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Simple Summary: Accurately estimating body weight is crucial for managing water buffalo health
and optimizing feeding strategies. This study explored the effectiveness of machine learning models
in predicting body weight based on body measurements. Principal component analysis was em-
ployed to reduce the dimensionality of the data and identify the most relevant features. Subsequently,
Gradient Boosting and Random Forest algorithms were utilized to predict body weight using the
reduced data set. The Gradient Boosting algorithm demonstrated superior performance compared to
the Random Forest algorithm. These findings suggest that the combination of principal component
analysis and Gradient Boosting offers a reliable and effective method for estimating body weight in
water buffaloes. This approach holds promise for improving animal production and health manage-
ment practices. Future research could focus on enhancing the applicability and generalizability of
these models to diverse water buffalo populations across various geographical regions.

Abstract: This study aims to use advanced machine learning techniques supported by Principal
Component Analysis (PCA) to estimate body weight (BW) in buffalos raised in southeastern Mexico
and compare their performance. The first stage of the current study consists of body measurements
and the process of determining the most informative variables using PCA, a dimension reduction
method. This process reduces the data size by eliminating the complex structure of the model and
provides a faster and more effective learning process. As a second stage, two separate prediction
models were developed with Gradient Boosting and Random Forest algorithms, using the principal
components obtained from the data set reduced by PCA. The performances of both models were
compared using R2, RMSE and MAE metrics, and showed that the Gradient Boosting model achieved
a better prediction performance with a higher R2 value and lower error rates than the Random
Forest model. In conclusion, PCA-supported modeling applications can provide more reliable results,
and the Gradient Boosting algorithm is superior to Random Forest in this context. The current
study demonstrates the potential use of machine learning approaches in estimating body weight in
water buffalos, and will support sustainable animal husbandry by contributing to decision making
processes in the field of animal science.
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1. Introduction

In recent years, buffalo (Bubalus bubalis) breeding has gained a place as an important
breeding activity in the livestock sector in Mexico, as it is a source of milk, dairy products,
and meat [1]. Buffaloes offer many important advantages compared to cattle, such as
having better adaptation abilities and greater resistance to tropical animal diseases, as
well as better utilization of low-quality feed in terms of nutritional quality [2]. In Mexico,
buffalos live in states such as Veracruz, Tabasco, Chiapas and Campeche, which have a hot
and humid climate with large swamps [3]. Although producers perceive buffalo farming as
profitable, much research is necessary regarding animal production parameters [4]. Growth
rate is a characteristic of livestock production’s adaptability and economic suitability [5],
making it an essential parameter in animal production.

For this reason, body weight (BW) appears as the most critical information in produc-
tion systems, as it will vary depending on many financial characteristics [6,7]. Accurate BW
prediction is a basis in animal science studies, such as animal healthcare management, ani-
mal husbandry, and determining drug doses and feeding optimization [8]. BW estimation
poses a complex challenge in identifying and modeling many processes in animal breeding
due to many factors that include computationally demanding situations, from determining
herd management strategies to genetic selection. In this context, it is evident that more
research is needed to estimate BW accurately and reliably.

Advances that will further the ability to benefit from these complex data sets have
occurred in machine learning and many statistical approaches [9]. Principal Component
Analysis (PCA) helps to separate high-dimensional data into their components in the most
informative way [10]. In this form, PCA is emerging as a leading technique to simplify
analytical processes that can be applied later to complex and high-dimensional data sets.
PCA alleviates the high-dimension problem and increases the interpretability of the model
without sacrificing critical information [11].

However, transforming the explanatory variables for BW prediction through PCA is
only a precursor to the predictive modeling journey. The trick is that providing valid and
reliable predictions depends on choosing robust algorithms to exploit the reduced feature
space [12]. In this context, algorithms such as Gradient Boosting and Random Forest are
powerful prediction methods known for their high prediction abilities.

Combining PCA with Gradient Boosting and Random Forest algorithms is a sequential
application of these methods and a strategic approach to improving the performance of
Gradient Boosting and Random Forest algorithms, which are predictive algorithms [13].
This combination aims to leverage the strengths of PCA, such as feature extraction and
noise reduction capabilities, Gradient Boosting’s ability to optimize loss functions, and
Random Forest’s ensemble strategy that increases accuracy and controls overfitting.

The current study aims to provide empirical evidence on the collective impact of
these methods on estimating BW. With our approach, BW underlines the importance
of methodical feature engineering followed by the application of complex algorithms,
paving the way for a robust prediction framework that has the potential to revolutionize
prediction applications.

2. Materials and Methods

The buffalo were cared for according to the ethical guidelines and animal experimen-
tation regulations of the Department of Agricultural Sciences of the Universidad Juárez
Autónoma de Tabasco (approval code: UJAT-2012-IA-18) on a commercial farm located
in Isla, Veracruz State, Mexico. The climatic conditions of the region are hot and humid,
with summer rains, and the average annual temperature and precipitation are 25 ◦C and
2750 mm, respectively.
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The experiment was carried out at the commercial farm “Polcay” in the municipality
of Sabancuy (18◦99′ N 91◦14′ W), located northeast of the municipality of Carmen in the
southwest of the state of Campeche, Mexico. The climatic condition of the region is warm
and sub-humid, with summer rains, and an average annual temperature of 26.7 ◦C and
rainfall of 1412 mm. The animals grazed on native grasses such as Cenchrus echinatus
(Mul), Dactyloctenium aegiptyum (chimes su’uk), Sporobolus virginicus (ch’ilibil su’uk), and
Spartina spartinae (k’oxolaak), and grasses such as Brachiaraia brizantha and Panicum maximum
ex Poaceae, plus water ad libitum.

BW and body measurements were taken in 130 Murrah buffaloes aged 6 to 10 months
(78 females and 52 males). The body measurements recorded were: (1) hearth girth (HG),
(2) thorax width (TW), (3) hip width (HW), (4) body length (BL) and (5) diagonal body
length (BDL), (6) withers height (WH), (7) rump height (RH) and (8) rib depth (RD),
respectively. BW was recorded by weighing the animals on a fixed platform scale with
a capacity of 2000 kg and an accuracy of 0.5 kg (Revuelta, Torreon, Coahuila, Mexico),
while body measurements were recorded using a flexible fibreglass tape measure (Truper®,
Truper, S. A. de C. V., San Lorenzo, Mexico) and a 65 cm forcipule, as previously described
by [6].

Statistical Analysis

Principal Component Analysis (PCA) is a dimensionality reduction technique pro-
posed by Karl Pearson in 1901, and is used in almost all fields of science [10,14]. Originating
in the early 20th century, PCA has been proposed as a basic linear method for reducing
dimensions in a variety of applications, such as compressing existing data sets [12,15]. The
main purpose of PCA is as a statistical tool that expresses the variability occurring in the
data set by creating a new, compact subset of variables known as principal components [16].
The technique reduces the size of data in a high-dimensional structure by projecting the ini-
tial data onto a new axis defined by these principal components [12]. PCA is also performed
by constructing a linear subspace of reduced dimensions that captures the critical variations
present in the data set. In other words, it enables the determination of orthogonal directions
that effectively explain the variance of the data. In addition, building sub-dimensions
allows data to be reflected in these orthogonal directions [10,17]. Furthermore, the process
of PCA involves determining a linear transformation that maximizes the data variance by
calculating the eigenvalues and eigenvectors of the data’s covariance matrix [10,12]. Here,
eigenvectors define the essential directions that maximize the variance, while eigenvalues
show the variance explained by each principal component [12,18]. In this way, the principal
components with the highest eigenvalues are prioritized, effectively achieving dimensional
reduction [19]. The reliability of PCA is limited to linear features, as it often struggles with
data showing non-linear features.

After dimensionality reduction through PCA, a new perspective is gained in estimating
BW using Gradient Boosting and Random Forest algorithms to take advantage of the
dimensionally reduced and important feature set. The logic in choosing these algorithms
is twofold: First, the Gradient Boosting algorithm is known for its predictive accuracy,
especially in data sets where the relationship between explanatory variables and the
outcome is complex and non-linear. Secondly, Random Forest emerges as a highly effective
algorithm for feature selection after PCA by leveraging the power of multiple decision
trees to improve prediction accuracy and control overfitting. Both methods are well suited
to handling reduced-dimensional datasets generated by PCA. This makes them ideal for
building a predictive model that is both effective and performs well.

Ensemble learning completes the process by combining the predictive power of various
models, such as Random Forest, Boosting and Bagging, to increase the overall accuracy
of the prediction to the response variable. The Random Forest (RF) algorithm, which is
one of the ensemble learning algorithms and aims to create many decision trees, prevents
the overfitting problem by eliminating the high correlation between trees, and provides a
balanced model [20]. The Random Forest algorithm is an algorithm that adds a layer of
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randomness to the Bagging algorithm [21]. The Random Forest algorithm consists of three
processes [22]. The first process of the algorithm is to determine the individual trees. The
second process develops a regression tree for each sample with un-pruned aspects. The
last process is to predict the latest data from the constructed tree [8].

Boosting algorithms are algorithms that iteratively combine learners that are slightly
better than random learners into stronger learners [23]. One of the Boosting algorithms, the
Gradient Boosting algorithm, works based on decision trees, similar to the Random Forest al-
gorithm. In addition, Gradient Boosting can also be considered an ensemble method [24,25].
Furthermore, it differentiates itself from other algorithms with its unique community-
building approach. This algorithm combines different explanatory variables sequentially
with a partial shrinkage on them, and thus can be used in variable selection [25,26]. The
strategy of the Gradient Boosting algorithm, unlike the Random Forest algorithm, consists
of a process that involves sequentially adding trees to the ensemble, each of which is
adjusted according to the cumulative error of the ensemble’s predictions. The Gradient
Boosting algorithm can be shown as below:

y = µ + ∑N
n=1 vhn(y; X) + e , (1)

where y is defined as the actual response variable vector, µ is the mean for the sample of
the study, v is defined as the shrinkage parameter, hn is defined as the predictor model,
and e emphasizes the vector of error term for the obtained model. The building of Gradient
Boosting requires the cautious tuning of hyper-parameters.

The obtained models of the current study were compared using the goodness of fit
criteria, as given below [27]:

1. Coefficient of determination (R2):

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2 (2)

2. Root mean square error (RMSE):

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (3)

3. Mean Absolute Error (MAE):

MAE =
1
n

n

∑
i=1

|yi − ŷi| (4)

All statistical evaluations were made using R and Python software [28,29]. Descrip-
tive statistics were used to provide the necessary information about the data. Descriptive
statistics for explanatory and response variables were performed using the “psych”
package available in R software [30]. Pearson correlation analysis was used with the
“corrplot” package in R software to visualize the relationship between explanatory and
response variables [31]. Principal component analysis was carried out using the “stats”
package in R software [28]. To visualize the scree plot from the PCA, the “factoextra”
package was used [32]. For the partitioning of the data set into train and test sets, the
“caret” package was used [33]. “gbm” and “randomForest” packages were used to apply
the Gradient Boosting and Random Forest algorithms used to estimate BW from the
loadings obtained as a result of PCA analysis [22,34]. Python software was used to
visualize the 3D plots.
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3. Results

Table 1 presents descriptive statistics of different physical traits separated by the
buffaloes’ sex. While the number of observations (n) for female buffaloes is 78, this number
is 52 for males. According to Table 1, the average live weight (BW) of female buffalos is
223.14 ± 20.10 kg, while this value for males is 230.48 ± 24.23 kg, indicating that males are
slightly heavier. The average height (HG) in both sexes is close—149.33 ± 6.18 cm in females
and 148.31 ± 6.67 cm in males. Other measures such as TW, HW, BL, BDL, WH, RH and RD
also show similar variances for both sexes, but overall indicate slightly higher means and a
wider range of distribution in males. These findings highlight differences and variations in
physical characteristics between sexes, which should be considered when developing body
weight prediction models. These measurements can be considered important parameters
for understanding and managing biodiversity among buffalo populations.

Table 1. Descriptive statistics of the response and explanatory variables.

Sex Variables n Mean ± Std. Deviation Min Max

Female

BW (kg)

78

223.14 ± 20.10 184 294
HG (cm) 149.33 ± 6.18 138 168
TW (cm) 30.18 ± 3.81 24 53
HW (cm) 38.76 ± 2.51 31 44
BL (cm) 67.27 ± 6.75 54 92

BDL (cm) 88.15 ± 5.17 66 100
WH (cm) 107.91 ± 5.55 95 118
RH (cm) 110.37 ± 4.03 100 122
RD (cm) 58.88 ± 4.83 50 70

Male

BW (kg)

52

230.48 ± 24.23 176 285
HG (cm) 148.31 ± 6.67 130 162
TW (cm) 29.25 ± 2.37 23 37
HW (cm) 37.17 ± 2.51 26 42
BL (cm) 65.33 ± 6.69 55 79

BDL (cm) 88.94 ± 4.43 70 101
WH (cm) 108.75 ± 5.01 95 118
RH (cm) 111.6 ± 5.74 98 128
RD (cm) 56.44 ± 3.25 49 69

In Figure 1, the correlation coefficients between live weight (BW) and various body
measurements in buffaloes are expressed in three groups: female, male and the whole
population. This graphically illustrates how relationships between these measures may
vary across sex and the general population. In this context, there appear to be moderate
correlation coefficients between live weight and other measurements for female buffaloes.
This indicates that body measurements in females show a relationship with live weight,
but are not high enough to conclude that this relationship is strong. This suggests that body
measurements of female buffaloes may have more complex relationships with live weight,
and that these relationships may be less linear. In this context, correlation coefficients are
generally higher for male buffaloes, indicating that body measurements have a stronger
and perhaps more linear relationship with body weight in males. This indicates that
certain body measurements may be a good indicator of live weight, as well as growth
and body composition in males. When the general population was examined, moderate
correlation coefficients could be observed when both male and female measurements were
averaged. This indicates that differences between sexes keep the correlation values of the
general population in balance. General population analysis shows that combining data
from both sexes makes the relationships between body measurements and body weight
more homogenized.
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Figure 1. Correlation matrix of the dataset. (a) female; (b) male; (c) all.

The results of the correlation analysis emphasize that sex is an important factor in
developing strategies for managing and feeding buffaloes according to sex, and show
that individualized approaches may be required. Due to the relatively low correlation
coefficients, especially in female buffaloes, it is believed that using Gradient Boosting and
Random Forest algorithms, as well as PCA analysis, will provide more reliable results in
model estimation.

The loadings obtained as a result of the PCA analysis and the information about the
variances explained in each principal component are presented in Table 2 and Figure 2.

Table 2. Loadings of principal components for sex and physical features.

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

Sex 0.077 −0.540 0.267 0.070 −0.314 0.578 −0.095 −0.260 0.165 −0.300
BW −0.408 −0.281 −0.311 0.337 0.151 0.300 −0.131 −0.050 −0.152 0.623
HG −0.463 −0.138 −0.014 0.210 0.353 0.044 0.351 0.206 −0.310 −0.578
TW −0.246 0.189 −0.002 −0.711 0.211 0.510 0.115 0.186 0.189 0.096
HW −0.349 0.304 −0.321 0.030 −0.116 −0.053 0.176 −0.718 0.304 −0.161
BL −0.265 0.302 0.057 0.233 −0.713 0.132 0.266 0.418 0.056 0.078

BDL −0.164 −0.352 −0.592 −0.333 −0.314 −0.248 −0.347 0.223 0.010 −0.239
WH −0.353 −0.117 0.440 −0.370 −0.254 −0.257 −0.014 −0.296 −0.534 0.164
RH −0.351 −0.316 0.357 0.029 0.129 −0.395 0.039 0.147 0.661 0.129
RD −0.291 0.392 0.233 0.167 0.084 0.102 −0.783 0.054 0.020 −0.213

Variance 0.281 0.170 0.102 0.097 0.084 0.075 0.064 0.060 0.047 0.020

Table 2 shows the loadings obtained as a result of PCA analysis and the variance
values explained by each principal component. In this context, it provides important
findings related to examining the physical characteristics of buffaloes and the effects of
gender on basic components. PC1 presents the largest explained variance in the data
set. The first four principal components explain more than 65% of the total explained
variance, and the first five principal components explain 73%. These ratios show that
the first five principal components represent the greatest variation between body weight
and other measurements of buffalos. The gender variable has a very large effect on the
second principal component (PC2). This shows that gender explains a significant part
of the variance explained by this component. This shows that the effect of gender on
physical characteristics is important, and that this variable defines a significant part of the
variance in the body structure of buffalos. Body weight (BW) has an extremely high positive
loading on the tenth principal component (PC10) while presenting negative loadings on



Animals 2024, 14, 293 7 of 14

the other principal components. This indicates that body weight has a complex structure
of variability among different fundamental components, and that this characteristic is
associated with a variety of physical measurements in different dimensions. These results
may require the development of gender-specific strategies in the rearing and management
of buffalos. In practices aimed at monitoring the health status of animals and in feeding
and breeding programs, the relationships of variables such as gender and live weight with
other physical measurements should be taken into account. The role of PCA in identifying
these components is critical to the development of other models that predict such features
and allow for more accurate and effective predictions.
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The percentage contribution of each principal component obtained from the PCA
analysis to the total variance is also expressed in Figure 2.

According to Figure 2, a typical sloping line shows that the first component has the
highest percentage of explained variance, and then the contribution of each additional
component decreases. In addition, focusing on the first five components may be sufficient,
especially since the first four components explain 65% of the total variance, and the first five
components explain 73%. This is consistent with the preservation of the most important
information from the data by significantly reducing the data set’s size while preserving the
defined amount of variance. Additionally, this scree plot and PCA results are critical for
managing the complexity and size of the dataset, supporting the application of powerful
machine learning algorithms such as Gradient Boosting and Random Forest.

The surface plot obtained when we estimated BW from the first six principal compo-
nents that explain 81% of the variance as a result of PCA analysis using different hyperpa-
rameter values of the Gradient Boosting algorithm is given in Figures 3–5. It is important
to interpret the 3D surface plots obtained in Figures 3–5. In this way, the optimum hyper-
parameters (n.trees and interaction.depth) are determined, and the hyperparameter values
that affect the model’s performance are seen.

According to Figure 3, it can be observed that the shrinkage and interaction.depth
values have a significant impact on R2. In addition, the fluctuations in R2 seen in the
graph show that the model better captures the overall structure of the data set. The
reason for these fluctuations seen in R2 is the overfitting problem and the increase in the
number of n.trees, which may cause the training time of the model to increase, and thus,
the performance to decrease. In addition, the effects of hyperparameters may vary due
to the unique structure of the dataset. When Figure 4 is examined, it is observed how
RMSE changes at certain n.trees and interaction.depth values. It shows at what point the
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model obtained for different hyperparameter combinations can give the optimal RMSE
value. Lower MAE values indicate better model performance. It is possible to see trends
similar to RMSE in MAE charts. It is also seen that MAE generally decreases with lower
interaction depth values and increasing n.tree values. As a result, the 3D surface plots
in Figures 3–5 show the sensitivity of the GBM model to hyperparameters, and how the
model obtained by determining these parameter values according to the graph affects the
overall performance. In addition, in the current study, lower interaction depth values and
increasing n.tree values generally increase the model’s accuracy and reliability. Tuning
the model’s hyperparameters based on these observations also increases the accuracy of
BW predictions.
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The 3D surface graphics created for RMSE, R2 and MAE corresponding to the hy-
perparameters of the resulting Random Forest model are presented in Figures 6–8. In
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this context, this visualizes how the maxnodes and minbucket hyperparameters affect the
model’s performance. The term “minbucket” in Figure 4 indicates the minimum number of
observations that should be present in the terminal nodes (leaves) in a decision tree. As the
“minbucket” value increases, the resulting model becomes less detailed and generalized,
which can reduce the risk of overfitting. The term “maxnodes” refers to a decision tree’s
maximum number of nodes. As the number of nodes in the resulting model increases, the
model has a better fit, which may also increase the risk of overfitting.
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According to Figure 6, it can be seen that R2 generally increases as the “minbucket”
increases, indicating that less detailed models fit the model better. Additionally, it can
be seen that R2 varies again as “maxnodes” increases. In Figure 7, for RMSE values, the
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increases in the “minbucket” term can decrease the RMSE values towards the good fit of
the model. The same comment can be made for the MAE values in Figure 8. As a result,
these graphs show that the “minbucket” and “maxnodes” hyperparameters significantly
impact the obtained model performance. Generally, larger “minbucket” values increase
the model’s generalization ability, while the effect of “maxnodes” is more complex and
based on the dataset. Adjusting the model in line with this information can optimize
its performance.

In evaluating the model performances of the Gradient Boosting and Random Forest
algorithm, R2, RMSE and MAE values are examined. In this context, the model perfor-
mances are presented in Table 3 with the optimal hyperparameter values for each model.
For both models, optimum values of hyperparameters such as the number of trees (n.trees
or ntree), tree depth (interaction.depth or maxnodes), shrinkage, and the minimum number
of observations in the node (n.minobsinnode or Minbucket) are specified.

Table 3. The goodness of fit criteria of the Gradient Boosting and Random Forest algorithms for
optimal hyperparameter values.

Hyperparameters of the Models

Gradient Boosting algorithm Random Forest algorithm

n.trees 600 ntree 200
interaction.depth 3 maxnodes 20

shrinkage 0.01 node_size 5
n.minobsinnode 5 minbucket 5

Goodness of Fit Criteria

Gradient Boosting algorithm Train Test Random Forest algorithm Train Test

R2 0.823 0.818 R2 0.704 0.684
RMSE 4.998 6.418 RMSE 6.870 9.425
MAE 3.971 5.287 MAE 5.306 8.939

According to Table 3, for the Gradient Boosting algorithm, R2 for the training set is
0.823 and for the test set is 0.818; these high values indicate that the model predicts the
data well. It is seen that the RMSE and MAE values are low in the training set and slightly
high in the test set. However, this shows that the model fits the training data well, but
makes slightly more errors in the test data. However, looking at RMSE and MAE, it can
be said that the errors are still at an acceptable level. For the Random Forest algorithm,
R2 values are lower than Gradient Boosting, indicating that the model is less capable of
predicting BW. Additionally, the RMSE and MAE values are higher than Gradient Boosting
for both the training and testing sets, indicating that the Random Forest model has higher
error rates.

4. Discussion

In the current study, principal component analysis (PCA) and two machine learning
algorithms, Gradient Boosting and Random Forest, were applied to estimate body weight
(BW) in buffaloes. PCA analysis was used to reduce the dimensionality in the dataset and
extract the most significant features. This method aims to improve the calculation time and
the model’s generalizability by ensuring that our model is trained on fewer, more practical
features. Then, using Gradient Boosting and Random Forest algorithms, BW was estimated
from the data, the sizes of which were reduced.

The Gradient Boosting algorithm predicted the BW quite well, with the model showing
high R2 values in the training and test sets. In addition, the RMSE and MAE values show
that the model’s error is acceptable. These results indicate that the algorithm achieves a
strong performance in estimating body weight in buffaloes.

On the other hand, the Random Forest algorithm showed relatively poorer perfor-
mance than the Gradient Boosting algorithm, with lower R2 values and higher error rates
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(RMSE and MAE). This suggests either that Random Forest is not the optimal model for this
dataset, or that the algorithm’s hyperparameters should be tuned to provide the best fit.

Various statistical methods have been used to estimate the BW in several species of
animal. One of them is PCA, which has been employed to work body conformation features
and advance some unobservable components to describe the body conformation of water
buffaloes [35]. In addition, PCA has been performed in the morphological description of
native goats, describing a significant proportion of the difference in BW [36]. Furthermore,
another usage of PCA has been applied to obtain an unbiased explanation of different
pre-aging body forms for Uda sheep [37]. These studies indicate that using PCA is quite an
effective method of predicting body weight in different livestock species.

Besides PCA, several machine learning algorithms have been used in livestock science.
One of these studies emphasized using artificial neural networks in estimating the milk
yield in dairy cows, showcasing machine learning algorithms in livestock sciences [38]. In
addition, [39] established a prediction model on calving using recurrent neural networks,
determining the potential use of machine learning in predicting animal-related measures.
Additionally, it points to the use of multi-trait genetic principal components to predict
reproductive traits in buffaloes [40].

However, it is important to note that the use of specific algorithms such as PCA-based
Gradient Boosting and Random Forest has not been described in the literature. Although
the use of machine learning algorithms has been seen in livestock sciences for various
purposes, including predicting milk yield and reproductive characteristics, few studies
specifically focus on estimating body weight in buffalos with the use of these algorithms.
Although live weight estimation has been achieved in buffaloes using different algorithms,
the lack of a PCA-supported algorithm shows a need for more studies, especially those
using with multi-dimensional data sets.

In estimating body weight from biometrical features, the Multivariate Adaptive Re-
gression Splines (MARS) algorithm was evaluated within the scope of several goodness
of fit criteria [5]. In this context, the aforementioned study was designed to predict body
weight for several train and test set proportions. The researchers determined a 70%-30%
split between the train and test sets as the most reliable model. Although the methods
used were different, they showed similar performance in terms of prediction. Even though
Gradient Boosting lagged behind in the train set, the test set gave more reliable results than
the aforementioned study.

Ref. [41] proposed a new approach, which is based on Principal Component Analysis
(PCA) and light gradient boosting machine (LightGBM) algorithms, for predicting stellar
atmospheric parameters from photometric data. To this end, the researchers used several
algorithms such as Random Forest, LightGBM, XGBoost, Gradient Boosting decision tree,
ANN, support vector regression and linear regression with PCA. In this context, the
PCA + LightGBM algorithm was the most reliable method for this study within the scope
of the calculation time and RMSE value range. Although it appeared as the best method in
this study, it does not provide much information related to the discussion because it does
not create a similar data structure.

Ref. [42] used several algorithms, such as the MARS algorithm, Bayesian ridge re-
gression, Ridge regression, support vector machines, Gradient Boosting, Random Rorests,
XGBoost algorithm, artificial neural networks, classification and regression trees, polyno-
mial regression, K-nearest neighbours and Genetic Algorithms for predicting weight in
sheep. According to the results of this study, the five most reliable methods were MARS,
Bayesian ridge regression, Ridge regression, support vector machines and Gradient Boost-
ing algorithms. When the results are compared with the current study, we see that the
evaluation criteria used are the same. This is an important criterion for comparing studies.
Both studies show similar results.

As a result, it has been determined that the Gradient Boosting algorithm provides
superior results over Random Forest in terms of prediction performance and minimizing
model error. Other articles in the Section 4 also concluded that the PCA-based Gradient
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Boosting algorithm is more reliable. However, to increase the generalization capacity
of both models and reduce possible overfitting problems, it is recommended to study
additional data analysis methods and different hyperparameter tuning techniques in many
areas. The accurate estimation of water buffaloes’ live weight is critical to animal health
and herd management practices. In this context, it is believed that the results of the present
study will make a significant contribution to studies carried out in the field. It is also
noteworthy that the results of this study only concern the Murrah breed reared in Mexico,
and so the model should be tested on other breeds such as Bufalypso, Mediterranean
and Swamp.

5. Conclusions

This study examined how the body weight of water buffaloes can be estimated using
machine learning models based on body measurements. In the study, PCA analysis was
used to reduce the size of the features and select the most significant predictors. With
this method, the principal components obtained from the data set were used for training
Gradient Boosting and Random Forest algorithms.

Our comparative results have shown that the Gradient Boosting algorithm provides
better results than the Random Forest algorithm in performance metrics such as R2, RMSE
and MAE. These results reveal that the Gradient Boosting algorithm is more effective than
the Random Forest algorithm in estimating the body weight of water buffaloes.

In conclusion, the use of dimensionality reduction with PCA and the Gradient Boosting
algorithm produces effective and reliable results in estimating the body weight of water
bison. These findings may provide significant benefits in animal production and health
management, particularly in optimizing feeding strategies and developmental monitoring.
Future studies may contribute to the development of machine learning-based body weight
prediction models by further increasing the applicability and generalizability of these
models for water buffalo populations in different geographies.
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