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Simple Summary: Eggshell gloss is an important characteristic for the manifestation of eggshell
appearance. However, the reason for differences in eggshell glossiness is still unclear. The aim of this
study is to perform a preliminary investigation into the formation mechanism of eggshell gloss and
to identify potential genes through high-throughput sequencing. HTR1F, ZNF536, NEDD8, NGF and
CALM1 were identified as potential candidate genes that may affect eggshell gloss, which provide
a reference for the study of eggshell gloss and lay a foundation for improving egg glossiness in
layer breeding.

Abstract: Eggshell gloss is an important characteristic for the manifestation of eggshell appearance.
However, no study has yet identified potential candidate genes for eggshell gloss between high-gloss
(HG) and low-gloss (LG) chickens. The aim of this study was to perform a preliminary investigation
into the formation mechanism of eggshell gloss and to identify potential genes. The eggshell gloss
of 300-day-old Rhode Island Red hens was measured from three aspects. Uterine tissues of the
selected HG and LG (n = 5) hens were collected for RNA-seq. Blood samples were also collected for
whole-genome resequencing (WGRS). RNA-seq analysis showed that 150 differentially expressed
genes (DEGs) were identified in the uterine tissues of HG and LG hens. These DEGs were mainly
enriched in the calcium signaling pathway and the neuroactive ligand–receptor interaction pathway.
Importantly, these two pathways were also significantly enriched in the WGRS analysis results.
Further joint analysis of WGRS and RNA-seq data revealed that 5-hydroxytryptamine receptor 1F
(HTR1F), zinc finger protein 536 (ZNF536), NEDD8 ubiquitin-like modifier (NEDD8), nerve growth
factor (NGF) and calmodulin 1 (CALM1) are potential candidate genes for eggshell gloss. In summary,
our research provides a reference for the study of eggshell gloss and lays a foundation for improving
egg glossiness in layer breeding.

Keywords: whole-genome resequencing; RNA-seq; eggshell gloss

1. Introduction

Eggs are widely used as cheap but nutritious food or an ingredient in food products [1].
The appearance traits of eggs are important factors influencing consumers’ buying inclina-
tion. In addition to numerous eggshell appearance qualities (shape, color, etc.), eggshell
brightness is also an important characteristic reflecting eggshell appearance [2]. However,
most studies on eggshell appearance traits have neglected eggshell gloss [3]. Therefore, it
is vital to explore the formation mechanism of eggshell brightness.

The brightness of an egg’s surface can be measured in terms of gloss [4]. Gloss is related
to the ability of the eggshell surface to reflect light directly [5]. The glossy appearance
of eggshells is produced by an extremely smooth cuticle, and optical calculations have
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demonstrated that surface smoothness is the major reason for the production of gloss [6].
The gloss in the equator of an eggshell can reflect the gloss of the entire egg, which makes
it the best point at which to measure the gloss of an egg [7]. It is now known that eggshell
gloss is affected by multiple factors, including the species (genetic differences), age, health
condition [8,9] and other environmental factors including nutrition and digestion.

Approximately 24 h are required for an egg to form in the oviduct of a chicken, and
the shell is formed in the uterus, which takes about 20 h [10]. The cuticle, which determines
the glossiness of the eggshell, is formed about 2–3 h before laying. It has been reported that
the expression of genes in the uterus will affect the quality of eggshell. Previous studies
have used RNA-seq analysis to identify numerous genes that exhibit high expression
levels in the chicken uterus [11,12]. More than 600 genes are differentially expressed in the
uterus during eggshell formation [13]. Some of these uterine genes proved to be useful
as biological markers for genetic improvements in phenotypic traits [14]. Whole-genome
resequencing (WGRS) provides an approach to explore the genomic variations and lays
the foundation for further functional analysis. WGRS has been widely used in the field
of livestock and poultry breeding. Studies have used this technology to screen candidate
genes for chicken fertilization rate and egg production rate [15], to detect variants associated
with economic traits [16] and to assess the patterns of different locations of variation and
linkage disequilibrium in commercial chicken populations [17].

However, there are few studies on eggshell gloss, and the molecular mechanism of its
formation is not clear. Therefore, in the present study, eggshell glossiness was measured
comprehensively, based on which, two groups of hens producing eggs with high and low
eggshell gloss (HG and LG) were selected for sample collection. We hypothesized that
eggshell gloss formation is determined by the smoothness of the eggshell surface (cuticle),
and genetic differences involved in cuticle formation can lead to different gloss levels in
eggs laid by different hens. Therefore, WGRS and RNA-seq were performed using the
collected blood samples (DNA required for WGRS can be easily extracted from blood
samples) and uterine tissues, respectively, in order to screen potential candidate genes
associated with eggshell glossiness.

2. Materials and Methods
2.1. Birds and Sample Collection

The experimental animals were 300-day-old Rhode Island Red hens, which were
provided by Jiangsu Beinongda Agricultural Animal Husbandry Technology Co., LTD.
First, the eggshell glossiness of the whole flock (n = 1127) was manually observed for three
consecutive days. Then, 40 hens were selected and divided into two groups (n = 20) of high
gloss (HG) and low gloss (LG) according to their eggshell gloss. Based on manual observa-
tions and instrumental measurements, five hens with the highest and lowest eggshell gloss
were further selected for sampling from the HG and LG groups, respectively (n = 5). Finally,
the egg-laying time of these 10 hens was recorded for five days in order to predict the
egg-laying time on the sampling day, and uterine tissues and blood samples were collected
from these hens 2 h before predicted egg-laying time. Blood samples were stored at −20 ◦C
and uterine tissue samples were stored at −80 ◦C until use.

2.2. Eggshell Quality Measurement

External and internal egg quality traits including eggshell gloss, egg weight (EW), egg
shape index, eggshell strength (ES), eggshell thickness (ET) and egg yolk weight (EYW)
were measured.

Eggshell gloss was measured from three aspects: (1) Sensory measurement: the
glossiness of the eggs was manually observed and scored by two experienced laying hen
breeders. The eggs of the whole flock were scored on a scale of 1–5, where 5 represents the
best glossiness and 1 the weakest. Based on the grading of the eggs laid by each hen in three
days, 20 individuals in which all laid eggs were of grade 5 were selected as candidates for
the HG group and 20 individuals with eggs all of grade 1 were selected as candidates for the
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LG group. (2) Glossmeter measurement: The glossiness values of the eggs laid by the hens
in the LG and HG groups were measured with a glossmeter (NOVO-CURVE) at the equator
of the eggshell. (3) Microstructure measurement: A scanning electron microscope (SEM)
was used to observe the cuticle texture of the eggshell. Pieces of eggshell (1 cm × 1 cm)
were cut from the equator of the eggshells of eggs from the HG and LG group. They were
mounted on an aluminum stub and gold sputter coated for about 15 min. Thereafter, the
eggshells were scanned and photographed under the SEM.

The eggs’ length and width were measured in millimeters using a vernier caliper for
eggshell index. Eggshell strength was measured using an FGX-5R eggshell strength tester.
The ET was measured (mm) using ETG-1061A on the blunt region, equatorial region and
sharp region, and the average was considered the value for the egg. The yolk and albumen
were then separated and weighed (g).

2.3. Genomic DNA Extraction, RNA Extraction and qPCR Assay

Genomic DNA from 10 selected hens (HG and LG group, n = 5) was used for WGRS.
The genomic DNA was extracted from blood samples using the FastPure Cell/Tissue
DNA Isolation Mini Kit-BOX1 (Vazyme, Nanjing, China) according to the manufacturer’s
protocol except for the volume of the samples. As chicken red blood cells contain nuclei, we
only used 20 µL blood samples for DNA extraction, rather than the 250 µL recommended by
the protocol (the rest of the volume was replaced with PBS). The total RNA of uterine tissues
from the HG and LG group (n = 5) was extracted using the RNA Easy Fast Tissue/Cell Kit
(Vazyme) according to the manufacturer’s protocol.

cDNA was synthesized using HiScript III All-in-one RT SuperMix Perfect for qPCR
(Vazyme). Primers were designed using the NCBI Primer Design Tool. cDNA samples
were subjected to ChamQ Universal SYBR qPCR Master Mix (Vazyme) according to the
manufacturer’s protocol. The 2−∆∆Ct method and internal normalization were used to
analyze the quantification results. The information regarding primers used for qPCR
amplification is listed in Table S1.

2.4. Transcriptome Sequencing (RNA-seq)

RNA purification, library construction and paired end (PE) sequencing were per-
formed based on an Illumina sequencing platform. The RNA-seq data reported in this
study were archived in the NCBI database with the accession number PRJNA981231
(https://www.ncbi.nlm.nih.gov/bioproject/PRJNA981231) (accessed on 7 June 2023). The
filtered reads were compared to the reference genome (bGalGal1.mat.broiler.GRCg7b) using
Hisat2 (2.2.1) [18] software. HTSeq (2.0.5) [19] was used to calculate the original expres-
sion of the gene. Fragments Per Kilobase of transcript sequence per Millions base pairs
sequenced (FPKM) was used to standardize the expression levels, and DESeq [20] was used
to analyze the differences in gene expression. The conditions for screening differentially
expressed genes were as follows: |log2FoldChange| > 1 and p-value < 0.05. The pheatmap
(1.0.12) R package [21] was used to conduct bidirectional cluster analysis of the union of
differential genes and samples of all comparison groups.

2.5. Whole-Genome Resequencing

The sequencing library was prepared using the standard library building process
of Illumina’s Tru Seq DNA PCR-free prep kit reagent, and the Nova Seq sequencer for
2 × 150 bp double-ended sequencing was adopted at Shanghai Personal Biotechnology
Co., Ltd. (Shanghai, China). The WGRS data reported in this study were archived in
the GSA database with the accession number PRJNA992581 (https://www.ncbi.nlm.nih.
gov/sra/PRJNA992581) (accessed on 14 July 2023). Fastp (v0.20.0) [22] was used for data
quality control, and BWA(0.7.12-r1039) [23] was used to compare the filtered high-quality
data to the reference genome. GATK (4.4.0.0) [24] software was used to detect genetic
variation (GV). Then, the data were further filtered using the following criteria: (1) Fisher
test of strand bias (FS) ≤ 60; (2) Haplotype Score ≤ 13.0; (3) Mapping Quality (MQ) ≥ 40;

https://www.ncbi.nlm.nih.gov/bioproject/PRJNA981231
https://www.ncbi.nlm.nih.gov/sra/PRJNA992581
https://www.ncbi.nlm.nih.gov/sra/PRJNA992581
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(4) Quality Depth (QD) ≥ 2; (5) Read Pos Rank Sum ≥ −8.0; (6) MQ Rank Sum > −12.5;
(7) alternative allele called in ≥ 4 reads. GV were annotated using ANNOVAR (version
24 October 2019) [25] software, and population-specific SNPs were attained. For the SNP
analysis, we counted the frequency of the four genotypes (0/0, 0/1, 1/1, /) in the HG and
LG groups. Group-specific SNPs were identified in this project by setting a threshold for
the frequency of population-specific genotypes, and the HG population-specific SNPs were
selected if the frequency of a genotype at these SNPs = 1 in the HG population and the
frequency of the same genotype was =0 in the LG population.

2.6. Enrichment Analysis

The GO enrichment analysis of genes was conducted by the top GO (3.14) R package.
KEGG pathway enrichment analysis was conducted by the clusterProfiler (3.8.1) R package.
GO terms and KEGG pathways with p-values < 0.05 were considered significantly enriched
among genes.

2.7. Data Analysis

Population glossiness data were organized using Excel, and statistics analysis was
performed using R software (4.1.0). The data obtained were submitted to analysis of
variance with the F test. Correlation coefficients between eggshell gloss and other traits were
generated using Spearman’s rank correlation. The correlation matrix plot was analyzed
with the R package.

3. Results
3.1. Measurement and Analysis of Eggshell Gloss

Eggs laid by the experimental flocks were graded (grade 1–5) by sensory measure-
ments, and the eggs with the lowest (class 1) and highest (class 5) glossiness were shown
in Figure 1A. Based on our records, 915 hens produced eggs with different degrees of
glossiness, and 212 hens produced eggs with the same degree of glossiness. According to
the results of the sensory measurements, 20 hens were selected as candidate hens for the
LG and HG groups from hens laying grade 1 and 5 eggs, respectively. Eggs laid by each
hen in the LG and HG groups were measured by a glossmeter, and the results showed that
the gloss values of HG eggs were significantly higher than those of LG eggs (Figure 1B).
Thereafter, 10 hens which laid eggs with significantly different gloss values (p < 0.01)
(Figure 1C, Table S2) were selected from the LG and HG groups (n = 5) as candidates for
subsequent RNA-seq and WGRS analysis. In addition, the surface texture of HG and LG
eggshells was imaged using SEM. The SEM images showed significant differences in the
cuticle texture of HG (Figure 1D,F) and LG (Figure 1E,G) eggshells. The surfaces of HG
eggshells were smoother than those of LG eggshells.

3.2. Population Glossiness Distribution and Correlation Analysis

The distribution of eggshell gloss in the population was statistically analyzed (n = 1127),
and correlations between glossiness and other egg quality traits were calculated. As shown
in Figure 2, the majority of eggshell gloss values were at the intermediate level, showing a
trend similar to a binary distribution. In addition, we found that eggshell gloss was not
correlated with any other eggshell trait such as egg weight or eggshell strength (Figure 2).
These results indicated that eggshell gloss was a relatively stable and independent trait.
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Figure 1. (A) HG (high-gloss) eggs (class 5) and LG (low-gloss) eggs (class 1). (B) Boxplot of candidate
chickens’ gloss value (n = 20). (C) Individual gloss values of eggs of HG and LG hens used for RNA-
seq and WGRS (n = 5). Symbol “****” indicated a significant difference at p < 0.0001. (D–G) Scanning
electron microscope (SEM) images of HG and LG eggshells. (D) HG eggshell surface. (E) LG eggshell
surface. (F) HG eggshell intersecting surface. (G) LG eggshell intersecting surface. Scale bars for SEM
images: 100 µm (D,E), 200 µm (F,G).
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Figure 2. The correlation matrix plot of eggshell gloss among different eggshell traits. On the
diagonal are the univariate distributions, plotted as histograms and kernel density plots. On the
right of the diagonal are the phenotypic pairwise correlations, with red stars indicating significance
levels (*, p < 0.05, **, p < 0.01, ***, p < 0.001). On the left side of the diagonal is the scatter-plot matrix,
with LOESS smoothers in red to illustrate the underlying relationship. Abbreviations: EW: egg
weight; ES. T: egg shape index—transverse diameter; ES. L: egg shape index—longitudinal diameter;
ES: eggshell strength; ET. L: eggshell thickness—blunt end; ET. M: eggshell thickness—equatorial
part; ET. S: eggshell thickness—sharp end; EYW: egg yolk weight.

3.3. RNA-seq Revealed Significant Differences in Gene Expression Patterns Related to
Eggshell Gloss

RNA-seq analysis was performed on uterine tissues at the predicted timepoint (2 h
before egg laying) to reveal gene expression patterns in HG and LG chickens. Information
regarding the quality of the RNA-seq data is listed in Table S3. Figure 3A shows 99 upreg-
ulated DEGs (differentially expressed genes) and 51 downregulated DEGs. Table 1 lists
information regarding the 10 DEGs with the lowest p values. To determine the reliability
of the RNA-seq results, we randomly selected 10 DEGs for qPCR analysis. We found that
the qPCR results were consistent with the RNA-seq results, which indicated the reliability
of the RNA-seq results (Figure 3B). To further understand the biochemical functions of
the DEGs, the 150 DEGs (99 upregulated and 51 downregulated) were used to perform
GO and KEGG enrichment analyses. GO terms were classified into biological process
(BP), cellular component (CC) and molecular function (MF). In total, 479 GO terms were
significantly enriched, and the top 15 terms are shown in Figure 3C (p < 0.05). The DEGs
were significantly enriched in six KEGG pathways (p < 0.05) including the calcium signaling
pathway and neuroactive ligand–receptor interactions (Figure 3D).
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Table 1. Top 10 differentially expressed genes between HG and LG groups.

Name log2FoldChange p Value Chr Regulation
(HG vs. LG)

FGF19 −2.03066 1.45 × 10−8 5 Down
SOUL −1.18806 2.43 × 10−7 5 Down

ENSGALG00000031427 2.258618 6.25 × 10−7 3 Up
ENSGALG00000009479 2.318946 7.55 × 10−7 2 Up

C1S 1.2519 1.27 × 10−6 1 Up
APOD −1.3807 1.97 × 10−5 9 Down

ZNF536 −2.10433 6.03 × 10−5 11 Down
TRHR 1.716454 9.61 × 10−5 2 Up
AQP1 1.173698 0.00012 2 Up

PTGFRN −1.0838 0.000178 1 Down
Note: Chr, chromosome; HG, high gloss; LG, low gloss.

Weighted correlation network analysis (WGCNA) [26] was used to identify differ-
entially co-expressed modules related to the glossiness. We identified 23 gene modules
(Figure S1A), of which MEblack was significantly correlated with eggshell gloss (correlation
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coefficient = 0.874; p = 0.01). Hub genes (Figure S1B) such as TAGLN were screened in this
highly relevant module.

3.4. WGRS Analysis to Identify Group-Specific Genetic Variation and Associated Genes

Genomic DNA extracted from the blood samples of five hens each from the LG and
HG groups (Figure 1C) was analyzed by WGRS. Tables S4 and S5 present information
regarding quality analysis, mapping rates and average sequence coverage. A large num-
ber of genetic variants (151,340 SNPs, 123,110 INDELs, 121,077 CNVs and 141,016 SVs in
total) were detected in both groups of samples compared to the reference genome (bGal-
Gal1.mat.broiler. GRCg7b) (see Tables S6–S8 for statistical information). Here, we focused
on SNP loci and distinguished 15,040 population-specific SNPs (Table 2), which were local-
ized on 1601 genes. Nonsynonymous mutations occurring in exons may affect the structure
of the protein and thus lead to altered function, and mutations occurring in UTR5 may
have an effect on the expression of genes. Therefore, we focused on these two parts of the
SNP (detailed in Tables S9 and S10). In addition, GO enrichment analyses were performed
on the biological function of these group-specific SNPs located in genes that were enriched
in 1053 terms (Figure 4A). KEGG pathway analysis revealed the significant enrichment of
five pathways such as the calcium signaling pathway and neuroactive ligand–receptor in-
teraction (Figure 4B). Then, 63 group-specific SNPs were identified based on the frequency
of genotype distribution in the population (Table S11).
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Table 2. Population-specific SNPs detection statistics and annotation results.

Region Number Percentage

Intronic 8125 55.37%
Intergenic 5813 39.62%

Exonic 186 1.27%
Splicing 2 0.01%

Downstream 110 0.75%
Upstream 98 0.67%
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Table 2. Cont.

Region Number Percentage

Upstream/downstream 13 0.09%
UTR5 63 0.43%
UTR3 261 1.78%

UTR5/UTR3 2 0.01%
Total 15,040 100%

Note: Downstream, 1 kb downstream of the transcription termination site; upstream, 1kb upstream of the
transcription start site; splicing, splicing junction 2 bp; upstream/downstream, the mutation is located in both
the downstream of one gene and the upstream of another gene; UTR5/UTR3, the mutation is located in both the
UTR5 of one gene and the UTR3 of another gene.

3.5. Joint Analysis of WGRS and RNA-seq

Based on the above results, we jointly analyzed the WGRS and RNA-seq data to
further screen for candidate genes that might affect the glossiness of Rhode Island Red
chicken eggs (Figure 5). On the one hand, we compared the genes associated with group-
specific SNPs in WGRS with the DEGs screened by RNA-seq and obtained 11 overlapping
genes as the first portion of the candidate genes (Table 3). We noticed that zinc finger
protein 536 (ZNF536) had the lowest p-value and the largest number of SNPs. On the other
hand, we compared the KEGG pathways that were significantly enriched in the WGRS and
RNA-seq analyses and screened two overlapping pathways, the calcium signaling pathway
and neuroactive ligand–receptor interactions. Genes in the two pathways were selected as
the second portion of the candidate genes (Table 4). Meanwhile, we identified differentially
co-expressed modules related to gloss and integrated WGS data to determine if certain
SNPs are associated with hub genes in the sub-networks. Protein–Protein Interaction
Networks (PPIs) indicated SNPs located in CALM1 are associated with TAGLN. According
to the above results, 5-hydroxytryptamine receptor 1F (HTR1F) is a differentially expressed
gene involved in the neuroactive ligand–receptor interactions pathway. Nerve growth
factor (NGF) was involved in one of the key pathways and it had multiple SNPs in the
UTR5 region. NEDD8 ubiquitin-like modifier (NEDD8) had multiple SNPs in exons which
are non-synonymous substitutions. Calmodulin1 (CALM1) was reported to be involved in
eggshell gloss formation [27]. Overall, taking into account the significance level of DEGs,
the number of SNPs, the results of KEGG pathways analysis and the literature reviews,
ZNF536, HTR1F, NGF, NEDD8 and CALM1 were selected as potential candidate genes
involved in the eggshell gloss of HG and LG hens. SNP information regarding these genes
is listed in Table 5.

Table 3. Overlapping genes between RNA-seq and WGRS analysis.

Gene Name p Value log2FoldChange Chr SNP Num

ZNF536 6.03 × 10−5 −2.104328726 11 20
CRMP1 0.000392 1.115834887 4 1
LYVE1 0.005761 1.194353931 5 3
CNTN1 0.016508 1.049463725 1 7
NOX3 0.014941 −2.343634297 3 3

ARHGAP15 0.020556 1.04431234 7 1
INPPL1 0.022631 1.6402217 4 1
HTR1F 0.031011 Inf 1 2
MRC1 0.040211 1.005384815 2 1

C17orf58 0.043432 −1.064341843 18 4
TFEC 0.048114 2.81415403 1 1

Note: Chr, chromosome; SNP Num, the number of SNPs.
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Table 4. Genes in co-pathways between RNA-seq and WGRS.

Co-Pathways Calcium Signaling Pathway Neuroactive Ligand–Receptor Interaction

RNA-seq TACR3, TRHR,
CD38, CHRNA8, FGF19 HTR1F, TACR3, GRM4, CHRNA8

WGRS

NGF, CALM1, PLCD1, NOS2,
STIM2, ADCY9, CACNA1D,
GRIN2A, PPP3R1, CHRM2,
FGF3, CACNA1B, ERBB3,
HTR7, CHRM3, CAMK4,
ADRA1B, NTSR1, PLCB1,
HTR2C, FGF18, ERBB4,
ATP2B1, SLC8A3, FGF10,
CHRM5, GNAL, CCKAR

HTR1F, RLN3, GRID1, VIPR2, DRD2,
PARD3, GLRA2, ADRA2A, HCRTR2,
CHRNA5, FSHR, GRIK4, PTH2R, HTR7,
CHRM3, NTSR1, THRB, GABRA4, SSTR4,
HTR2C, CCKAR, GRIN2A, CHRM2, MC4R,
GABRQ, SSTR5, ADCYAP1R1, GRM3,
ADRA1B, GABRB3, CALCRL, GRID2,
LPAR4, GLP1R, CHRM5, GLRB

Note: Co-pathways, intersection of enrichment pathways of two sequencing results; WGRS, whole-genome
resequencing.
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Table 5. SNP sites of candidate genes for eggshell gloss.

Gene Site Chr Region Base in HG Base in LG

NEDD8
506704 35 exonic C T
506810 35 exonic C T
505577 35 exonic G A

NGF
4069359 26 UTR5 A G
4070415 26 UTR5 C T

HTR1F
92728689 1 intergenic T C
92970994 1 intergenic T C

ZNF536
8393350 11 intronic C G
8583435 11 intronic A G
8591108 11 intronic G A

CALM1 43490289 5 intergenic G A
Note: Chr, chromosome; HG, high gloss; LG, low gloss.

4. Discussion

Eggshell gloss has an important effect on the eggshell appearance. For wild birds,
brightly colored eggs may be a “releaser” signal that attracts males to incubate the eggs [28].
As the gloss and color of tinamou eggs fade during incubation, females can rationally
choose laying nests by the glossiness of the eggshells [29]. In recent years, more and more
layer breeders have started to choose eggshell gloss as a breeding indicator. However,
there is no dedicated equipment and standardized method for measuring eggshell gloss,
and the molecular mechanism of its formation and the key genes are not clear, which
limit the progress of selection for this trait in layer breeding. Therefore, in this study, we
used globally widely bred Rhode Island Red hens as the research object. Firstly, we used
different measurement methods to accurately evaluate the eggshell gloss of eggs, based on
which, we screened the two-tailed samples (HG and LG) and then analyzed the differences
at the genome level and the transcriptome level and finally screened for candidate genes
that might be related to eggshell gloss.

For RNA-seq, it is crucial to select the most suitable samples due to the temporal
and spatial specificity of gene expression. Indeed, egg laying in poultry is a precisely
regulated physiological process. Ovulatory traits are determined by ovarian function and
regulated by the hypothalamic pituitary gonadal axis (HPG), and the timing of ovulation,
the formation of egg and the final laying time are all highly regular [30]. Calcification
of the eggshell occurs in the uterus and results in the formation of a complete eggshell
structure through three stages: the initiation of calcification, linear deposition and late
calcification [31–33]. Since the eggshell gloss trait of interest is closely related to the surface
of the eggshell, we hypothesized that “late calcification” is the key stage that affects eggshell
gloss. Therefore, we observed the laying time of the candidate hens three days in advance
and collected mucosal tissues from the uterus two hours before the predicted laying time
for RNA extraction and RNA-seq analysis.

RNA-seq analysis showed that 150 DEGs were identified in the uterus of HG chickens
compared to LG chickens. GO and KEGG enrichment analyses of DEGs significantly
enriched 479 important GO terms and six KEGG pathways, which were mainly associ-
ated with cellular processes such as environmental information processing, the calcium
signaling pathway, and neuroactive ligand–receptor interactions (p < 0.05). A previous fish
study found that the neuroactive ligand–receptor interaction pathway can influence steroid
hormone synthesis in the gonads via the HPG axis [34]. The neuroactive ligand–receptor
interaction pathway may affect egg production in chickadees through a mechanism similar
to that in fish [35–37]. Therefore, DEG mapping to the neuroactive ligand–receptor interac-
tion pathway and calcium signaling pathway may play an important role in eggshell gloss
formation. Considering shell glossiness is a complex trait influenced by multiple genes,
differential co-expression transcriptomic network analysis was performed. We applied
WGCNA to analyze the clusters of co-expression genes to screen genes that may be related
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to eggshell gloss information. The results (Figure S1) may provide a reference for further
screening and the validation of candidate genes.

In addition, WGRS analyses revealed substantial inter-group genetic differences be-
tween LG and HG. Among them, we focused on and analyzed the identified SNPs. Then,
group-specific SNPs were identified based on the genotype distribution frequencies of
HG and LG chickens, and the genes where the SNPs were located were analyzed by GO
enrichment analysis and KEGG pathway analysis. The results of enrichment analysis
generated 1053 significant GO terms and five KEGG pathways. Notably, the calcium sig-
naling pathway and the neuroactive ligand–receptor interaction (p < 0.05) pathway were
significantly enriched in both WGRS and RNA-seq. This suggests, on the one hand, that
our choice of RNA-seq samples was appropriate and, on the other hand, that genomic
variation as well as expression differences in these two pathways in the LG and HG groups
may be an important mechanism contributing to the differences in eggshell gloss between
the two groups.

Finally, we jointly analyzed the WGRS and RNA-seq results to screen candidate genes
that might affect eggshell gloss. Calcium is essential for egg formation in laying hens, and it
has a significant effect on laying performance [38–40]. Calcium is involved in the regulation
of androstenedione production and uterine contraction in laying hens [41]. The binding of
calmodulin and calcium ions promotes the secretion of steroid hormones from the cervical
cells of laying hens [42]. CALM1 is a prototypical calcium sensor, which is an important
gene for reproduction [43]. Bioinformatics analysis revealed that the SNP(g.44069941G > A)
in CALM1 affects egg production in chickens [44]. In addition, CALM1 has been reported
to be an important regulator of androgen production in chicken follicular membrane
cells [45], which increases the strength of the eggshell to some extent [46]. HTR1F is
expressed in different regions of the brain and pituitary gland [47]. It may be involved in
regulating the release of prolactin from the chicken pituitary and influences egg production
by modulating ovarian metabolic function [48]. Previous studies have found that ZNF536
may affect eggshell weight in chickens [49]. NEDD8 is a ubiquitin-like protein that controls
important biological events by linking to members of the cullin family [50]. NEDD8 was
found to affect the proliferation and apoptosis of bovine follicular granulosa cells [51]. NGF,
the first member of the neurotrophin family to be isolated from nervous tissue, is a major
mediator in the regulation of nerve growth, proliferation, differentiation and survival [52].
In addition, NGF plays an important role in neurodegenerative diseases and neuronal
survival [53]. Therefore, we preliminarily identified a total of five candidate genes, HTR1F,
ZNF536, NEDD8, NGF and CALM1, based on gene expression, SNP number, SNP location,
SNP-associated hub genes and a literature review. However, although we preliminarily
identified five candidate genes that may contribute to the difference between HG and
LG eggshells, some limitations in this study should be taken into consideration. The
mechanism of the functions of the candidate genes needs to be further investigated, and
whether the SNP loci of these genes can be applied to molecular marker-assisted selection
also needs to be validated in a larger population.

5. Conclusions

In conclusion, this is the first study using RNA-seq (uterine tissue) and WGRS to
screen for candidate genes that may contribute to the gloss differences between HG and LG
eggshells. RNA-seq and WGRS analyses revealed significant differences in gene expression
patterns between HG and LG groups and a large number of inter-group differential SNPs.
GO and KEGG analyses showed that the related genes were predominantly enriched in
calcium signaling pathways and neuroactive ligand–receptor interactions. In addition,
five candidate genes that may affect the glossiness of HG and LG eggs were screened by
combined WGRS and RNA-seq analysis. This study provides a reference for the study of
eggshell gloss and lays a foundation for improving egg glossiness in layer breeding.
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