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Simple Summary: This review critically examined the literature on the interaction between insulin
resistance (IR) and metabolic inflammation in transition dairy cows. Our review emphasizes how IR
and metabolic inflammation mutually influence each other, leading to heightened lipolysis, immune
activation, and tissue inflammatory pathways. These processes contribute to a harmful cycle where
inflammatory mediators exacerbate IR and metabolic inflammation. While transient IR and metabolic
inflammation are natural adaptations in transitioning cows, this review highlights the increased
disease risk in over-conditioned cows. Understanding these interactions is crucial for managing
metabolic disorders in dairy herds and promoting animal health, welfare, and productivity.

Abstract: During the transition period, dairy cows exhibit heightened energy requirements to sustain
fetal growth and lactogenesis. The mammary gland and the growing fetus increase their demand for
glucose, leading to the mobilization of lipids to support the function of tissues that can use fatty acids
as energy substrates. These physiological adaptations lead to negative energy balance, metabolic
inflammation, and transient insulin resistance (IR), processes that are part of the normal homeorhetic
adaptations related to parturition and subsequent lactation. Insulin resistance is characterized by
a reduced biological response of insulin-sensitive tissues to normal physiological concentrations
of insulin. Metabolic inflammation is characterized by a chronic, low-level inflammatory state
that is strongly associated with metabolic disorders. The relationship between IR and metabolic
inflammation in transitioning cows is intricate and mutually influential. On one hand, IR may
play a role in the initiation of metabolic inflammation by promoting lipolysis in adipose tissue and
increasing the release of free fatty acids. Metabolic inflammation, conversely, triggers inflammatory
signaling pathways by pro-inflammatory cytokines, thereby leading to impaired insulin signaling.
The interaction of these factors results in a harmful cycle in which IR and metabolic inflammation
mutually reinforce each other. This article offers a comprehensive review of recent advancements in
the research on IR, metabolic inflammation, and their intricate interrelationship. The text delves into
multiple facets of physiological regulation, pathogenesis, and their consequent impacts.

Keywords: insulin resistance; metabolic inflammation; transition dairy cows; lipid mobilization;
adipokine

1. Introduction

The peripartum period is a distinct physiological phase for dairy cows, during which
they are susceptible to typical peripartum diseases such as ketosis and fatty liver. A study
conducted by Santos et al., which evaluated 5719 lactations, concluded that 44% of cows
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experienced peripartum diseases within 60 days postpartum [1]. Extensive research con-
ducted by diverse scientists has led to a focus on metabolism and the complex contribution
of adipose tissue (AT) within the cow’s system. Current understanding suggests that
periparturient diseases are primarily triggered by the negative energy balance (NEB) expe-
rienced during these critical periods. Metabolic inflammation and insulin resistance (IR)
play a fundamental role in driving the pathogenesis of these disorders [2–5]. This review
aims to provide a comprehensive evaluation of the literature on metabolic inflammation,
IR, and the intricate relationship between the two in transition dairy cows.

2. Regulation of Metabolic Function during the Peripartum Period
2.1. The Regulatory Role of Insulin in Glucose and Lipid Metabolism and the Development of
Insulin Resistance

Insulin, secreted by the pancreatic beta cells (Figure 1), is the hormone responsible
for directly lowering blood glucose levels and stimulating energy storage [6]. It facilitates
the synthesis and storage of glycogen, lipids, and proteins [6]. Insulin inhibits glycogenol-
ysis in the liver and skeletal muscle, and it also suppresses lipolysis in AT, resulting in
reduced levels of circulating fatty acids [7]. This dual mechanism facilitates the uptake and
utilization of glucose, thereby effectively regulating blood glucose levels within the normal
range [7,8].
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Figure 1. Metabolic dynamics and hormonal interplay during the peripartum period in dairy cows.
During the peripartum period, growth hormone increases as lactation begins, which indirectly affects
insulin levels and sensitivity, and also triggers lipolysis in adipose tissue to release energy reserves [9].
This response plays a crucial role in fetal development, milk secretion, and the initiation of lactation.
During the transition from late pregnancy to early postpartum, dairy cows exhibit a short period of
IR. This is predominantly demonstrated by the stimulation of the hepatic gluconeogenesis process,
which directs most of the glucose toward sustaining the growth of the fetus and milk production [8].
Concurrently, alterations in adipokines, such as leptin and resistin, stimulate increased lipolysis in
adipose tissue, leading to an elevation in the release of free fatty acids. These adipokines are essential
in modulating insulin sensitivity, either by enhancing or diminishing it [10,11].

Throughout the transition from the pregnant, non-lactating state to subsequent lac-
tation, the dynamics of insulin play a vital role in regulating glucose metabolism, energy
balance, and milk production in the pre- and postpartum periods. Cows exhibit approxi-
mately four times higher basal insulin levels and insulin response to a glucose tolerance
test (GTT) before compared to after calving, as evidenced by peak insulin concentrations
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and insulin increment indices [12–14]. Studies illustrated an increased demand for energy
and nutrients to support the availability of nutrients, particularly glucose and fatty acids,
for the developing fetus. This increased demand leads to a decrease in insulin sensitivity in
peripheral tissues, leading to IR. Meanwhile, IR prompts increased lipolysis in AT, leading
to an elevated release of non-esterified fatty acids (NEFA) into the bloodstream [15]. NEFAs
serve as a significant energy source for the cow and contribute to the development of
hepatic ketogenesis. Concurrently, insulin is well known as the primary hormone that
suppresses hepatic gluconeogenesis and facilitates glucose uptake by peripheral tissues
through the promotion of the translocation of glucose transporters [16,17]. During the
regulation of gluconeogenesis, insulin exerts regulatory effects on the secretion and action
of other hormones. For example, heightened blood levels of growth hormone (GH) can
trigger a reduction in insulin sensitivity, leading to the development of IR [18]. This is
illustrated by GH’s stimulation of gluconeogenesis in the liver by increasing the utilization
of amino acids and glycerol as substrates. The latter enhances glucose production and
leads to higher glucose levels in the peripheral circulation (Figure 1) [9,19]. By this higher
peripheral glucose levels, GH in fact contributes to a situation that resembles physiologic
insulin resistance, which refers to a very similar situation. Due to the very high and insulin-
independent uptake of glucose by the udder, the typical clinical features of hyperglycemia
as seen in human medicine are less frequently seen in high-yielding dairy cows. Insulin
counteracts the effects of GH by promoting glucose uptake and suppressing lipolysis.
Meanwhile, insulin primarily reduces gluconeogenesis by suppressing the expression of
key gluconeogenic enzymes, such as pyruvate carboxylase (PC) and phosphoenolpyru-
vate carboxykinase (PEPCK) [12]. In the context of NEFA-induced lipidosis of the liver
and ketosis, the uncoupling of the GH-insulin-like growth factor 1 (IGF-1) axis and its
potential relationship with inflammation and low IGF-1 levels is a complex topic [20]. This
uncoupling, characterized by elevated GH, reduced expression of hepatic growth hormone
receptor (GHR), and diminished IGF-1 levels, affects liver function and metabolic health,
potentially leading to conditions such as liver lipidosis and ketosis [20]. Notably, low IGF-1
levels have been associated with various metabolic disturbances, including IR, impaired
glucose tolerance, and dyslipidemia [21,22]. Furthermore, IGF-1 modulates the differenti-
ation and proliferation of myeloid lineage cells and affects the responsiveness of mature
immune cells to antigens [23]. Cows with high IGF-1 levels had better nutrient availability
and could more effectively use their adaptive immune system to resist infections, which is
compromised in high-yielding dairy cows due to the uncoupling of the GH-IGF1-axis [23].

Elevated insulin levels suppress the activity of hormone-sensitive lipase (HSL), thereby
inhibiting the release of fatty acids from adipocytes and consequently reducing the circulat-
ing levels of free fatty acids in the bloodstream. During the process of lipogenesis, insulin
facilitates the transportation of glucose into adipocytes by promoting the translocation
of glucose transporters (Figure 2) [16,17]. Insulin also stimulates the activity of enzymes
responsible for the transformation of glucose into fatty acids, including acetyl-CoA car-
boxylase and fatty acid synthase [24]. Additionally, upon entering the adipocyte, glucose
undergoes glycolysis to generate glycerol, which serves as the backbone for triglyceride
synthesis [25]. Reduced circulating insulin in combination with increased concentrations of
GH, however, is a significant trigger of lipolysis, resulting in the breakdown of triglycerides
into free fatty acids (NEFA) and glycerol (Figure 1). NEFA is enzymatically cleaved from
triglyceride molecules within adipocytes through the activity of HSL (Figure 1) [26]. Hence,
insulin plays a central role in regulating both the lipolysis and lipogenic pathways and is,
therefore, crucial in the homeorhetic adaptations in transition dairy cows.
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Figure 2. Insulin signaling initiation and glucose uptake machinery in adipocytes. The initiation of
insulin signaling occurs when insulin binds to the insulin receptor substrate, subsequently triggering
downstream signals that enhance the gene and protein synthesis of glucose transporter-4 (Glut4).
The Glut4 protein facilitates the transportation of glucose across the cell membrane, thereby enabling
its entry into the cell for metabolic utilization. The initiation and culmination of insulin signaling
pathways crucial for facilitating glucose uptake are marked by the insulin receptors and glucose
transporters, respectively [16,17].

During the late stages of pregnancy in cows, the increased fetal growth, along with an
irregular insulin-independent uptake of glucose by the pregnant uterus (Figure 1) [8], lead
to an approximate glucose requirement of 0.10 mol/kg fetus/d in the pregnant uterus [27].
During the latest stages of pregnancy, cows also undergo significant hormonal changes,
like increased levels of cortisol, which affect blood glucose concentration in a way oppo-
site to that of insulin, impairing glucose disappearance [28,29]. After parturition, a rapid
increase in milk production is observed in dairy cows without a corresponding increase
in dry matter intake (DMI), leading to an NEB. This situation is particularly pronounced
in high-yielding cows, which are unable to sufficiently increase their DMI to meet the
energy demands of milk production in the immediate postpartum period [30]. This NEB
results in the mobilization of body reserves, particularly fat [31]. Under the situation of
the high yield, the reduced-DMI-caused NEB is the cause. The NEB state can precipitate
various health issues, as the cow’s body mobilizes fat reserves, leading to metabolic dis-
orders. Health problems, the result, in turn, can worsen NEB by reducing feed intake
or nutrient absorption, or by increasing energy requirements for fighting against infec-
tions or healing [32,33]. The process of lipid mobilization also leads, besides the increase
in circulating NEFAs, to the elevated secretion of adipokines such as leptin and resistin
(Figure 1) [10,11,15]. The latter further contributes to impaired insulin sensitivity, resulting
in IR and the initiation of inflammatory responses [15]. The inefficient hepatic processing
of these NEFAs leads to lipidosis, commonly known as fatty liver, and the production
of ketone bodies, indicative of ketosis [31]. In the study of Arshad and Santos, as the
concentration of hepatic triacylglycerol increased, there was an increase in milk yield and
energy-corrected milk (ECM), but this came at the expense of body reserves, as indicated
by exacerbated losses of body weight and a more negative body energy change [34]. This
situation was associated with reduced intakes of dry matter (DM) and net energy for
lactation (NEL), alongside increases in blood levels of NEFA and BHB, and decreases in
glucose and total calcium [32,34]. During the initiation of lactation, insulin only regulates
around 8% of the blood glucose uptake, since most of the glucose at that time is diverted
to the mammary gland in an insulin-independent manner [35]. Despite reduced DMI
and low glucose and insulin concentrations, there is a persistent supply of glucose to the
udder for milk synthesis, requiring approximately 3.2 kg of glucose for the production of
45 kg of milk [36]. The mammary gland’s heightened glucose utilization leads to reduced
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blood glucose, triggering lipolysis to meet the increased energy demands, reflecting the
disrupted insulin levels and sensitivity in the peripheral tissues [35]. This homeorhetic
regulatory mechanism collectively defines the state of IR, which is characterized by a shift
of glucose allocation toward the gravid uterus and udder, while the cow’s body upregu-
lates glucose production through gluconeogenesis to maintain blood glucose homeostasis
(Figure 1). The transformation of the ‘excess’ of glucose into lactose in the lactating cows’
udders results in a milder disruption of the glucose metabolism in comparison to the lipid
metabolism during IR [37]. This statement elucidates the rationale behind the increased
likelihood of noticeable IR in over-conditioned dairy cows, whose DMI is lower [38–40].
While the heightened lipid flux provides extra energy during periods of NEB, an excessive
transformation of NEFAs into ketone bodies surpasses the metabolic capacity of the cow
to efficiently utilize ketone bodies as an energy source, increasing the risk of ketosis [41].
The study by Zhang et al. on ketotic cows with abnormal and normal glucose tolerance
revealed a significant correlation between the occurrence of ketosis in cows with abnormal
glucose tolerance and dysregulated glucose utilization due to IR. Abnormal liver function
and heightened oxidative stress were furthermore identified as contributing factors to the
occurrence of IR [42].

In summary, the transition period in dairy cows involves intricate insulin dynam-
ics, playing a crucial role in regulating glucose metabolism, energy balance, and milk
production, while factors such as lipolysis, lipogenesis, and multiple other hormonal
changes further contribute to IR, influencing metabolic outcomes during the transition
from non-lactating to lactating states.

2.2. Metabolic Inflammation in Transition Dairy Cows

During the periparturient phase in dairy cows, shifts in energy balance, hormonal
changes, and nutrient metabolism are associated with the development of subacute inflam-
mation, also referred to as metabolic inflammation [43]. Metabolic inflammation refers
to a low-grade or mild inflammatory response induced by metabolic stress [44]. Chronic
systemic inflammation exacerbates the susceptibility to infectious diseases, including mas-
titis and metritis [45]. Not all cows undergo chronic inflammation during the transition
period, but the risk is higher, particularly in over-conditioned cows [5,46]. This chronic
inflammation interferes with insulin action, elevating the risk of metabolic disorders and
activating multiple types of immune cells, thereby causing subtle increases in inflammatory
mediators, leading to persistent alterations in tissue functionality and a state of low-grade
inflammation [43]. The primary mechanisms that contribute to metabolic inflammation
involve elevated levels of NEFAs and pro-inflammatory adipokines resulting from lipolysis
and oxidative stress [47–50].

Lipolysis triggers an increase in NEFAs, which has the potential to engage with in-
tracellular signaling pathways in various cell types, thereby inducing inflammation [51].
The typical NEFA, for instance, overstimulates the Toll-like receptor (TLR)—the nuclear
factor-κB (NF-κB) inflammatory signaling pathway—in bovine neutrophils in vitro, caus-
ing increased expression and phosphorylation of TLR2, TLR4, and NF-κB p65, thereby
promoting the expression of the pro-inflammatory cytokines interleukin-1β (IL-1β), IL-6,
and tumor necrosis factor-alpha (TNF-α) [52]. NEFAs have also been shown to stimulate
in vitro neutrophils, leading to an increase in ROS generation and a decrease in cell viability
(Figure 3) [53,54]. In the study by Vanacker et al., the lipid infusion model was designed
to mimic the metabolic conditions surrounding parturition, revealing that elevated NEFA
levels have a direct impact on immune function [55]. This was evidenced by decreased
lymphoproliferation and reduced secretion of interferon-γ in peripheral blood mononu-
clear cells, along with a diminished oxidative burst in polymorphonuclear neutrophils [55].
These effects occur independently of the hormonal and metabolic shifts typically seen
during parturition, highlighting the pivotal role of NEFAs in triggering and maintaining
inflammation, regardless of the stress associated with parturition. Furthermore, NEFA
supplementation stimulates in vitro endothelial cells, leading to increased levels of IL-6
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and IL-8, as well as increased generation of reactive oxygen species (ROS) and changes in
the phospholipid fatty acid profile [56]. This process induces the production of metabolites
derived from linoleic acid, including 9- and 13-hydroxyoctadecadienoic acid, which are
recognized for their pro-inflammatory characteristics [56]. Moreover, elevated concentra-
tions of palmitic acid, a principal saturated fatty acid among peripheral NEFA, activate
the NF-κB signaling pathway in bovine endometrial cells, increasing the expression of
pro-inflammatory cytokines IL-8, IL-6, and TNF-α, thereby amplifying the inflammatory
response [57]. Meanwhile, the metabolic inflammation in transition dairy cows is also stim-
ulated by the secretion of adipokines, which is enhanced by AT mobilization. In AT, there is
an increased release of pro-inflammatory adipokines, such as monocyte chemotactic protein
1 (MCP-1), accompanied by a simultaneous decrease in the release of anti-inflammatory
adipokines, such as adiponectin [58,59].

Moreover, the heightened metabolic demands and lipid oxidation in dairy cows lead
to an elevated generation of ROS, which are the by-products of cellular metabolism [47].
This rise temporarily depletes the body’s antioxidant mechanisms, rendering it susceptible
to oxidative stress, ultimately resulting in heightened metabolic inflammation [47,60,61].
Elevated levels of NEFAs in bovine hepatocytes lead to increased ROS generation, acti-
vating the c-Jun N-terminal kinase (JNK) pathway, which in turn, triggers the activation
of p53 transcription and the suppression of Nrf2 transcription, ultimately depleting the
mitochondrial membrane potential [62]. As a result, the release of apoptosis-inducing factor
and cytochrome c into the cytoplasm facilitates liver cell apoptosis [62]. Furthermore, mito-
chondrial ROS activation induces the NOD-like receptor protein 3 (NLRP3) inflammatory
response under NEFA-induced metabolic stress, mediating apoptosis in bovine mammary
epithelial cells in vitro [63]. Xudong Sun and colleagues observed a decline in the levels
of glutathione peroxidase, superoxide dismutase, and catalase in the mammary glands of
ketotic cows, accompanied by a reduction in NF-κB signaling and NLRP3 inflammasome
activation [64].

In addition to nutritional interventions, addressing the genetic factors underlying
energy balance traits is crucial for sustainable dairy cow management. Studies have focused
on the genetic correlation between milk yield and energy balance for decades [65] and
observed a moderate negative genetic correlation between milk yield and energy balance
in early lactation [66]. This suggests that cows selected for higher milk production may
experience increased NEB unless the energy balance is directly or indirectly considered in
breeding programs [30]. Therefore, NEB in modern high-genetic-merit dairy cows with
higher milk yields is considered a man-made problem. Unlike in beef cattle where NEB may
be considered natural, continuous selection for higher milk production in dairy cows has
exacerbated NEB, leading to significant energy deficits. However, since the measurement
of DMI is difficult and the corresponding data for genetic selection are not sufficiently
available, the energy balance (indicator) itself is not typically considered a direct trait for
genetic selection in dairy cattle breeding programs [31].

Furthermore, in cases of infectious diseases such as mastitis, the presence of endo-
toxins, a classical source of infectious inflammation, can intensify metabolic inflammation
and weaken the response of the immune system, which is complex [67,68]. A previous
study on in vitro AT from dairy cows has demonstrated that lipopolysaccharide (LPS)
activates inflammatory lipolytic pathways and inhibits Akt phosphorylation, leading to
decreased insulin sensitivity, and also triggers the MEK/ERK signaling pathway, resulting
in significant transcriptional upregulation of IL-6 and IL-8 (Figure 3) [69]. Additionally,
the significant activation of MEK/ERK induced by LPS may have an impact on the β-3
adrenergic receptors, resulting in the phosphorylation of HSL and consequently promoting
lipolysis [69–71]. In human medicine, strong lipid mobilization leads to the downregu-
lation of AT-resident regulatory T cells and the IL-4-producing eosinophils, which are
associated with antimicrobial functions [72]. Horst et al. administered LPS intravenously
to cows, either alone or in combination with lipids [73]. Their findings revealed that the
infusion of LPS alone triggered a distinct metabolic response characterized by transient
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hyperinsulinemia, with insulin levels peaking significantly post-infusion before declining.
Concurrently, lipid infusion, whether administered alone or in conjunction with LPS, led to
elevated serum triglyceride levels. Notably, when LPS was combined with lipid infusion,
the increase in triglycerides was more pronounced. This observation suggests that LPS may
exacerbate the lipid-induced rise in serum triglycerides, possibly through mechanisms that
impair triglyceride clearance or enhance its production. Despite these alterations in serum
insulin and triglyceride levels, liver triglyceride content did not significantly differ across
treatments. The latter implies that acute systemic inflammation induced by LPS, even in
the presence of hyperlipidemia, does not necessarily exacerbate liver fat accumulation in
the short term.
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Figure 3. Impacts of lipid mobilization in adipose tissue. Lipid mobilization in the adipose tissue
leads to four specific consequences. (1) Inflammation: In adipocytes, the regulation of NF-κB results
in the production of pro-inflammatory factors [74,75]. These factors contribute to the polarization of
macrophages toward the M1 phenotype and the secretion of monocyte chemotactic protein 1, which
facilitates the recruitment of monocytes and their subsequent differentiation into macrophages [76].
(2) Impaired innate immunity: NEFA can stimulate an increase in ROS production and decrease cell
viability in neutrophils in vitro [53,54]. (3) Insulin resistance: Insulin resistance can be attributed to
the persistent elevation of NEFA, leading to an increase in ceramide concentration. The elevated
levels of this factor impede the insulin-stimulated uptake of glucose by reducing the activation
of protein kinase B (Akt) in primary bovine adipocytes. Additionally, phosphorylation of Akt is
hindered during LPS infection, leading to the suppression of Akt activation [69,77]. (4) Adipose tissue
dysfunction: Adipocytes secrete resistin in response to pro-inflammatory factors, while also decreasing
the synthesis of adiponectin, thus impacting the overall functionality of adipose tissue [11,78].

3. The Mechanism of Insulin Resistance in Peripartum Dairy Cows

The molecular mechanisms of IR finally lead to hindered glucose uptake by insulin-
sensitive tissues, increased lipolysis, and changes in sphingolipid metabolism. Insulin
responsiveness is defined as the impact of insulin on target tissues, measured by the level
of glucose uptake [8]. In contrast, insulin sensitivity is defined as the concentration of
insulin required to achieve half of the maximum response [8]. As described in Figure 2,
under normal physiological conditions, insulin binds to the insulin receptor located on the
cellular membrane of insulin-sensitive tissues, primarily including muscle, AT, and the
liver [16,79]. This interaction gives rise to a series of events that involve insulin receptor
substrate signaling, ultimately leading to an increase in cellular glucose uptake and the
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activation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling
pathway [80]. This process can increase the expression of the gene that is responsible for
encoding the glucose transporter-4 (Glut4), promoting the translocation and integration of
these components into the cell membrane, thereby facilitating the transportation of sugar
into the cells (Figure 2). The insulin receptor and sugar transporter, respectively, mark the
initiation and end of the insulin signaling-mediated process that promotes glucose uptake
(Figure 2) [16,17]. Previous research in high-yielding postpartum cows has shown a strong
correlation between IR in AT, plasma insulin levels, and the extent of Akt phosphorylation
in AT [12]. Additionally, in the AT of postpartum cows, decreased levels of insulin recep-
tor mRNA and protein were observed in over-conditioned cows, suggesting a potential
reduction in insulin responsiveness to glucose [81]. In the study by Angeli et al., it was
demonstrated that dairy cows with higher body condition scores (BCS) exhibited hepatic
IR, as evidenced by lower levels of AKT phosphorylation [82].

The long-term effects of elevated NEFA levels have adverse effects, not only on pancre-
atic insulin secretion but also on the phosphorylation of serine residues on insulin receptor
substrate-1 (IRS-1), leading to a reduction in the tyrosine phosphorylation of IRS-1 [83–85].
This disruption impairs the insulin signaling cascade and hinders its common activa-
tion, ultimately resulting in compromised insulin-mediated glucose uptake by peripheral
tissues [83–85]. Moreover, NEFAs can trigger the TLR4/NF-κB inflammatory signaling
pathway in hepatocytes, thereby reducing insulin sensitivity via the TLR4/PI3K/AKT
metabolic axis in calf hepatocytes in vitro [86].

Ceramide (Cer) is known to play a critical role in the metabolism of sphingolipids.
C2:0-Cer has been observed to impede the insulin-induced uptake of 2-Deoxy-D-glucose
by diminishing Akt activation in primary bovine adipocytes (Figure 3) [77]. Moreover,
it has been shown that Cer inhibits the expression of GLUT4 (Figure 3) [87]. Therefore,
Cer serves as a crucial sphingolipid biomarker for IR in dairy cows. Elevated levels of
circulating fatty acylcarnitines (FAC) are associated with Cer in over-conditioned dairy
cows experiencing IR. Rico and colleagues showed that an excess of unoxidized NEFAs
contributes to the accumulation of FAC and Cer, which is inversely associated with insulin
sensitivity (Figure 3) [88]. Moreover, the fluctuations in lipid composition, as demonstrated
by C16:0- and C24:0-Cer, are associated with a negative correlation with postpartum
systemic insulin sensitivity [88,89].

4. The Impact of Metabolic Inflammation on Dairy Cows’ Health during the
Periparturient Period

The inflammatory response in dairy cows during the periparturient period is a com-
plex and crucial process that involves a coordinated series of immune responses aimed at
protecting the cow from potential infections associated with parturition and facilitating
the transition into lactation. Numerous researchers have investigated the effects of the
immune-inflammatory response on the metabolic function of dairy cows [37,90]. Immuno-
logical activation, marked by increased leukocyte quantity and functionality, is essential
for cervical dilatation and uterine contractions during parturition, with leukocyte infiltra-
tion into the cervix before and after delivery playing a crucial role in coordinating matrix
remodeling through the release of proteolytic enzymes [91,92]. Monocytes and eosinophils
demonstrate a progesterone-regulated rise in number in the cervix before delivery, while
the number of neutrophils increases after delivery [91,92]. Neutrophils, in particular, exhibit
a significant dependence on glucose metabolism to meet their metabolic requisites [43,93].
Consequently, in cases of metabolic inflammation, the initiation of inflammatory signals
is a contributing factor in the development of IR, leading to a reorganization of metabolic
resources [43,93]. This redirection effectively directs nutrients, which are usually used for
normal physiological functions and production, to sufficiently support the quantity and
functionality of immune cells.

Clinical trials suggest that repeated, transient, and sustained subacute inflammatory
responses have a significant impact on the metabolic function of dairy cows. Kushibiki et al.
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conducted an investigation into the effects of administering recombinant TNF-α (rbTNF)
once daily to mid-lactating dairy cows [94]. This intervention resulted in a 34% reduction
in feed intake, elevated plasma NEFA concentrations, and a decrease in the plasma insulin-
like growth factor 1 concentration [94]. Bradford and colleagues administered doses of rb
TNF-α at levels lower than can be expected by subacute inflammation in late-lactation cows,
revealing a twofold increase in liver triglyceride levels and a concomitant upregulation of
lipid synthesis enzyme transcript abundance [95]. These findings suggest a direct effect of
rbTNF on hepatic lipid metabolism [95]. The research by Ohtsuka et al. revealed higher
TNF-α activity in severe compared to mild fatty liver cows [96]. Given that TNF-α could
potentially interrupt insulin-stimulated tyrosine phosphorylation in insulin transmembrane
signaling [97], this finding indicates the importance of TNF-α in the pathogenesis of IR
observed in cows with fatty liver [96].

Furthermore, an increase in the mRNA levels of TNF-α was observed in the AT
of peripartum dairy cows [98,99]. In particular, cows with high postpartum BCS losses
exhibited the highest levels of the mRNA abundance of genes encoding IL-6 and TNF-α in
the AT at 21 and 42 days postpartum [99]. The signaling of TNF-α occurs via TNF receptors
1 and 2, leading to transcriptional alterations facilitated by the NF-κB and extracellular
ERK signaling pathways [100]. In a study conducted by Martel et al., stable and low-level
recombinant TNF-α was administered to the subcutaneous fat of late-lactating dairy cows
for 7 consecutive days in a clinical trial [101]. The findings indicated that the levels of
triiodothyronine and insulin-like growth factor 1 were reduced in the treatment group,
indicating that the intervention by TNF-α significantly affects the metabolism [101].

5. The Relationship between Insulin Resistance and Metabolic Inflammation

Within the dynamic periparturient phase of dairy cows, the intricate dance of IR and
metabolic inflammation, orchestrated by pivotal players like macrophages, adipose tissue,
bioactive lipids, pro-inflammatory adipokines, inflammatory factors, and endoplasmic
reticulum (ER) stress, shapes the delicate balance of physiological processes. This sec-
tion delves into the symbiotic relationship between IR and inflammation, unraveling the
molecular complexities and systemic implications.

5.1. Insulin Resistance Elicits an Inflammatory Response

De Sousa et al. first reported a potential association between inflammation biomarkers
(serum haptoglobin and cortisol) and IR in cows [102]. They proposed that chronic inflam-
mation may lead to IR, or that IR in feedlot cattle offered high-starch diets might be leading
to chronic inflammation [102]. The observed potential association between inflammation
biomarkers and IR holds particular significance in the context of dairy cows during the
critical transition periods.

Tissue macrophages have been shown to produce leptin in human medicine [103],
which in turn, leads to an increase in the concentrations of inflammatory markers (hap-
toglobin and cortisol) [104]. In dairy cows during early lactation, there is adipose-specific IR
and high rates of lipid mobilization [12], and the infiltration of adipose tissue macrophages
(ATM) is a response to this intense lipolysis [105,106]. Therefore, the role of macrophages
represents a contributing factor to the promotion of inflammatory responses in IR in these
transition cows. In the context of human IR, macrophages are recruited to insulin-sensitive
tissues such as the liver and AT via chemokines (Figure 3) [107]. Their recruitment is
mediated by the signaling of damage-associated molecular patterns (DAMP) affecting
TLR on the macrophage surface, leading to the activation and translocation of nuclear
factor κB (NF-κB) to the nucleus, where it acts as a transcription factor promoting the
synthesis of pro-inflammatory factors including TNF-α, IL-1β, and IL-6 [108]. Concur-
rently, macrophages undergo polarization toward the M1 phenotype, leading to a pro-
inflammatory state that further enhances the release of pro-inflammatory cytokines and
chemokines (Figure 3) [109,110]. Under the influence of lipid accumulation, endothelial
cells in AT increase the expression of adhesion proteins such as intercellular adhesion
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molecule-1 and vascular cell adhesion molecule-1, which in turn, promotes the migration
of monocytes to the subendothelium and enhances their subsequent differentiation into
macrophages [74,75]. This cascade of events intensifies the inflammatory environment
within insulin-sensitive tissues, which contributes to the perpetuation of IR. However, while
these events have not yet been fully validated and described in dairy cows, it has been
found that during excessive lipolysis in transition dairy cows, intense ATM polarization
to M1 takes place, finally accumulating in aggregates within omental and subcutaneous
depots [111].

The greater impairment of insulin function is more likely to occur in dairy cows
with more pronounced lipid mobilization [112], which inevitably accompanies the pro-
duction of lipid factors and biologically active substances such as adiponectin, leptin, and
Fibroblast growth factor-21 (FGF21). These products lead to varying degrees of impact on
inflammatory responses.

Adiponectin, known as a potential anti-inflammatory marker, whose plasma concen-
tration decreases during the first week postpartum in cows, can regulate the inflammatory
response of cow macrophages by reducing TNF-α expression (Figure 3). Additionally, in
human medicine, leptin exhibits pro-inflammatory characteristics and has been shown to
activate recruited and resident immune cells, including macrophages, in AT, inducing the
production of immune-related cytokines [113,114]. In dairy cows, leptin concentrations
were high during late pregnancy and declined to a nadir at parturition [115]. Many studies
have indicated that the greater the decline in body condition post-calving, the greater
the reduction in plasma leptin concentration [115,116]. FGF21, a liver-synthesized factor,
reaches peak plasma levels during calving in cattle, with white adipose tissue (WAT) be-
ing the primary target of FGF21 [117,118]. A recent study investigated the impact of the
postpartum administration of recombinant FGF21 on early lactating cows [119]. In contrast
to previous research reporting beneficial effects of exogenous FGF21 on insulin sensitivity
in rodent models [120], FGF21 did not affect the plasma concentrations of insulin and
adiponectin nor the response in the insulin concentration during a GTT in early lactating
cows [119], but it did activate the ERK1/2 signaling pathway in white adipose tissue [121].

5.2. Inflammatory Mediators Contribute to the Development of Insulin Resistance

The multifactorial molecular mechanisms underlying inflammation-induced IR remain
to be fully elucidated. During IR, mobilized immune cells, such as macrophages, release
TNFα, IL-1β, and IL-6, which exert certain effects on metabolism. These factors can activate
a series of intracellular signaling pathways, impair insulin signaling, and induce IR. In
human medicine, it has been proven that pro-inflammatory cytokines activate the IKK/NF-
κB pathway, JNK and other MAPKs, PKCs, and JAK/STAT/Suppressor of Cytokines
Signaling Pathways [122,123]. These pathways are all involved in the regulation of insulin
sensitivity and can contribute to IR when dysregulated, particularly in the context of obesity
or high-fat diet feeding. Based on in vitro research using bovine adipocytes, it is currently
known that TNF-α activates the NF-κB and JNK pathways, leading to phosphorylation of
IRS-1 and IRS-2, thereby inhibiting insulin signal transduction [124].

Inflammatory mediators such as IL-1β, IL-6, and TNF-α are mutually regulated with
endoplasmic reticulum (ER) stress [125]. In non-ruminant animals, ER stress is a signif-
icant contributor to impaired insulin signaling in the liver and adipose tissue [126,127].
Currently, it is known that ER stress is activated in tissues after parturition in cows [128].
In vitro experiments inducing ER stress in calf hepatocytes by β-hydroxybutyrate, revealed
decreased phosphorylation of Akt and Glycogen Synthase Kinase 3β, as well as an up-
regulated abundance of gluconeogenic genes (phosphoenolpyruvate carboxykinase and
glucose-6-phosphatase), indicating a state of IR. However, the addition of tauroursodeoxy-
cholic acid in bovine hepatocytes to block ER stress may contribute to alleviating this
condition [129]. However, further experimental validation is needed to determine whether
reducing inflammatory mediators in hepatic cells directly affects the occurrence of ER and
IR in the livers of dairy cows.
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Additionally, resistin, as a pro-inflammatory adipokine [130,131], may serve as a
mediator inducing IR in dairy cows (Figure 3). Resistin peaks in plasma during the first
week postpartum in dairy cows [13,51]. In humans, resistin was suggested as a potential
marker for IR [132], as studies have shown that elevated levels of resistin reduce the
sensitivity of adipose tissue to insulin and promote the production of IL-6 and TNF-α [133].
In bovine AT explants, studies have demonstrated that resistin increases glycerol release
and the mRNA levels of HSL and adipose triglyceride lipase (ATGL), indicating its potential
to promote lipid mobilization [13]. However, more extensive investigations in dairy cows
are warranted to elucidate its effects on the insulin signaling pathway.

6. Conclusions

Insulin resistance is a complex metabolic disorder observed in transition dairy cows as
they prepare for the shift from pregnancy to lactation. During this critical period, IR plays
a pivotal role in facilitating the flow of glucose to essential organs such as the pregnant
uterus, mammary gland, and immune cells, supporting their increased metabolic demands.
This adaptation is vital for maintaining blood glucose homeostasis and ensuring optimal
energy distribution even during times of peak lactation. Insulin resistance in transition
cows is influenced by factors like hormonal fluctuations, heightened lipolysis, and altered
glucose metabolism, all of which contribute to the risk of metabolic disorders such as
ketosis. Metabolic inflammation in transition dairy cows results from hormonal changes,
increased lipolysis, and altered glucose metabolism. This leads to elevated NEFA release,
the activation of inflammatory cells, and the upregulation of pro-inflammatory cytokines.
In over-conditioned cows, adipose tissue inflammation exacerbates inflammatory path-
ways, impairing insulin signaling and worsening metabolic inflammation. Moreover, IR is
intricately linked to metabolic inflammation, wherein enhanced lipolysis, immune activa-
tion, and insulin signaling pathways interact to create a pro-inflammatory environment.
Understanding the multifactorial nature of IR and its interplay with metabolic inflam-
mation is crucial for managing the health, welfare, and productivity of transition dairy
cows. To prevent the occurrence of NEB, the following may provide direction for prospec-
tive research areas in the future: (1) Nutrition: Research should be conducted on novel
feed ingredients and dietary techniques to support milk production, while minimizing
energy deficits and negative energy balance. (2) Health Monitoring: Advanced monitoring
technologies, including wearable sensors and precision diagnostics, should be utilized for
the early detection and management of metabolic disorders such as ketosis, fatty liver,
and displaced abomasum, since they are crucial for preventing and mitigating negative
energy balances. (3) Breeding: Continued investigations should be conducted into the
inheritance of energy balance traits to develop genomic selection tools for breeding dairy
cows with improved energy metabolism and reduced susceptibility to negative energy
balance. (4) Reproduction: Researchers should continue the refinement and development
of precision reproductive technologies, synchronization methods, and the optimized use of
reproductive hormones to enhance conception rates and shorten calving intervals.
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