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Simple Summary: The decline in productive performance and egg quality reported in the late stages
of the egg-laying cycle is primarily related to oxidative stress and an inflammatory response from
prolonged egg production. The present study investigated the effects of dietary supplementation
of Caesalpinia sappan Linn. Extract (CSE) on flock health and productive performance in late-phase
laying hens. The CSE-supplemented groups improved significantly in egg weight, albumin weight,
and intestinal structure, as well as a decrease in inflammation and an increase in antioxidant capacity.
No adverse effects on blood parameters or organ weights were also observed. These findings suggest
that phytogenic CSE has the potential to enhance the health and performance in laying hens, offering
valuable insights for the poultry industry. This also is particularly significant given the restrictions on
the use of antimicrobial and chemical agents in livestock production.

Abstract: The present study investigated the effects of dietary supplementation of Caesalpinia sappan
Linn Extract (CSE) on the health and productive performance of late-phase laying hens on farms.
Proximate composition and antioxidant markers of CSE powder revealed favorable characteristics
with high total dry matter; phenolic content, and antioxidant potency. Three hundred and sixty
(64-week-old) Hy-line Brown hens were divided into five groups with 0 (control diet), 250, 500,
1000, and 2000 mg/kg CSE, respectively. The laying performance and egg quality of the CSE
supplementation groups demonstrated significant improvements in egg weight and albumin weight
(p < 0.05), and a tendency for enhanced egg mass and feed conversion ratio. Additionally, the
intestinal morphostructural indices in the 2000 mg CSE/kg diet group showed the greatest statistical
significance (p < 0.05), with a detectable trend suggesting an increase in the villus height to crypt
depth ratio. In addition, significant downregulation of proinflammatory genes occurred in their liver
tissues, coupled with a greater expression of genes linked to antioxidants and anti-inflammatory
processes. Furthermore, the blood biochemical parameters and the organ weights may suggest a
favorable safety profile of CSE supplementation. These findings highlight the potential of CSE as
a dietary supplement to enhance the productive performance and flock health of late-phase laying
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hens. Further research is warranted to explore the long-term effects and optimal dosage of CSE
supplementation for laying hens in farming practices

Keywords: antioxidant; anti-inflammation; egg quality; feed additive; immunostimulant; laying hen;
livestock production; supplement

1. Introduction

For high-protein food, egg products have become common as economically viable
options for the nutritional needs of humans throughout the world. Commercial poultry
production has undergone significant industrialization, resulting in extended feeding peri-
ods. As a result, the physiological processes of laying hens progressively reduce following
their peak laying phase, leading to a rapid decline in their productive performance and
egg quality during the late laying period [1]. The decreased yield and quality is predomi-
nantly due to the accumulation of inflammatory and oxidative stress during a long-term
production of eggs [2]. Moreover, the limitations on antimicrobial feed additives for lay-
ing hens have posed both challenges and opportunities for the poultry industry [3]. The
efficient utilization of non-natural feed sources is also constrained, and these issues are
frequently associated with consumer apprehensions. In addition, this limitation requests
an innovation of ecologically appropriate, organic, and effective alternatives to improve
animal health and performance [4,5].

Nutraceuticals and phytogenic feed additives, which are naturally occurring chemical
compounds, have been demonstrated to improve the physiological and productive features
in poultry [6–9]. Remarkably, Sappan wood (Caesalpinia sappan L.) has been previously
documented to possess antibacterial properties when used as a feed additive, impacting the
intestinal microflora of laying quail. Additionally, C. sappan belongs to the Leguminosae
family and is a tropical tree native in tropical Asian regions such as Southern China, India,
Sri Lanka, Myanmar, Vietnam, and Thailand. C. sappan contains a water-soluble compound
called brazilin, which is used in the production of food and beverages [10]. The dried
heartwood of C. sappan is also traditionally used in ethnopharmacology such as Chinese,
Indian, and Thai Traditional remedies. Interestingly, C. sappan has been reported to pos-
sess various biological activities including antioxidative [11,12], anti-inflammatory [13,14],
immunomodulatory [15], anti-allergic [16], analgesic [17], antibacterial [18], and antiviral
activities [19].

The hypothesis is based on the reported antioxidative and immunomodulatory activi-
ties of C. sappan, which suggest its potential to mitigate the accumulation of inflammatory
and oxidative stress in laying hens during their late laying period. In addition, the present
study aimed to investigate the potential of using phytogenic ingredients from CSE to
alleviate inflammatory and oxidative stress, which can impact the health and productivity
of late-phase laying hens. The assessment was based on laying performance, egg qual-
ity, blood biochemistry parameters, indices of morphostructure intestinal villi, and the
expressions of immune and antioxidant-related genes.

2. Materials and Methods
2.1. Animals and Ethical Approval

A total of 360 64-week-old Hy-line Brown hens were obtained from the stock of a
commercial layer farm (8 birds/m2), Chiang Mai, Thailand. The layers were housed with
strict biosecurity measures in Evaporative Emission Control System with 24 ± 1.0 ◦C,
65 ± 2.0% relative humidity, and 16 h controlled daily light. Four hens were kept in an
individual cage (41 × 46 × 40 cm) in the second of 3-tier ladder-type cages. Throughout the
8 weeks of the experiment, the laying hens were equipped with one feeder and two nipple
drinkers ad libitum. All the experimental procedures in this study were conducted in
strict accordance with the guidelines recommended and ethically approved by the Animal
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Ethics Committee, Faculty of Agriculture, Chiang Mai University with the protocol number
RAGIACUC011/2565.

2.2. Plant Material

Powdered extract of CSE was provided from the Specialty Natural Products Co., Ltd.
(Chonburi, Thailand). The Integrated Taxonomic Information System (ITIS) report provides
the taxonomic serial number 506349, while the International Plant Names Index (IPNI)
presents nomenclatural data associated with plant ID 482900-1.

2.3. Antioxidant Analysis

The CSE was analyzed for total phenolic content (TPC) using the Folin–Ciocalteu
procedure [20]. The extract was mixed with Folin–Ciocalteu reagent and 7.5% (w/v) NaCO3
solution. After incubating for 60 min, the calibration standard for gallic acid was estab-
lished using a UV-Vis spectrophotometer (SPECTROstar Nano, BMG LABTECH, Ortenberg,
Germany). The total phenolic content of the extract was then quantified in milligrams
of gallic acid per gram. The antioxidant activities of CSE were also evaluated by spec-
trophotometric ferric-reducing antioxidant power (FRAP), 2,2-diphenyl-1-picrylhydrazyl
(DPPH), 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging
methods reported with some modifications [21]. A series of Trolox solutions with varying
concentrations (ranging from 0 to 15 mM) were prepared using 80% methanol, and the
absorbance of each solution was measured to create a standard curve. The absorbance
measurements were conducted with a microplate reader Synergy H1 (BioTek, Winooski,
VT, USA).

2.4. Proximate Composition Analysis

The basal diet and CSE were analyzed to assess their proximate composition. The
analytical determinations were conducted in triplicate. The dry matter content (DM)
of the diet samples was measured using gravimetry, specifically the AOAC technique n.
934.01. The ash content (ASH) was determined using gravimetric analysis following sample
incineration using a muffle furnace, according to the AOAC method n. 942.05. The Kjeldahl
method (AOAC method n. 978.04) was used to analyze the crude protein (CP), while the
ether extract (EE) was determined using Soxhlet extraction (AOAC method n. 920.39). The
acid detergent fiber was measured according to the method outlined by Goering and Van
Soest [22]. The gross energy (MJ/kg DM) of the food samples was determined using a Parr
6200 Isoperibol Calorimeter (Parr Instrument Company, Moline, IL, USA) following the
instructions provided by the manufacturer.

2.5. Dietary Preparation and Feeding

A basal diet consisted in a commercial standard layer diet for hens in late phase of
laying cycle. The composition and nutrient content of the basal diet, which has a gross
energy of 3105.33 kcal/kg, are detailed in Table 1. The CSE powder was evenly sprinkled
over a small portion of basal feed and thoroughly mixed. Subsequently, this mixture was
carefully integrated into the required amount of feed, ensuring complete homogenization by
feed mixer machine (Model MI1HP3V01, Siam Farm Service Co, Ltd., Lampang, Thailand)
to achieve the final concentrations of CSE at 250, 500, 1000, and 2000 mg/kg of diet. The
laying hens were randomly assigned into 5 groups, with 6 replicates per treatment and
12 hens per replicate. The control group received a standard basal diet, while the 4 treatment
groups received the different diets supplemented with CSE.

The basal diet consisted in a commercial pelleted diet for layer. The composition of
the basal diet used in this study is shown in Table 1.
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Table 1. Basal diet ingredients and chemical composition on a dry matter basis.

Items Concentration (%)

Ingredients
Corn 63.6
Soybean meal (44% of CP) 25.6
Calcium carbonate 8.0
Dicalcium phosphate 1.0
DL-methionine 0.5
Sodium chloride 0.3
Premix 1 1

Analyzed composition
Crude protein 16.58
D-Lysine 0.83
Methionine 0.36
Calcium 3.17
Available phosphorus 0.36
Metabolizable enegy (kcal/kg) 3105.33

1 Supplied vitamin–mineral premix contains the following per kg diet: vitamin A (12,000 IU), vitamin D3
(2400 IU), vitamin E (30 g), vitamin K3 (2.5 g), vitamin B1 (2.5 g), vitamin B2 (6 g), vitamin B6 (4 g), vitamin B12
(20 mg), niacin (25 g), calcium D-pantothenate (8 g), folic acid (1 g), vitamin C (50 g), D-biotin (50 mg), choline
chloride (150 g), canthaxanthin (1.5 g), apo-carotenoic acid ester (0.5 g), manganese (80 g), zinc (60 g), iron (60 g),
copper (5 g), iodine (1 g), cobalt (0.5 g), and selenium (0.15 g).

2.6. Productive Performance and Egg Quality

Individual hen bodyweight data were recorded at the beginning and end of the trial.
Daily measurements of the feed provided and residual feed were taken to analyze feed
intake (FI) and average daily feed intake (ADFI). The number of eggs and egg weight were
recorded every day to measure egg production efficiency and the feed convention (FCR)
was calculated as feed consumption divided by the total egg mass (feed/egg mass, g/g).
Records of the overall health and mortality of laying hens were kept over the course of the
experiment. At week 1 to 8, 5 eggs/replicate were collected each week for analyzing the
egg quality. Eggshell thickness was measured by using a digital vernier caliper. Eggshell,
albumin, and yolk weight were measured by using a digital scale. To determine another
egg quality, the Digital Egg Tester DET 6000 (NABEL Co., Ltd., Kyoto, Japan) was utilized
to evaluate the egg weight, eggshell strength, albumen height, Haugh unit (HU), and
yolk color.

2.7. Serum Biochemical Analysis

At the end of experiment, three laying hens per replicate were randomly selected
for blood collection. Birds are euthanized via carbon dioxide. In total, 3 mL of blood
sample was drawn from the brachial wing using a heparin sodium anticoagulant tube. For
biochemical analysis, including alanine aminotransferase (ALT), alkaline phosphate (ALP),
aspartate aminotransferase (AST), total bilirubin (TBIL), direct bilirubin (DBIL), indirect
bilirubin (IBIL), total protein (TP), albumin (ALB), and globulin (GLB), a Sysmex BX-3010
automated analyzer from Kobe, Japan, was used to measure blood biochemical parameters.
The serum was isolated by subjecting the samples to centrifugation at a speed of 2200× g
for a duration of 15 min using a Kokusan H-19α centrifuge located in Kokusan, Saitama,
Japan. Prior to centrifugation, the serum was allowed to stabilize at room temperature for
30 min.

2.8. Pathological Evaluation and Intestinal Histomorphometry

At the end of the feeding trial, necropsies were performed on three laying hens per
replicate. Their vital organs and portions of three small intestine segments, including the
duodenum, jejunum, and ileum, were collected. The organ weight of each chicken was
recorded. The tissues were initially preserved with 10% neutral-buffered formalin, and
then a series of processes was performed which consisted of dehydration, clearing, and
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impregnation. The tissues fixed in paraffin were sliced into 4.5 µm sections using a rotary
microtome. The specimens were then treated to remove the paraffin and stained with
hematoxylin and eosin (H&E). The compound microscope (CX21, Olympus Corporation,
Tokyo, Japan) with a digital video camera (Motic MC 2000) was used to visualize the length
of morphometric villi and the depth of crypts. The digital photographs of intestinal tissues
were subsequently examined using an image analyzer to quantify the dimensions of villus
height (VH; µm), villus width (VW; µm), crypt depth (CD; µm), and crypt area (CA; µm2).

2.9. Analysis of Immune and Antioxidant-Related Gene Expressions

The liver tissues were randomly selected from three laying hens per replicate. The
liver tissues were immediately removed and frozen at −20 ◦C until RNA extraction. Fifty
milligrams of samples were mixed with lysis buffer and homogenized using a tissue
homogenizer. RNA extraction was then carried out according to manufacturer’s protocol
using a column-based RNA extraction kit (Invitrogen, PureLinkTM RNA Mini Kit, MA
USA). The concentration and purity of total RNA was measured at an absorbance ratio of
260–280 nm using NanoDrop2000 spectrophotometer (Thermo Fisher Scientific, Waltham,
MA, USA). The cDNA was synthesized using Bio-Rad iScriptTM RT Supermix cDNA
synthesis kit (Bio-Rad, Hercules, CA, USA). The primers required for IL-1β, IL-6, IL-10,
TNF-α, SOD, CAT, GSH-Px1, and Nrf2 genes were designed according to Table 2. Employing
the CFX ConnectTM Real-Time PCR System (Bio-Rad, USA) and the iTaq Universal SYBR
Green supermix 2× (Bio-Rad, USA) in addition to the specific primers for individual
genes, the qPCR reaction was conducted. The expression levels of the antioxidant and
immune-related gene were measured using the 2−∆∆Ct method and a standard curve [23].

Table 2. Primer sequences, amplicons and the related information for quantitative real-time PCR.

Gene Primer Sequences Accession No. Product Size (bp)

β-actin F: CTGGCACCTAGCACAATGAA X00182.1 109
R: ACATCTGCTGGAAGGTGGAC

IL-1β F: TGGGCATCAAGGGCTACA Y15006 244
R: TCGGGTTGGTTGGTGATG

IL-6 F: CAAGGTGACGGAGGAGGAC AJ309540 254
R: TGGCGAGGAGGGATTTCT

IL-10 F: AGCAGATCAAGGAGACGTTC NM_001004414.4 103
R: ATCAGCAGGTACTCCTCGAT

TNF-α F: TGTGTATGTGCAGCAACCCGTAGT NM204267 229
R: GGCATTGCAATTTGGACAGAAGT

SOD F: CACTCTTCCTGACCTGCCTTACG NM204211 146
R: TTGCCAGCGCCTCTTTGTATT

CAT F: CTGTTGCTGGAGAATCTGGGTC NM001031215 160
R: TGGCTATGGATGAAGGATGGAA

GPX1 F: GCGACTTCCTGCAGCTCAACGA GQ502186.2 99
R: CGTTCTCCTGGTGCCCGAAT

Nrf2 F: GGAAGAAGGTGCTTTTCGGAGC NM_205117.1 116
R: GGGCAAGGCAGATCTCTTCCAA

IL, interleukin; TNF-α, tumor necrosis factor alpha; SOD, superoxide dismutase; CAT, catalase; GSH-Px1, glu-
tathione peroxidase 1; Nrf2, Nuclear factor erythroid 2-related factor 2.

2.10. Statistical Analysis

The data were described using descriptive statistics, which comprised measures such
as frequency, proportion, and mean with standard deviation. The normality assumption
was examined using the Shapiro–Wilk test and visual assessment of the continuous vari-
able distribution using Quantile-Quantile (Q-Q) plots of model residuals. The data were
subjected to analysis of variance (ANOVA), followed by the comparison of Least Square
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Means (LSM) by using Tukey’s test or Kruskal–Wallis H test. Statistical significance was
attributed to differences between variables when the bi-caudal probability was less than
5% (p < 0.05) attributable to random variation (error type I). The R statistics package was
utilized (RStudio, Boston, MA, USA). For graph generation, the GraphPad Prism software
version 8.0 (San Diego, CA, USA) was utilized.

3. Results
3.1. Proximate Composition and Antioxidant Markers of CSE

The proximate composition of the CSE powder is outlined in Table 3, showing that it
consisted of 96.95% total dry matter and 3.05% moisture, along with fiber (27.94%), protein
(0.45%), ash (0.32%), and fat (0.04%), respectively. The total phenolic content of CSE was
25.12 mg of gallic acid equivalents per gram (mg GAE/g). Additionally, it exhibited a
hydrogen-donating potency of 242.71 µmol Trolox equivalents per gram (µmol TE/g), the
capability of single-electron transfer at 7.89 mg/mL, and the ability to reduce ferric ions to
ferrous ions at a concentration of 1.75 mM Fe2+/g.

Table 3. Proximate composition and antioxidant activity of Sappan wood extract.

Items Amounts

Dry matter (%) 96.95
Moisture (%) 3.05

Ash (%) 0.32
Crude protein (%) 0.45

Crude fiber (%) 27.94
Fat (%) 0.04

Total phenolic (mg GE/g) 25.12
DPPH (µmol TE/g) 242.71

ABTS (IC50, mg/mL) 7.89
FRAP (mM Fe2+/g) 1.75

3.2. Laying Performance

Efficacy of CSE on laying performance is shown in Table 4. Significant differences
among groups with heavier egg weight were recorded for the group supplemented with
2000 mg CSE/kg diet as compared to the basal diet group during 1–8 weeks of age (p = 0.02).
Furthermore, there was a tendency for increased egg production, egg number, and egg mass,
along with a tendency for the feed conversion ratio to decrease in the four supplementation
groups (Figure 1a). Nonetheless, no significant differences were observed among the
groups in terms of other egg production parameters over the entire experimental period
(p > 0.05).

Table 4. The effect of Caesalpinia sappan extract supplementation on productive performance of laying
hens in late phase of laying cycle 1–8 weeks of experiment.

Variables
Sappan-Containing Feeds (mg/kg Diet)

Pooled SEM p-Value
0 250 500 1000 2000

Initial BW (g) 2078.9 2024.7 2102.5 2058.3 2039.0 23.5 0.17
Final BW (g) 2042.0 2031.7 2077.6 2075.8 2014.3 21.7 0.19

ADFI (g) 114.3 112.8 111.02 112.48 114.03 0.62 0.50
FCR 2.72 2.32 2.23 2.25 2.28 0.06 0.08

Egg production (%) 74.23 82.86 83.63 84.85 82.74 1.53 0.19
Egg weight (g) 58.83 a 58.87 a 60.39 ab 59.55 ab 60.99 b 0.26 0.02
Egg mass (g) 43.73 48.77 50.43 50.56 50.45 0.94 0.10

a,b Mean values with different letters in the same row indicate significant differences. SEM, standard error of
measurement; ADFI, average daily feed intake; FCR, feed conversion ratio.
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Figure 1. Bubble diagram of functional enrichment analysis for productive performance (a) and egg
quality (b) in late phase of laying cycle 1–8 weeks after diet supplementation by Caesalpinia sappan
extract with a series of doses in the range 0–2000 mg/kg diet.

3.3. Egg Quality

Efficacy of CSE on the egg quality is shown in Table 5. Supplementation of CSE
did not affect yolk weight and eggshell weight (p > 0.05). Significant differences among
groups with heavier albumin weight were recorded for the groups supplemented with
1000 and 2000 mg CSE/kg diet as compared to the basal diet group during 1–8 weeks of
age (p < 0.01). These results suggest that the increase in egg weight may be attributed to an
increase in albumin weight (Figure 1b). However, the albumin height and Haugh unit were
unaffected by CSE supplementation. The shell thickness in the CSE-supplemented groups
was significantly lower than that of the basal diet group (p < 0.01). Conversely, there was
an observed tendency for shell strength to increase in the four supplementation groups.

Table 5. The effect of Caesalpinia sappan extract supplementation on egg quality of laying hens in late
phase of laying cycle 1–8 weeks of experiment.

Variables
Sappan-Containing Feeds (mg/kg Diet)

Pooled SEM p-Value
0 250 500 1000 2000

Yolk weight (g) 15.54 15.99 15.58 15.68 15.63 0.09 0.58
Alb weight (g) 35.28 a 34.45 a 36.25 a,b 36.63 b 37.13 b 0.25 <0.01

Alb height (mm) 8.21 7.96 8.20 8.08 8.29 0.04 0.08
Haugh unit 90.74 88.69 89.74 88.79 90.02 0.27 0.08

Eggshell weight (g) 7.89 7.87 7.99 7.98 8.06 0.03 0.46
Shell thickness (mm) 0.41 a 0.39 b 0.39 b 0.41 a 0.41 a 0.00 <0.01

Strength (Kgf) 3.95 4.06 3.98 4.21 4.18 0.04 0.17
a,b Mean values with different letters in the same row indicate significant differences. SEM, standard error of
measurement; Alb weight, Albumin weight; Alb height, Albumin height.

3.4. Blood Biochemical Profiles

For serum protein analysis, significant differences between groups with albumin form
the groups supplemented with a 500 mg CSE/kg diet as compared to a 1000 mg CSE/kg
diet (p = 0.0013). In addition, no significant differences were observed among the basal diet
group and four CSE-supplemented groups for the albumin parameter (p > 0.05). Moreover,
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supplementation of CSE did not affect total protein, globulin, all bilirubin parameters, and
A/G ratio (p > 0.05). For analysis of serum emzymes, no significant effects on Aspartate
transaminase (AST), Alanine transaminase (ALT), and Alkaline phosphatase (ALP) were
also noted among all treatments (p > 0.05) (Table 6).

Table 6. The effect of Caesalpinia sappan extract supplementation on blood biochemistry of laying
hens in late phase of laying cycle.

Parameters
Sappan-Containing Feeds (mg/kg Diet)

Pooled SEM p-Value
0 250 500 1000 2000

AST (U/L) 249.00 268.70 321.70 278.70 242.70 46.1 0.76
ALT (U/L) 0.93 0.93 0.93 0.93 0.93 0.03 1.00
ALP (U/L) 465.30 573.30 1095.00 712.00 539.00 142 0.06

Total protein (mg/dL) 5.47 5.80 5.77 5.63 5.80 0.41 0.97
Globulin (mg/dL) 3.37 3.60 3.90 3.40 3.77 0.37 0.82
Albumin (mg/dL) 2.10 a,b 2.20 a,b 1.87 a 2.23 b 2.03 a,b 0.08 0.04

A/G ratio 0.63 0.62 0.50 0.67 0.55 0.05 0.15
Total bilirubin (mg/dL) 0.16 0.14 0.15 0.14 0.16 0.01 0.22

Direct bilirubin (mg/dL) 0.04 0.04 0.07 0.05 0.05 0.01 0.45
Indirect bilirubin (mg/dL) 0.12 0.10 0.09 0.09 0.11 0.02 0.60

a,b Mean values with different letters in the same row indicate significant differences (p < 0.05). ALP, Alkaline
phosphatase; ALT, Alanine transaminase; AST, Aspartate transaminase; A/G ratio, Albumin/Globulin ratio.

3.5. Organ Weights and Intestine Morphostructure Indices

No instances of mortality were recorded throughout the duration of this study. After
undergoing various dietary regimens, there were no statistically significant differences in
the body weight of the laying hens. Similarly, the organ weights of the liver, spleen, heart,
gizzard, proventriculus, and intestine also showed no significant variations among the
different dietary CSE supplementations (p > 0.05) (Table 7). The villus height (VH), villus
width (VW), crypt depth (CD), and crypt area (CA) are presented in Table 8 to evaluate
the effects of CPE on small intestinal morphological traits. This study found that only the
VW of the jejunum and ileum in the group supplemented with the low dose of 250 mg
CSE/kg diet were wider than that of the basal diet group. With both medium doses of
CSE (500–1000 mg/kg diet), significant differences in more morphostructure indices were
observed. Interestingly, all morphostructure indices for duodenum and jejunum showed
greater significance in the group supplemented with 2000 mg CSE/kg diet compared to the
basal diet group (p < 0.05), whereas the mere VW of ileum in the group supplemented with
2000 mg CSE/kg diet was wider than that of the basal diet group (p < 0.05). Additionally,
there was a noticeable trend of an increase in the villus height to crypt depth ratio (VH:CD)
across the three segments of the small intestine in the four supplementation groups (p < 0.05)
(Figure 2).

Table 7. The effect of Caesalpinia sappan extract supplementation on body weight and the organ
weights (in grams) of laying hens in late phase of laying cycle.

Organs
Sappan-Containing Feeds (mg/kg Diet)

Pooled SEM p-Value
0 250 500 1000 2000

Whole body 1692.00 1708.00 1672.00 1732.00 1670.00 62.4 0.89
Liver 28.83 24.86 28.06 24.90 25.46 1.59 0.10

Spleen 2.83 2.23 2.95 1.79 2.94 0.60 0.28
Heart 8.26 7.94 8.42 8.94 8.74 1.14 0.27

Gizzard 27.36 30.41 31.02 30.35 33.82 1.97 0.18
Proventriculus 7.85 8.19 8.63 7.82 8.18 3.38 0.39

Intestine 83.18 83.26 80.66 87.14 84.57 5.54 0.95
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Table 8. The effect of Caesalpinia sappan extract supplementation on intestinal morphology of laying
hens in late phase of laying cycle.

Items
Sappan-Containing Feeds (mg/kg Diet)

Pooled SEM p-Value
0 250 500 1000 2000

Duodenum
VH 1436.00 a 1697.00 a 2168.00 b 1601.00 a 2567.00 c 48.1 <0.01
VW 37.77 a 60.28 a 66.50 a,b 99.48 b 178.80 c 5.93 <0.01
CD 295.20 a 302.40 a,b 325.90 a,b 317.30 a,b 372.80 b 8.39 0.02
CA 2091.00 a 3244.00 a,b 3456.00 b,c 2699.00 a,b 4635.00 c 158 <0.01

Jejunum
VH 1220.00 a 1351.00 a 1427.00 a,b 1575.00 b 2106.00 c 36.89 <0.01
VW 102.30 a 180.80 c 105.10 a 121.70 a,b 165.90 b,c 5.83 <0.01
CD 245.90 a 247.20 a 270.90 a,b 256.90 a 330.10 b 8.00 <0.01
CA 2308.00 a 2326.00 a 2431.00 a 2757.00 a 3950.00 b 126 <0.01

Ileum
VH 1014.00 a 1194.00 a,b 1257.00 b 1081.00 a,b 1196.00 a,b 23.25 <0.01
VW 98.26 a 158.80 b 143.70 b 131.70 b 141.80 b 4.06 <0.01
CD 237.90 a 210.30 a 245.70 a 187.00 b 206.10 a,b 6.02 0.01
CA 1741.00 1552.00 2367.00 2168.00 2378.00 121 0.10

a,b,c Within a row, mean without a common superscript differ (p < 0.05). VH, villus height; VW, villus width; CD,
crypt depth; CA, crypt area.
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Figure 2. Ridgeline plot of the villus height with crypt depth ratio in different intestinal segments of
the duodenum (a), jejunum (b), and ileum (c) from late-phase laying hens at 8 weeks following diet
supplementation with Caesalpinia sappan extract ranging from 0 to 2000 mg/kg diet. The p-values
were determined by analyzing the Kruskal–Wallis H test among the groups in each of the different
intestinal segments.

3.6. Expressions of Immune and Antioxidant-Related Genes

The effects of CSE on the relative expression of genes involved in the immunity in the
liver of laying hens are presented in Figure 3. The results demonstrated that all relative
immune-related gene expressions in the group supplemented with 250 mg CSE/kg diet
showed no significant differences with the basal diet group (p > 0.05). In contrast, the
group supplemented with 2000 mg CSE/kg diet displayed significant differences in relative
immune-related gene expressions compared to the basal diet group (p < 0.05). No significant
differences were also observed among the 500, 1000, and 2000 mg CSE/kg diet groups. For
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the relative expression of antioxidant-related genes, the effects of CSE supplemented in
laying hens are illustrated in Figure 4. The results demonstrated that the relative transcript
levels of all antioxidant-related genes were observed to increase in a dose-dependent
manner. Futhermore, the relative transcription levels of all antioxidant-related genes in
the group supplemented with 2000 mg CSE/kg diet were also significantly upregulated
compared to the basal diet group (p < 0.05).
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Figure 3. Relative transcript levels (means ± S.D.) of immune-related genes for interleukin-1beta (a),
interleukin-6 (b), tumor necrosis factor-alpha (c), and interleukin-10 (d) from liver tissue of late-phase
laying hens at 8 weeks following diet supplementation with Caesalpinia sappan extract ranging from
0 to 2000 mg/kg diet. Data were analyzed by Kruskal–Wallis H test. Bars with different letters
indicated values significantly different among the supplemented groups (p < 0.05).
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Figure 4. Relative transcript levels (means ± S.D.) of antioxidant-related genes for catalase (a), super-
oxide dismutase (b), glutathione peroxidase 1 (c), and nuclear factor erythroid 2-related factor 2 (d)
from liver tissue of late-phase laying hens at 8 weeks following diet supplementation with Caesalpinia
sappan extract ranging from 0 to 2000 mg/kg diet. Data were analyzed by using Kruskal–Wallis H test.
Bars with different letters indicated values significantly different among the supplemented groups
(p < 0.05).

4. Discussion

To ensure the quality of CSE as a feed additive for lying hens, the proximate composi-
tion and antioxidant markers of dried CSE powder should be measured. The phytochemical
composition of sappan wood has been generally identified, establishing a predominant
presence of flavonoids, phenolic acids, and anthraquinones, among additional bioactive
compounds [24]. Additionally, the CSE contains a variety of phenolic compounds, such
as chlorogenic acid, caffeic acid, and gallic acid. In this study, the total phenolic content
of the CSE from Thailand, measured in gallic acid equivalents per gram, aligns with the
findings of previous research conducted in Indonesia, which reported a value of 27.65 mg
GAE/g [25]. The antioxidant properties of CSE, as determined by FRAP, DPPH, and
ABTS, have been demonstrated to be compared with previously published research (FRAP,
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78.7 ± 2.4 mM Fe2+/mg; DPPH, 51.2 ± 3.2 µM and ABTS, 64.8 ± 4.2 µM/mg) [26–28]. The
phytochemicals and antioxidant capacity of CSE are determined by the plant ontogenesis;
therefore, the quality and quantity of these compounds are influenced by exogenous factors
such as the growing season and the timing of harvesting [29]. Furthermore, the amount
and phytochemical constitution of CSE are greatly altered by the use of different techniques
for extraction and solvents [30–33].

The reduction in productive performance and egg quantity from laying hens during
the late laying stage is affected by the health status acquired according to a consequence
of long-term egg production [34]. Despite the lack of significant improvements in overall
egg quality parameters, the CSE-supplemented groups exhibited notable enhancements
in egg weight, albumin weight, and shell thickness compared to the group on the basal
diet. These findings suggest that the CSE supplementation may have specific benefits for
certain aspects of egg quality, warranting further investigation into its potential impact
on poultry production. These findings are supported by a previous investigation on
CSE supplementation in broilers, which demonstrated a positive impact on the growth
performance [35]. The administration of CSE could also maintain the body weight for a
buck under heat stress [36].

For absorption of dietary components, the microstructure intestinal villi are required to
increase the surface area of the intestinal wall, which facilitates better nutrition delivery and
efficient digestion enzyme activity [37]. In the present study, dietary CSE supplementation
with 2000 mg CSE/kg impacts the intestinal morphology of the duodenum and jejunum
in laying hens, including VH, VW, CD, and CA. However, dietary supplementation with
2000 mg CSE/kg increased the VW of the ileum in laying hens compared to that of the
basal diet group (p < 0.05). Furthermore, a discernible trend of an increase in the ratio of
VH:CD was observed across the three segments of the small intestine in the supplemented
groups. These parameters are commonly recognized to be vital indicators of the small
intestine’s absorption capacity in animals [38,39]. The marked improvements in egg weight
and albumin weight observed in the CSE-supplemented groups might be due to the
consequences of dietary component absorption, where amino acids are predominantly
absorbed in the jejunum [40,41].

After the peak-laying period, the aging process in hens naturally leads to an increase in
the production of free radicals and a decrease in scavenging ability [42]. Additionally, insuf-
ficient endogenous antioxidants for neutralizing excessive free radicals in the chicken body
could disrupt the redox equilibrium, resulting in oxidative stress [43], which may potentially
affect egg quality and laying performance [2]. Interestingly, the supplementation of CSE
in laying hens exhibited dose-dependent effects for the expression of antioxidant-related
genes including SOD, CAT, GSH-Px1, and Nrf2. Additionally, nuclear factor erythroid
2-related factor 2 plays a crucial role for initiating the transcription of antioxidant genes.
The superoxide dismutase converts superoxide radicals into hydrogen peroxide, which
eventually turns into water by catalase, or into non-toxic compounds by glutathione perox-
idase [44]. These results agreed with a previous report that the supplementation of CSE
increased superoxide dismutase activity and suppressed malondialdehyde levels in rats
exposed to inhaled formaldehyde [45]. Furthermore, effects of phenolic substances derived
from other plant extracts supplemented to chicken diets on superoxide dismutase activity
have been previously described [46].

Alterations in metabolic and hormonal state in late-phase laying hens may contribute
to an increased risk of inflammation. For immune-related gene expressions, the group sup-
plemented with 2000 mg CSE/kg diet led to a significant upregulation of anti-inflammatory
IL-10 genes, and a downregulation of pro-inflammatory-related genes including IL-1β,
IL-6, and TNF-α. These research findings are consistent with several previous reports that
have highlighted the anti-inflammatory properties of C. sappan L. in cell-based assays and
animal models [47–49]. Brazilin, an active compound in CSE, has been demonstrated to
downregulate the expression of IRAK4 protein and subsequently leads to inactivate nuclear
transcription κB (NF-κB); therefore, the expression of targeted pro-inflammatory cytokines
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is reduced [50]. Brazilin has an obvious regulatory effect on programmed cell death protein
1 (PD-1)-related IL-10 secretion from monocytes [51].

On the contrary, the safety of CSE was confirmed by the absence of any impact on the
blood chemistry parameters of laying hens for the 8-week feeding trial, since the lack of
significant effects on AST, ALT, and ALP among all treatments provides valuable insights
into the absence of adverse effects on liver function and overall health [52]. Additionally,
the maintenance of total protein, globulin, and bilirubin parameters indicate that the CSE
supplementation did not induce alterations in liver metabolism and homeostasis [53].
The safety of CSE was further supported by the absence of detectable differences in body
weight and organ weights. Additionally, no mortality or signs of intoxication were observed
following exposure to various dietary regimens. Furthermore, no chronic, subacute, or
acute toxicity of C. sappan have been extensively reported [54–56].

While the findings of this study suggest positive effects of CSE supplementation on
the health and performance of laying hens, it is important to consider some limitations. In
addition, the controlled experimental conditions used in this study highlight the important
role for future field experiments to examine the practical application and effectiveness of
CSE supplementation in a commercial laying hen operation. For potential future research
directions, long-term field trials should be conducted to determine the cumulative effect
of CSE supplementation. Furthermore, expanding the research scope by addressing the
gut flora, as well as investigating CSE bioavailability and pharmacokinetics in laying hens,
would be important accomplishments.

5. Conclusions

The dietary supplementation of CSE in late-phase laying hens led to an improvement
in productive performance, particularly in the parameter of egg weight. Moreover, the sup-
plementation of CSE did not have adverse effects on the serum biochemical parameters and
weight of vital organs. The liver tissues of lying hens supplemented with CSE also exhibited
a significant upregulation of anti-inflammatory and antioxidant-related genes, coupled
with a downregulation of proinflammatory-related genes. The collective findings affirm the
immunomodulatory and antioxidative potential of a 2000 mg CSE/kg diet as a beneficial
dietary supplement for late-phase laying hens under controlled experimental conditions.
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