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Simple Summary: Procambarus clarkii is typically viewed as a predator rather than prey, due to
its strong anti-predatory capabilities. However, during its juvenile stage, it remains vulnerable to
predators. Nonetheless, complex outdoor habitats can offer some protection. By examining the
effects of three different types of shelters with various coverages and combinations on the predation
rhythm, behavior, and efficiency of Silurus asotus on juvenile Procambarus clarkii, we found that the
presence and complexity of shelters in the environment have a limited impact on the predatory
activities of Silurus asotus. Among the shelter types, PVC pipes offered the best protection, followed
by stone, with water grass providing the least protection. Furthermore, the protective effect of
shelters increased with coverage rate. Therefore, we suggest that the type and abundance of shelters
significantly influence the predation rhythm and behavior of Silurus asotus on Procambarus clarkii in
outdoor environments.

Abstract: Procambarus clarkii is adept at using natural shelters and caves to evade attacks from
predators. However, the concealment abilities and mechanisms of P. clarkii for different types of
shelters under predation pressure have not yet been reported. In this study, laboratory experiments
were carried out to determine the effects of different coverages (25%, 50%, and 75%) and different
combinations (I–VII) of three types of shelters (PVC pipes, water grass, and stone) on the predation
rhythm, behavior, and abilities of Silurus asotus on P. clarkii. The results indicated that the predation
of S. asotus on P. clarkii exhibited significant rhythmicity under shelter conditions, excluding PVC
pipes, 75% stone, and combination VI. Among the three types of shelters, PVC pipes provided the
strongest concealment, followed by stone and water grass. With the increase in shelter coverage, the
anti-predation ability of P. clarkii continued to increase, and the optimal shade rate for water grass
was 50%. In the different shelter combinations, the environmental complexity had little effect on the
predation activity of S. asotus on P. clarkii. These findings demonstrated that the type and abundance
of shelters in the wild environment can affect the predation rhythm and activities of S. asotus on
P. clarkii.

Keywords: shelters; Procambarus clarkii; Silurus asotus; predation; covert behavior

1. Introduction

Procambarus clarkii is a typical cave-dwelling animal with social behavior [1], known for
its aggressiveness, burrowing habits, and robust anti-predation ability [2]. In the late 1920s,
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P. clarkii was introduced to China from Japan, and it has since established a wide distribution
in the Yangtze River Basin, occupying an ecological niche in Poyang Lake [3]. From 2009 to
2013,the production of P. clarkii in Poyang Lake represented over 50% of the total shrimp
fishing production, averaging 2.5 × 104 tons [4]. However, following the ban on fishing
in the Yangtze River in 2021, P. clarkii in Poyang Lake exhibited a trend towards smaller
individuals and a substantial decline in resources. For example, the results of a 2021~2022
survey indicated that the presence of P. clarkii was detected at only 5 of the 14 sampling
sites, and the number of P. clarkii caught was significantly lower than before the closure [5].
In nature, the predation activities of numerous predators, including waterfowl, water
snakes, and some fierce carnivorous fish (Anguilla anguilla, Silurus asotus, Perca fluviatilis,
etc.) may contribute to the decline in P. clarkii resources [6–8]. The interactions between
prey size and predator species can influence the feeding preferences of the predator [9]. For
example, predators exhibit a clear preference for the size of Penaeus orientalis [10] and Cherax
quadricarinatus [11]. For P. clarkii, the small larvae may face a higher risk of predation.

The natural shelters in the environment offer protection for prey from the threat
of predation. For P. clarkii, various effective shelter types include substrates, caves, large
plants [12], and even shadows [13]. The specifications of shelters are a crucial factor affecting
their protective capacity, with larger shelters typically providing better protection for
P. clarkii and influencing their efficiency in responding to predators [14]. The effectiveness
of shelters is proportional to their density and complexity [15,16]. Shelters can reduce the
frequency and duration of interspecies competition and the risk of interspecies predation,
significantly improving the survival rate of P. clarkii [1,13]. Shelters are more effective in
reducing the aggression of Cambarus than food [17]. P. clarkii exhibits an obvious preference
for different types of shelters. Regarding shelter type, P. clarkii preferred narrow, dark,
and breathable shelters, showing a clear selective preference for cave-type shelters [18]. In
terms of shelter materials, P. clarkii preferred bamboo-type shelters [19].

However, shelters cannot consistently yield a positive effect for P. clarkii, whether in
the natural environment or aquaculture process. In the environments with shelters, the
different developmental stages of P. clarkii will compete for shelters, leading to the larvae of
P. clarkii being confined to areas with sparse shelters, increasing the risk of predation [20].
Simultaneously, in order to reduce the probability of interspecies fighting and predation,
P. clarkii feed only to satisfy their own minimum energy expenditure, resulting in dimin-
ished growth rates [21]. Additionally, some shelters like straw, mud, and dead leaves may
decrease the hatching rate of fertilized oosperm [22]. Currently, numerous studies have
focused on the effects of shelters on the growth of P. clarkii, but there is limited research on
the impact of shelters on its other life activities. Poyang Lake is a typical representative
of composite river and lake ecology, with a complex habitat and numerous predators.
Whether shelters will affect the anti-predation activity of P. clarkii and the mechanism of
action remain unknown.

In this study, P. clarkii were used as the prey and Silurus asotus were selected as
the predator. Three types of shelters (PVC pipes, water grass, and stone) were used to
simulate diverse habitat conditions in Poyang Lake. Moreover, the different coverages and
combinations of three shelters were set up to analyze the feeding rhythm, anti-predation
behavior, and activity of P. clarkii. These results will reveal the influence mechanism of
different habitats on the anti-predation activity of P. clarkii and provide a scientific reference
for the resource assessment and sustainable development of P. clarkii in Poyang Lake.

2. Materials and Methods
2.1. Source and Maintenance of Experimental Animals

The morphological indices of P. clarkii and S. asotus were shown in Table 1 (with
mean ± standard error), which were taken from the aquaculture base of the Jiangxi Fish-
eries Research Institute (Nanchang, Jiangxi). Before the test, P. clarkii and S. asotus were
separately maintained in 84 indoor aquaria (length 1 m × width 0.6 m × height 0.55 m,
water depth 0.15 m, each equipped with a recirculating system) for two weeks. During
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the acclimation, water subjected to continuous aeration for more than 48 h was provided,
and an appropriate amount of sediment was added to the water to simulate the water
transparency of Poyang Lake during the dry water period. The water temperature was
maintained at 23 ± 0.5 ◦C, with a photoperiod of 12 h dark:12 h light, pH of 7.5 ± 0.2, and
dissolved oxygen ≥ 6 mg/L. Commercial crayfish pellets (32% crude protein, 4% crude
lipid, 8% crude fiber, 3% calcium, 1% phosphorus, 1.5% lysine, 15% ash and 14% moisture)
were used to feed P. clarkii every three days, and P. clarkii of the above size were employed
to feed the S. asotus to saturation once every other day.

Table 1. Morphological indices of two experimental aquatic animals.

Species Number TL (mm) BW (g) MB (mm) OFL (mm) BH (mm) BW (mm)

S. asotus 42 311.65 ± 26.53 205.67 ± 30.84 35.03 ± 3.62 27.88 ± 4.11 / /
P. clarkii 672 38.40 ± 1.75 1.94 ± 0.59 / / 10.48 ± 0.25 9.35 ± 0.77

TL: Total Length; BW: Body Weight; MB: Mouth Breadth; OFL: Fissure Length; BH: Body Height; BW: Body
Width.

2.2. Experimental Design and Procedure

Three levels of shelter coverage (25%, 50%, 75%) and seven different combinations of
three types of shelters (PVC pipes: φ 0.028 m, length 0.1 m; water grass: length 0.1 m; stone:
length 0.08 m, width 0.06 m) with 50% coverage were set up (Table 2), including 14 groups
with three replicates each, and the control group without shelters. The experiment lasted for
24 h. All experimental conditions were consistent with the acclimation and the photoperiod
consisted of 12 h light and 12 h dark. A transparent perforated acrylic plate separating
areas A and B of the blue test device (Figure 1) was used, and two cameras were mounted
directly above and at the bottom. A small flushing device (length 0.4 m × width 0.75 m ×
height 0.8 m) was installed in front to simulate the water flow rate.

Table 2. Combination of three different types of shelters.

Species Number of
S. asotus

Number of
P. clarkii Number

Shelter Type (Coverage Rate: 50%)

Water Grass PVC Pipes Stone

S. asotus

1 16 I
√

1 16 II
√

1 16 III
√

1 16 IV
√ √

1 16 V
√ √

1 16 VI
√ √

1 16 VII
√ √ √

Note: “
√

” means that the shelter was set in this experimental group.

Figure 1. Predator–prey test device.
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The 16 P. clarkii and one S. asotus subjected to 48 h starvation were randomly placed in
areas A–B of the test device for two hours before the experiment. After two hours, the plate
was withdrawn and the video recording system was activated to document the experiment.
The remaining number of P. clarkii in the test device was recorded at 12 h intervals. After
24 h, the number of prey of P. clarkii was counted. The number of attacks and predation
time of S. asotus were recorded and analyzed for the predation behavior of S. asotus and the
anti-predation behavior of P. clarkii in the recorded video.

2.3. Data Statistical Analysis

The behavior of S. asotus when approaching, attacking, and handling P. clarkii was
considered as a complete predation event. The number of prey (NOP), relative predation
rate (RPR) of P. clarkii, and the success rate of foraging (SROF) of S. asotus were calculated
as follows:

NOP = N0 − Ni

SROF = NOP/NOA × 100%

RPR = NOP/(N0 × D)× 100%

where, N0: Initial number of P. clarkii, Ni: Remaining number of P. clarkii, D: Number of
predators, NOA: Number of attacks.

The results were expressed as mean ± standard error (SE). IBM SPSS Statistics 27.0
was used to conduct one-way ANOVA and multiple comparisons to analyze differences
between groups, p < 0.05 indicates a significant difference. Results were plotted with
Graphpad Prism 8.

3. Results
3.1. Predation Rhythm

The predation results of daytime and night (12 h:12 h) indicated that the RPR for the
other experimental groups of S. asotus on P. clarkii was significantly higher at night (p < 0.05)
with the exception of 25% and 75% PVC pipes, 75% stone, and combination VI (Table 3).
Similarly, except for 75% PVC pipes, the NOA of S. asotus was significantly higher at night
(p < 0.05) (Table 3).

Table 3. Predation rhythm of S. asotus on P. clarkii under different shelter conditions.

Shelter Type

Time Period

8~20 20~8

RPR (%) NOA RPR (%) NOA

Water grass
(WG)

25% 2.08 ± 2.08 7.33 ± 0.66 22.92 ± 1.20 a 20.67 ± 1.69 a

50% 0 7.33 ± 0.33 12.50 ± 0.00 a 17.33 ± 1.32 a

75% 4.17 ± 2.05 8.67 ± 0.47 18.75 ± 0.00 a 19.33 ± 1.48 a

PVC pipes
(PP)

25% 0 5.67 ± 0.67 4.17 ± 2.05 14.67 ± 0.88 a

50% 0 5.67 ± 0.33 6.25 ± 0.00 a 9.67 ± 0.67 a

75% 0 2.33 ± 0.33 0 5.33 ± 0.88

Stone
(ST)

25% 4.17 ± 2.05 9.33 ± 0.88 22.92 ± 1.20 a 19.00 ± 1.16 a

50% 2.08 ± 2.08 7.00 ± 0.58 10.42 ± 1.94 a 12.67 ± 0.33 a

75% 0 4.00 ± 0.58 4.17 ± 2.05 9.67 ± 0.33 a

Coverage
rate: 50%

IV 0 5.67 ± 0.67 10.42 ± 1.94 a 12.67 ± 1.82 a

V 4.17 ± 2.05 6.67 ± 0.33 12.50 ± 0.00 a 15.33 ± 1.88 a

VI 2.08 ± 2.08 4.33 ± 0.33 6.25 ± 3.61 12.00 ± 2.00 a

VII 0 4.66 ± 0.33 8.33 ± 2.05 a 16.67 ± 1.77 a

Control 6.25 ± 0.00 9.67 ± 0.87 29.17 ± 2.06 a 22.33 ± 0.67 a

The difference in letters indicated that there were significant differences between groups (p < 0.05), and the same
applies below.
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3.2. Predation and Anti-Predation Behavior

Fish aggression was an adaptive behavior exhibited by individual animals of the
same or different species to compete for space or food resources, which was an innate
and prominent characteristic of fish [23]. Predation strategies and behaviors of S. asotus
were found to be consistent across species and coverage of shelters during the course of
the experiment. Sample images from videos, depicting the predation behavior of S. asotus
on P. clarkii, are shown in figure. 2. Based on the analysis of the video recordings, the
predation process of S. asotus on P. clarkii was divided into three stages, including the
search, attack, and prey handling. Stage I was the search stage, in which S. asotus persisted
in searching for prey along the wall of the test device and most P. clarkii remained stationary
on the wall or in a corner during the attack latency. Stage II was the attack stage. Upon
contact with the P. clarkii, the S. asotus immediately accelerated and attacked the body of
P. clarkii (Figure 2A,B). Simultaneously, the P. clarkii rapidly raised their pedes chela and
swung their tails to escape along the wall or toward the opposite direction. It remained
stationary on another safe corner or wall if successful, and S. asotus would continue to
swim along the tank wall in search of the next prey. Stage III was the prey handling stage.
After capturing the prey, S. sotus gradually swallowed it for chewing upon capturing the
prey, and consistently pushed the prey against the wall and shook its body rhythmically
until it completely devoured its prey during the swallowing process (Figure 2C,D). After
finishing its meal, S. asotus left along the wall of device.
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3.3. Effects of Different Coverages of Shelter on the Anti-Predation of P. clarkii

Under the effect of three types of shelters with varying coverage rates, except for 25%
stone, the RPR of P. clarkii in the remaining experimental groups was significantly lower
than that in the control group (p < 0.05) (Figure 3). The NOA of S. asotus on P. clarkii in the
remaining experimental groups was significantly lower than that in the control group with
the exception of 25% PVC pipes and 75% water grass and 25% stone (p < 0.05) (Figure 4).
And, apart from the 25% PVC pipes, 50% stone, and 75% water grass, the SROF of S. asotus
on P. clarkii in the remaining experimental groups was significantly lower than that in the
control group (p < 0.05) (Figure 5)
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In the presence of water grass sheltering, the RPR of P. clarkii with 50% coverage was
significantly lower than that with 25% and 75% coverage (p = 0.0008; p = 0.0021) (Figure 3).
The NOA of S. asotus on P. clarkii showed no significant difference under three coverage rates
(p > 0.05) (Figure 4). The SROF of S. asotus on P. clarkii with 50% coverage was significantly
lower than that with 25% coverage (p = 0.0143) (Figure 5). In the presence of PVC pipe
sheltering, there was no significant difference in the RPR and SROF under three coverage
rates (p > 0.05) (Figures 3 and 5). The NOA with 75% coverage was significantly lower
than that with 25% and 50% coverage (p < 0.0001; p = 0.0201) (Figure 4). In the presence
of stone sheltering, the RPR and NOA of 50% and 75% coverage were significantly lower
than that of 25% coverage (p < 0.05) (Figures 3 and 4) and the SROF with 75% coverage was
significantly lower than that with 25% coverage (p = 0.0009) (Figure 5).

The RPR, NOA, and SROF of S. asotus on P. clarkii with PVC pipes were consistently
lower than those of water grass and stone at an equal coverage rate. Specifically, at the
coverage rate of 25%, the RPR, NOA, and SROF of PVC pipes were significantly lower
than those of water grass and stone (p < 0.05) (Figures 3–5). The NOA of PVC pipes was
significantly lower than that of water grass at the coverage rate of 50% (p = 0.0031) and
there was no significant difference in the SROF of three types of shelters (p > 0.05) (Figure 5).
At the coverage rate of 75%, the RPR, NOA, and SROF of PVC pipes and stone were
significantly lower than those of water grass (p < 0.05) (Figures 3–5).

As seen above, 25%, 50% and 75%, respectively, represent the coverage of the three
kinds of shelters. The control is the control group, the same applies below.

3.4. Effects of Different Combinations of Shelter on the Predation of S. asotus on P. clarkii

In the combinations of different shelters with a coverage rate of 50%, the RPR of seven
combinations was significantly lower than that of the control group (p < 0.05) (Figure 6).
Except for combination I, the NOA of S. asotus on P. clarkii in the remaining combinations
was significantly lower than that in the control group (p < 0.05) (Figure 7). With the
exception of combination V, the SROF of S. asotus on P. clarkii in the remaining combinations
was significantly lower than that in the control group (p < 0.05) (Figure 6).
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Within three single shelter combinations (I, II, III), there was no significant difference
in the RPR and SROF of three combinations (p > 0.05) (Figure 6), The NOA of combination
II was significantly lower than that of combination I (p = 0.0139) (Figure 7) and there was
no significant difference in the RPR NOA and SROF among combinations IV–VI (p > 0.05)
(Figures 6 and 7). The RPR, NOA, and SROF showed no significant differences with the
increasing type of shelters among the four groups (I, IV, V, VII) containing water grass.
Similarly, no notable distinctions were observed among the intergroups that included stone
(II, IV, VI, VII) and PVC pipes (III, V, VI, VI) (Figures 6 and 7).

4. Discussion
4.1. Predation Rhythm of S. asotus under Different Shelter Conditions

The photoperiod can directly or indirectly regulate the diurnal cycle of dissolved
oxygen and temperature of water, and in turn, affects the feeding activity of fish [24,25].
For example, the feeding frequency and amount of Cyprinus carpio and Abalone can be
significantly affected by the photoperiod [26,27]. In this study, the total predation activity
of S. asotus on P. clarkii in all shelter conditions except 25%, 75% PVC tube, 75% stone, and
combination VI showed a clear predation rhythm, consistent with the negatively correlated
feeding intensity of Channa argus with illumination [28]. S. asotus, which mainly relies
on olfaction and mechanical touch for predation, is a typical demersal fish with negative
phototropism for light [29]. Nevertheless, the photoperiod can also assist some fishes that
rely on vision for predation in better locating their prey. The reason for the differences in
daytime and night feeding rhythms among the five groups mentioned above may be related
to the type and coverage rates of shelters. The P. clarkii has a sufficient number of shelters
to avoid the potential attack threat of the predator after addressing the predation threat
with a high coverage rate of PVC pipes, reducing interactions with S. asotus, consequently
affecting the predation rhythm of the S. asotus.

4.2. Effects of Different Coverage of Shelter on the Predation of S. asotus on P. clarkii

The change in the habitat environment can change the predator’s ability to search
and process prey [30,31] and the structure of the hidden area of prey [32]. In this study,
the RPR, NOA, and SROF of S. asotus on P. clarkii were reduced to varying degrees by the
presence of the three shelters. Among them, the inhibition ability of PVC pipes was the
strongest, followed by stone and water grass, which may be related to the concealment
ability of shelters and the habitat habits of P. clarkii [33].
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P. clarkii cling to water grass, using it to hide and escape from predators when threat-
ened by predators [34]. It was found that both the RPR and SROF of S. asotus on P. clarkii
exhibit a trend of initially decreasing and then increasing with the increase in the coverage
rate of shelter in this study. This may be attributed to the insufficient coverage rate of water
grass, so that P. clarkii had no enough shelters for concealment. Some P. clarkii can only
stay on the device wall or corner and expose to S. asotus, increasing the predation risk by
S. asotus. As the coverage rate increased to 50%, there are enough shelters for P. clarkii to
avoid the pursuit of S. asotus, resulting in a decrease in the RPR of P. clarkii and the NOA of
S. asotus. The increase in the biomass of large plants affects the ability of visual predators
to detect prey [35]. As the coverage rate increased to 75%, excess water grass contacted
with S. asotus—which relies on olfactory and mechanical touch for predation—increased
the NOA, and provided a good hiding effect for S. asotus [36], which reduced its exposure
opportunities to P. clarkii, resulting in a decrease in the anti-predation awareness of P. clarkii
and an increase in its predation risk. Ostrand et al. proposed that prey species was the key
factor affecting the predation efficiency of predators, followed by vegetation density [37].
This may be the reason why the results of this study are inconsistent with Gotceitas’ conclu-
sion that the increase in vegetation density will significantly reduce the predation efficiency
of predator [38].

As a typical burrowing animal, P. clarkii is timid and prefers solitude [39]. It avoids
predation by seeking shelter in the cave after feeling the threat of predation [2]. Similarly,
Palaemonetes pugio can use coarse wood chips as a cover when facing predatory fish [40].
In this study, the NOA and SROF of S. asotus on P. clarkii decreased with the increasing
coverage rates of PVC pipes. This decline was attributed to potential conflicts among
P. clarkii individuals in the cave with a low coverage rate of PVC pipes, where stronger indi-
viduals displaced weaker counterparts from shelters, creating opportunities for S. asotus to
attack P. clarkii. As the coverage rate of PVC pipes increased, enough PVC pipes provided
sufficient shelter for P. clarkii, which reduced its exposure opportunity to S. asotus. This is
consistent with the research conclusions of Gotceitas et al. [38].

The principle of the stone is similar to that of the PVC tube. We found that the P. clarkii
will lie under the stone and in crevices to avoid the predator’s attack when the type of
shelter is stone, This is consistent with the conclusion that Homarus americanus can use stone
crevices and caves to evade predators [41]. In this study, both the RPR, NOA, and SROF of
S. asotus on P. clarkii continued to decline with the increase in the coverage rate of stone.
This was due to the fact that P. clarkii did not have enough stones to avoid predators when
the coverage rate of stone was low, and this phenomenon improved with increasing stone
coverage. The existence of stones will also increase the difficulty of S. asotus predation on
P. clarkii [42].

4.3. Effects of Different Combinations of Shelter on the Predation of S. asotus on P. clarkii

In the wild environment, habitat complexity diminishes the predator’s predation
efficiency by inhibiting the predator’s mobility and providing shelter for prey [43,44], The
distribution and quality of shelters affects the strength, duration, and outcome of animal
interactions [45,46]. However, some studies have indicated that higher environmental
complexity is more conducive to ambushing the predator’s predation activities [36]. In this
study, as the complexity of the shelter increased, no significant difference was observed
between the experimental groups. This implies that the complexity of the shelters had little
effect on the predation activity of S. asotus. The outcome is related to the unique biological
characteristics of S. asotus, which preferred to use the complex environment to ambush
prey. Simultaneously, the prey size, anti-predation ability, and defense structure affect the
predation activity of S. asotus on P. clarkii [47,48].

4.4. Effects of Shelter on the Resources of P. clarkii

Hydrological changes in Poyang Lake significantly impact the distribution and diver-
sity of wetland vegetation [49]. Poyang Lake experiences a dry season from November
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to March annually [50]. During this period, wetland vegetation is barren, constituting a
critical phase for the growth and development of P. clarkii larvae [51], while other bait
organisms such as Squaliobarbus curriculus and Pseudorasbora parva are larger [52]. P. clarkii
larvae encounters heightened predation challenges in response to the predatory attacks of
wintering ferocious fish during this period [53]. Its weak anti-predation and burrowing
ability renders it incapable of evading attacks from ferocious fish. The vegetation in Poyang
Lake from April to October is abundant and aggressive fish continue to pose a threat
to P. clarkii after emerging from hibernation. Nevertheless, the rich vegetation provides
natural shelters for the mature P. clarkii with a strong anti-predation ability, allowing it to
escape from the fierce fish. At the peak of spawning and juvenile growth of many bait
fish at this stage, aggressive fishes preferentially prey on juveniles with low anti-predator
capacity when multiple bait organisms coexist in Poyang Lake [54], which reduces the risk
of P. clarkii predation.

In the wild environment, the seasonal burrowing behavior of P. clarkii is primarily
concentrated from May to October [55]. Sufficient caves can provide shelter for P. clarkii,
mitigating the risk of predator attacks during this stage. On the contrary, in November
to April, little caves can be used by P. clarkii to evade predator attacks, greatly increasing
its risk of predation. Furthermore, the burrowing ability of P. clarkii positively correlates
with its growth [56]. P. clarkii larvae exhibit poor burrowing ability. Faced with a predation
threat, low-quality caves fail to offer effective shelter, leaving them vulnerable to predator
attacks.

4.5. Effects of Environmental Conditions on the Predatory Activities of Fishes

The effect of water transparency on the predation activity of fish is directly related
to the predation mode of fish [57,58] such as Lateolabrax japonicus and other fish relying
on vision to locate the prey. Lower water transparency will seriously affect its normal
predation activity and reduce its predation efficiency [59]. The water transparency of
Poyang Lake changes periodically with seasons, i.e., the water transparency is higher
during the abundant water period and lower during the dry water period [49]. In this
study, sediment was added to simulate the water transparency of Poyang Lake during the
dry water period, which resulted in the experimental results only reflecting the predation
mechanism of S. asotus on P. clarkii during the dry water period.

Both S. asotus and P. clarkii prefer to live in stone crevices and caves in the field, and
engage in life activities in the evening and at night [60,61]. This overlap in habitat and active
periods could be a contributing factor to S. asotus predating on P. clarkii. Meanwhile, many
fierce fishes in Poyang Lake migrate to the shores to spawn during the spring, meaning
that the P. clarkii larvae inhabiting the shallow water and mudflats may face a greater threat
of predation [62].

The size of the oral fissure is a crucial factor limiting the feeding preferences of preda-
tors [63], the smaller size of P. clarkii larvae expands the spectrum of potential predators.
According to the Optimal Foraging Theory [64], predators expend significantly more energy
attacking adult P. clarkii than they gain in return. Conversely, preying on P. clarkii larvae
optimizes the predator’s energy acquisition [54]. This increased efficiency may contribute
to the heightened predation risk faced by P. clarkii larvae.

5. Conclusions

Generally, this study revealed that different shelter combinations and coverage rates
of three types of shelters (PVC pipes, water grass and stone) exerted varying inhibitory
effects on the predation activity of S. asotus on P. clarkii. Among the three types of shelter,
PVC pipes exhibit the strongest sheltering ability, followed by stone and water grass. In
different shelter combinations, environmental complexity had little impact on the predation
activity of S. asotus on P. clarkii. Due to the size limitations of the experimental device and
single species of prey, it is impossible to fully simulate the natural habitat, which may lead
to limitations in the experimental results and an incomplete explanation of the predatory
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mechanisms of ferocious fish on P. clarkii in the wild. Additionally, Poyang Lake harbors
many ferocious fish species, whose predation may still impact the resources of P. clarkii.
Future research should focus on the effects of predation by different carnivorous fish on
P. clarkii to refine the understanding of how ferocious fish predation affects the resources of
P. clarkii.
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