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Simple Summary: This article demonstrates that computed tomography combined with the use of
contrasts for imaging examinations can provide a general and comprehensive topographic view of
the vasculature, structures, and organs in frozen and glycerinated cadavers of Bradypus variegatus.
The objective is to present an alternative technique to the anatomical study of preserved frozen
and glycerinated cadavers using computed tomography. The study concludes by highlighting that
computed tomography allowed a general and comprehensive view of the anatomical structures of
frozen and glycerinated cadavers of B. variegatus, such as the topographic location of bone structures,
organs, and vessels, with soft tissues better visualized after intravenous or oral administration
of contrast.

Abstract: Bradypus variegatus has unique anatomical characteristics, and many of its vascular and
digestive tract aspects have yet to be clearly understood. This lack of information makes clinical
diagnoses and surgical procedures difficult. The aim of this study was to evaluate the anatomi-
cal aspects of frozen and glycerinated corpses of B. variegatus using computed tomography (CT),
emphasizing vascular and digestive contrast studies. Nine corpses that died during routine hos-
pital were examined via CT in the supine position with scanning in the craniocaudal direction. In
frozen cadavers, the contrast was injected into a cephalic vein after thawing and, subsequently, was
administered orally. In addition to bone structures, CT allowed the identification of organs, soft
tissues, and vascular structures in specimens. Visualization of soft tissues was better after contrast
been administered intravenously and orally, even without active vascularization. Furthermore, the
surfaces of the organs were highlighted by the glycerination method. With this technique, it was
possible to describe part of the vascularization of the brachial, cervical, thoracic, and abdominal
regions, in addition to highlighting the esophagus and part of the stomach. CT can be another
tool for the evaluation of B. variegatus cadavers by anatomists or pathologists, contributing to the
identification of anatomical structures.

Keywords: tomography anatomy; cadaver conservation; image diagnostic; morphology; three-toed
sloth; xenarthra
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1. Introduction

The use of computed tomography (CT) for morphological studies in animal species
makes it possible to deeply evidence structural relationships, allowing the visualization
of the structures in layers, especially mineralized tissues, with high definition and three-
dimensional delimitation of physiological and pathological irregularities. When performed
on preserved cadavers, it may reveal anatomical structures similar to the structures and
organs of a live animal [1,2].

CT applied to preserved cadavers is a methodology that can be applied to identify
pathological characteristics in morphological studies to improve the pathological under-
standing of species that have peculiar characteristics [3]. Despite postmortem changes in
biological tissues, preservation methods applied to cadavers must ensure the maintenance
of tissues with minimal morphological and color changes, allowing the identification of
anatomical structures and pathological changes [1,4].

Preservation through freezing and glycerination allows anatomical parts to be used
for a long period, preserving the morphology and color as close as possible to their original
condition, delaying postmortem changes, and ensuring better aesthetic and morphological
results, preserving the three-dimensional spatial anatomy, the principles of related structure
and function, and anatomical variations, including pathological changes [5–7].

CT has an important routine clinical role due to the possibility of identifying organs
and cavities that are difficult to assess and distinguishing different types of tissues and
structures [8,9]. Still, the possibility of using oral, urinary, and vascular contrasts will
optimize the study of organs and tissues by providing greater delimitation [10–12].

Due to a poor understanding of some of the morphology of B. variegatus, a tomographic
study is necessary. The aim of this study was to evaluate the anatomical aspects of frozen
and glycerinated bodies of B. variegatus using computed tomography, emphasizing studies
of vascular and digestive contrast.

2. Materials and Methods

The present study was conducted following the approval of the Animal Ethics and
Welfare Committee of Pará Federal University (Protocol No. 5943220321, Belém, Brazil).

For this study, nine cadavers of B. variegatus that died during routine procedures
at the Veterinary Hospital of the Federal University of Para (UFPA), including six males
(puppies) and three females (juveniles), were used. These specimens were classified as
infants or puppies when they did not have the characteristic sexual dimorphism of the
coat, or juveniles or young when they did have the characteristic sexual dimorphism of the
coat [13,14].

The puppies were preserved using the glycerination technique [15]. The process took
place in four stages, with the materials being immersed in different types of solutions and
packed in plastic boxes at room temperature. The first step was prefixation with a 4%
formaldehyde solution for 24 h. Second, dehydration in 70% ethyl alcohol for a week. The
third step was the clarification process with 3% hydrogen peroxide for one week. The fourth
and last step was the fixation/drying process, in which a bidistilled glycerine solution
was added to ethyl alcohol at 99.5% in a 1:2 ratio, respectively. The juvenile individuals
were frozen in a horizontal freezer, with temperatures varying between −10 ◦C (14 ◦F) and
−2 ◦C (28.4 ◦F).

No contrast was applied for CT on the cadavers preserved in glycerin. The frozen
specimens were defrosted in running water for approximately 2 h. After defrosting,
10 mL of an iodide-base contrast (Optiray 320) was injected into a cephalic vein using
a vein catheter cannulated with a disposable syringe with a venous catheter (average pres-
sure of 400–600 psi—pounds per square inch), followed by a CT examination. In a second
moment, 10 min after the first examination, 10 mL of the same contrast was administered
orally using an esophageal catheter, and a new CT exam was performed.

All cadavers were placed in dorsal recumbency over the rectangular foam pad of
the CT scanner, with the thoracic limbs extended cranially and pelvic limbs extended
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caudally. CT scans were obtained in the craniocaudal direction by use of a 16-channel
helical tomographic scanner, model Syngo CT 2009E (Siemens; Forchheim, Germany). The
image techniques were 110 kVp and 130 mA. The scan time was 62.66 s with a delay of 3 s.
The field of view (FoV) was 115 × 115 mm.

Scanning was obtained at an axial 5 mm interval with multiplanar reformation (MPR)
of 1 mm in the coronal and sagittal planes. The acquired images were sent to autoCAD
2021 version 24.0 software (computer-aided design) for three-dimensional reconstruction
in VR (Volume Rendering).

All adopted were based on the Nomina Anatomica Veterinaria (NAV) [16].

3. Results
3.1. Tomographic Images of the Corpses

On CT scans of the nine preserved corpses, it was possible to appropriately iden-
tify mineralized tissues and bony structures, allowing the qualitative and quantitative
dimensions of structures such as the skull, mandible, spine, ribs, pelvis, and limbs to be
delimited. It was possible to visualize a lighter and a darker and denser coloration of
the bone structures in cadavers preserved via freezing or glycerination, respectively, as
observed in Figures 1–8.
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Figure 2. Contrasted image that highlights the soft tissue of Bradypus variegatus. (A) Topographic
location of the right axillary (AV), cranial vena cava (CV), and right external jugular (JV) veins
demonstrated by intravenous contrast. (B) Topographic location of the hepatic vasculature evidenced
by contrast. (C) Topographic location of the vascularization of organs and systems evidenced by
intravenous contrast. (D) Topographic location of the vascularization of organs and systems in the
thoracic region evidenced by intravenous contrast. (E) Topographic location of organ and system
vascularization in the abdominal region evidenced by intravenous contrast. (F) Topographic location
of the renal vasculature evidenced by intravenous contrast.
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Figure 3. Schematic drawings of the organs and tissues of Bradypus variegatus. (A) Schematic demon-
stration of the right cephalic (AV) and axillary veins (AV), cranial vena cava (CV) and right external
jugular vein (JV). (B) Schematic demonstration of the liver vasculature. (C) General view schemati-
cally demonstrating the organs and their respective vasculature. (D) Schematic demonstration of
the topographic location of the esophagus and stomach. (E) Schematic demonstration of the renal
vasculature.

3.2. Tomographic Images of the Glycerinated Cadavers

CT examination of corpses preserved via glycerination revealed thoracic and abdom-
inal organs without clear definitions, which did not allow for accurate determination of
the anatomical structures, although parameters such as the topographic location of these
organs filled with glycerin were established. In the abdomen, the stomach was identified,
and in the thorax, a structure suggesting the esophagus was identified, both with irregular
borders (Figure 5).
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3.3. Tomographic Images of the Frozen Cadaver with IV Contrast

In the tomographic images of the corpses preserved via freezing that received IV
contrast, filling of vessels identified with enhancement was observed, starting from the
right cephalic vein and moving into the brachial vein towards the right axillary vessel
and the cranial vena cava. From the cranial vena cava, the contrast penetrated until the
beginning of the right external jugular vein, but the contrast did not progress in this vein.
Still from the vena cava, the contrast distributed to the left axillary vein, but the progress
was soon interrupted. The advance in a cranial direction occurred in the right and left
vertebral veins (Figure 6A).

The contrast also penetrated from the cranial vena cava in a caudal direction to the
heart, partially showing the structure of the cardiac chambers, such as the right atrium and
ventriculus. Subsequently, the contrast penetrated through the pulmonary artery and its
branches (Figure 6A), completing the contrast of the whole pulmonary tissue (Figure 6B,C).
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On the same examination, the contrast progressed through the caudal vena cava,
advancing to the hepatic vessels, filling the branches of the hepatic arteries, which were
probably a part of the hepatic portal system, and occupying the totality of the hepatic
parenchyma (Figure 7A–C).
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The contrast enhancement was also visualized in the renal structures using the caudal
vena cava, which is ramified, originating from the right and left renal veins, evidencing the
kidneys and their location (Figure 8A,B).
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Figure 8. Renal vascularization. (A) Tomographic image showing the enhancement of contrast in
renal structures by means of the vena cava caudal, which ramified into the right and left renal veins,
as well as the disposition of the internal and external iliac veins. (B) Schematic drawing presenting
renal vascularization demonstrating the kidneys and their location.

It was also possible to visualize the contrast enhancement in the vascular net to
perceive branched vessels of the caudal vena cava in its final portion, making it possible to
identify the disposition of the external and internal iliac veins in the initial portion of the
pelvic limbs, even that the contrast did not continue flowing in the vessel (Figure 9A,B).
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the cranial, thoracic, and abdominal portions of the esophagus, then advancing to the stomach,
delimitating its parts. (B) Schematic drawing showing the esophagus and stomach, as well as their
location.
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4. Discussion

The bony structures of the frozen specimens showed a lighter coloration, probably due
to the preservation of organoleptic characteristics of the corpse during the process, creating
images of bony structures very similar to those found in living animals [17]. The darker
and denser coloration of the bony structures in the cadavers preserved via glycerination
may be related to the formaldehyde used during the glycerination process. This chemical,
when associated with glycerin, makes structures opaque, enhancing the level of bone
attenuation [18,19].

Computed tomography provides satisfactory results in imaging diagnostics by gener-
ating high-quality three-dimensional images that allow a quick and accurate assessment
capable of elucidating anatomical variations and pathological changes [20]. However,
in the specimens preserved via glycerination, this method created topographic images
without definitions and quality delineations of soft tissue, such as those that occur in
bony structures, highlighting only the topographic localization of the stomach and part
of the esophagus in the thoracic region, as can be seen in Figure 5. The delineation of the
visualized structures probably occurred by changing density according to the preservation
method [15].

The contrast injected in the right cephalic vein allowed normal flow to the cranial
vena cava, reflowing through the vertebral veins due to their smaller diameter. However,
the amount of contrast was insufficient to reflow through the external and internal jugular
veins [11]. A similar migration of the contrast was described after the authors verified the
migration reached by the contrast in the vertebral region [21].

The use of contrasted techniques may be an important adjunct to anatomical studies
through imaging diagnostics because they offer more advantages when used in living
animals; they present greater dispersion due to the pressure and flow of the active ves-
sels [10,22]. In the present study, contrast solubility contributed to dispersion as well as the
administration of a large volume that was ten-fold higher than the dose indicated for use in
living animals (2 mL/kg), even without active vascularization or gastrointestinal motility.

Thoracic vascularization was well elucidated by intravenous injection of the contrast,
highlighting in the first moment the beginning of pulmonary vascularization and, in the
second moment, its entire vascularization. Recently, some reports described CT exami-
nations in latex-injected dog cadavers for anatomic description, delimiting the airways,
which contributed to an understanding of bronchial and bronchiolar morphology in dogs
by showing didactic and clarifying images. In two models of the canine lower airway,
silicone was injected through the trachea until it was visible under the surface of the lung.
Subsequently, helical CT acquisition was performed on a ventrally lying specimen, demon-
strating the structural organization of the bronchial tree in CT images [23]. However, there
are no clarified reports, especially related to the thoracic vascularization of B. variegatus,
that contribute to better anatomical comprehension of the species.

Functional hepatic vascularization originates specifically from the portal vein. Hepatic
vascularization (nutritive) is carried out by the hepatic artery and is drained by the hepatic
veins [12]. In the present report, the contrast followed an inverse path, with complete filling
of the hepatic parenchyma, allowing for a complete topographic location of the liver in this
species [24].

Tomographic studies for the evaluation of renal perfusion are described in laboratory
animals to evaluate the damages caused by renal ischemia [25]. Anatomical knowledge of
renal vascularization is still in the incipient stages in many species, including B. variegatus.
Therefore, the present report provides a brief knowledge of renal vascularization in this
species, as well as its topographic location, which may be important for understanding the
vascular and morphological pathologies of the kidneys in this species.

A renal asymmetry is described in notable anatomical variations within the same
species in B. variegatus; thus, these findings represent only a preliminary study that requires
more research comparing individuals of the same species [26]. The hypothesis that this
important finding is due to a disease cannot be excluded [27].
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The esophageal rupture in its cervical portion, observed in one of the corpses, is
probably related to an attempt to insert an esophageal catheter, as this fact was described
in the animal’s medical record, but this alteration may also be due to a bad disposition of
the oral contrast or a morphological alteration in the esophagus [28]. The location of the
esophagus corroborates the studies that identified the structure and its location in dissected
samples of B. variegatus [29].

In B. variegatus, the stomach is highly complex, presenting four gastric chambers that
are subdivided into seven compartments [29,30]. In the exam performed in this study,
contrast highlighted only part of these chambers, probably due to the small volume of
contrast administered and also to the absence of gastrointestinal motility.

The choice of an image diagnostic for anatomical studies in preserved organisms
must take into account the structures or organs to be explored, the preservation method,
the protocols and equipment to be used, the operator’s ability, and the techniques and
parameters that can contribute to the formation of the images [22,31].

Different ways of preserving cadavers can directly influence the quality of the acquired
images, and having this understanding is important, as it allows us to comprehend the
limitations of the comparison with the structures in living animals. Even with the difficulty
of dispersion of contrast in cadavers, studies in living animals are necessary to elucidate
these findings. Imaging diagnostic methods can be another tool used by contemporary
anatomists or pathologists for the evaluation of cadavers, either for teaching or research,
as they can provide information on the morphology of organs and systems, including
pathological changes that may correlate with existing ones in live animals [32].

In general, the tomographic images of the frozen specimens showed a lighter color
when compared to the images produced in the glycerinated cadavers, which presented
more opaque anatomical structures with attenuation of the bone structures, which were a
darker and denser color [18,19]. Methods of preserving corpses can influence the quality
of tomographic images [15]. Glycerination can worsen the tomographic image by causing
hyperdensity of soft tissues, which is a limitation of the technique in these conditions.

The manuscript provides a general and comprehensive overview of some anatomical
aspects, demonstrating that the technique applied to cadavers can provide topographic
identification of structures and organs. More studies on a more specific view, directed at the
organ or system, need to be carried out. New studies will likely increase the methodology,
and the results achieved will be complementary and innovative.

5. Conclusions

Computed tomography allowed a general and comprehensive view of the anatomical
structures of frozen and glycerinated Bradypus variegatus corpses, such as the topographic
location of bone structures, organs, and vessels, with soft tissues better visualized after
intravenous and oral contrast administration. However, in some tissues, we did not have
a complete filling, losing the quality of some images and requiring more details about
contrast volumes per live weight and its dissipation.
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