were introduced
within the CNN architecture to make the network focus on the target object, suppressing
irrelevant information within the region. Both models were initialized using ImageNet
weights with frozen VGG16 backbone. ReLU was used as the activation function, with a
batch size of 8, binary cross entropy as the loss function, a learning rate of 0.001, and an
Adam optimizer. Both models were trained for 100 epochs.

The Dice coefficient was used for evaluating the performance of all the pixel segmen-
tation approaches. It assesses how well a predicted binary mask aligns with a ground truth
binary mask. The Dice coefficient produces a value between 0 and 1, where 0 indicates no
overlap and 1 indicates a perfect match. ImageJ was used to manually annotate the lesion
pixels and obtain the corresponding binary masks.

Dice Coe f f icient =
2·|TP|

2·|TP|+ |FP|+ |FN| (2)

where

• TP represents the number of true positive pixels, i.e., pixels that are correctly classified
as lesions in both the ground truth and predicted masks.

• FP represents the number of false positive pixels, i.e., pixels that are classified as
lesions in the predicted mask but not in the ground truth.

• FN represents the number of false negative pixels, i.e., pixels that are lesions in the
ground truth but not in the predicted mask.

2.4. Size Referencing

To estimate the area covered by lesions in measurable units, a calibration was con-
ducted using the crate’s anti-crush bar, which was positioned at the same level as the lying
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sow and at a similar shoulder height, serving as a reference object, as shown in Figure 5.
The bar had a diameter of 25.4 mm and was 15 pixels wide. These values were utilized to
calculate the area of one pixel in millimeters, which amounted to 2.87 mm2. By applying
Equation (3), the lesion’s area was converted from pixels to mm2.

Lesion Area (mm2) = Number o f lesion pixels × 2.87
mm2

pixel
(3)
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and then performing size referencing to estimated size.
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3. Results
3.1. Lesion Localization

The models were trained using a 32 GB NVIDIA Tesla V100 GPU. The main goal
of this research was to identify shoulder lesions and determine their size. To achieve
this, various CNN-based models for lesion localization and pixel segmentation employing
image processing techniques were used. For lesion localization, Faster R-CNN (FRCNN)
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was trained with two different ImageNet backbones and two YOLO versions: YOLOv5
and YOLOv8, each with varying architectures. YOLO models outperformed FRCNN, as
indicated in Table 2.

Table 2. Comparison of performance metrics for YOLOv5, YOLOv8, and Faster R-CNN (FRCNN)
object detection models. The table presents mean average precision (mAP) metrics at two different
scales: mAP at a threshold of 0.5, and mAP at a threshold of 0.5:0.95, representing the average mAP
calculated at IoU thresholds from 0.5 to 0.95 in steps of 0.05.

Architecture mAP@0.5 mAP@0.5:0.95::0.05

YOLOv5s 0.91 0.46
YOLOv5m 0.92 0.48
YOLOv8s 0.84 0.31
YOLOv8m 0.81 0.35

FRCNN–R50 Backbone 0.26 0.12
FRCNN–X-101 Backbone 0.56 0.14

YOLOv5 models excelled in lesion localization, exhibiting fewer false positives, and
detecting lesions in early stages of development compared to FRCNN and YOLOv8. As a
result, YOLOv5m, with an mAP@0.5 of 0.92 and mAP@0.5:0.95::0.05 of 0.48, was selected for
the localization task. This performance difference may be attributed, in part, to dataset size.
FRCNN’s two-stage nature might require a larger dataset for optimal learning, whereas
YOLO’s single-stage architecture yielded promising results even with smaller datasets, in
line with [24]. After using a Python script to crop the detected lesion regions, segmentation
techniques were applied to calculate the lesion area in terms of pixels.

3.2. Lesion Segmentation

Binarization techniques were employed to isolate lesion pixels within the cropped
bounding boxes. Regarding traditional image binarization techniques, Otsu’s method
exhibited better performance than Adaptive thresholding. The subpar performance of
adaptive thresholding can be attributed to its sensitivity to local lighting conditions, result-
ing in multiple clustered segmented regions within a single cropped frame, impacted by
non-uniform lighting in the crates.

During the second week of lesion progression, deep learning-based methods out-
performed traditional image processing techniques. The vanilla U-Net achieved a Dice
coefficient of 0.71, followed closely by its attention gates-based counterpart at 0.68, both
surpassing Otsu’s method at 0.65 as shown in Table 3.

Table 3. Dice coefficients for segmentation techniques across various weeks of lesion progression.

Segmentation Method
Dice Coefficient

2nd Week 3rd Week 4th Week

Adaptive Thresholding 0.38 0.20 0.16
Otsu’s Method 0.66 0.83 0.82
Vanilla U-Net 0.72 0.63 0.61

Attention U-Net 0.68 0.63 0.62

However, as lesions became more pronounced, and the distinction between fore-
ground and background pixels became clearer, Otsu’s method outperformed all other
techniques. It achieved Dice coefficients of 0.83 and 0.81 for lesions in the third and fourth
weeks of development, respectively, significantly surpassing the performance of DL-based
segmentation models.

The U-Net-based models showed superior performance in the early stages of the
analysis. However, they encountered difficulties as the analysis progressed, as seen in
Figure 7. The issue arose because these models were proficient at identifying pixels with
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lighter intensities as part of the lesions. Yet, as the lesions advanced, the pixels within them
became darker. Despite this change, the U-Net models continued to identify the lighter skin
pixels as lesions, which ultimately limited their effectiveness compared to Otsu’s method.
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3.3. Challenges

Non-uniform crate lighting and sow movement were two big challenges faced in size
estimation. Lesions were only apparent when the sow was lying on its sides. The sows’
movement impacted how the lesion area was viewed by the camera, as seen in Figure 8. The
lesion pixel’s color intensity was impacted by the movement which can highly influence
the segmentation process leading to variation in estimated lesion pixel count.
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In addition to the sow’s movement, the bars of the crate caused occlusion, which
at times made it challenging to accurately localize the lesion as it could become hidden
behind these bars. Furthermore, shadows cast by these bars affected the binarization
process as shown in Figure 9a. Deep learning-based methods proved more effective at
segmenting pixels that included shadows, while traditional binarization techniques like
Otsu’s struggled because they sometimes misclassified lesion pixels as shadows, mainly
due to the limited difference in pixel intensity between the two (Figure 9b).
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The binarization techniques performed poorly when the captured image had a sow
being treated for lesions using a topical solution like zinc oxide. The zinc oxide ointment
was the same color intensity (deep yellow) as a lesion. Algorithms mistake the applied
solution for lesion pixels outputting a larger lesion area. Lesions in this study are notably
relatively minor and continued to resolve not progress throughout the imaging period.
This is in part due to the installation of new crates in the facility. These crates provided a
large sow space for the animals. Also, all animals in this study were fourth parity or less,
leading to smaller a body structure of the animals. Both factors contributed to provide
appropriate comfort and improved the ability of the sows to rise, likely minimizing lesions.
The floor slats were galvanized metal. The galvanization process leaves a slightly abrasive
surface. This abrasiveness disappears with subsequent use but was present at the time of
this study and was a contributing factor in the ethology and development of these lesions.

4. Discussion

This work proposed a method that advances the detection and segmentation of shoul-
der lesions in sows. While thermal imaging surpasses RGB in early detection, its high cost
limits practicality in farm settings [8,25]. The combination of deep learning and image pro-
cessing techniques offers a cost-effective alternative. Specifically, YOLOv5 models excelled
in localizing lesions within frames, with the YOLOv5m model performing the best with an
mAP@0.5 of 0.92 and mAP@0.5:0.95::0.05 of 0.48. It strikes a balance between speed and
accuracy, making it suitable for real-time applications where both these factors are crucial,
as seen in [26–28].

Deep learning-based segmentation models exhibited superior noise handling capa-
bilities, effectively addressing issues like inconsistent illumination and shadows. But,
U-Net models were unable to segment pixels well in the later stages, which is in contrast
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with [13,29,30]. It is worth noting that these studies implementing U-Net for skin lesion
segmentation used microscopic images collected under uniform lighting and consistent
physical conditions, unlike the conditions in a sow barn. Extending the dataset to include
more images from the latter stages of lesion progression may improve the binary mask ac-
curacy, provided there are no hardware constraints. Otsu-based binarization demonstrated
strong performance in the later stages of lesion detection with Dice coefficients of 0.83 and
0.82 in the third and fourth week, respectively, where DL-based U-Net models initially
performed better.

Otsu’s method had speed advantages and did not require expensive hardware imple-
mentation compared to deep learning architectures as also mentioned in [31]. To enhance
its performance in the early stages, pre-binarization steps, such as increasing image contrast
through histogram equalization, could further improve segmentation, which was also seen
in [32]. While this may result in some information loss of lesion pixels, it can define clearer
boundaries for the lesion area, ultimately improving binarization performance.

5. Conclusions

In summary, this study used RGB images collected on 360 lactating sows housed
in typical farrowing crates. This study aimed to determine if images could be used to
monitor shoulder lesion formation. This study first compared the performance of two
different deep-learning models in the localization of sow shoulder lesions in various stages
of development. It was determined that the YOLOv5s and YOLOv5m performed the
best with a mAP@0.5 of 0.91 and 0.92, respectively. YOLOv8s and YOLOv8m models
performed the second best with a mAP@0.5 of 0.84 and 0.82, respectively. Neither the
FRCNN–R50 backbone nor the FRCNN–X-101 Backbone performed well with a mAP@0.5
of 0.26 and 0.56, respectively. It was hypothesized that the dataset was too small for the
FRCNN models.

After identifying the lesions, this study tested traditional image processing and deep
learning-based binarization techniques to estimate lesion size. The shoulder lesions ob-
served in this study changed color as the lesions progressed. This color change resulted in
changes in model performance over time. Early in lesion development, the deep-learning
algorithms performed slightly better. Overall, Otsu’s method performed the best, although
this model had overestimated lesion size in the early developing lesions.

This research highlights the effectiveness of using RGB images for detecting and
monitoring sow shoulder lesions. However, more work needs to be completed to make
this a viable Precision Livestock Farming management technique. In addition, the cost of
cameras and computers may not make this approach cost-effective on its own; however,
if cameras were added to the farrowing system, this technique could be one of a suite of
parameters that could be monitored.
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