
Citation: Zhang, P.; Liu, N.; Xue, M.;

Zhang, M.; Xiao, Z.; Xu, C.; Fan, Y.;

Qiu, J.; Zhang, Q.; Zhou, Y.

β-Sitosterol Reduces the Content of

Triglyceride and Cholesterol in a

High-Fat Diet-Induced Non-Alcoholic

Fatty Liver Disease Zebrafish (Danio

rerio) Model. Animals 2024, 14, 1289.

https://doi.org/10.3390/ani14091289

Academic Editor: Zoltan M. Varga

Received: 25 February 2024

Revised: 1 April 2024

Accepted: 20 April 2024

Published: 25 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

animals

Article

β-Sitosterol Reduces the Content of Triglyceride and Cholesterol
in a High-Fat Diet-Induced Non-Alcoholic Fatty Liver Disease
Zebrafish (Danio rerio) Model
Peng Zhang 1,2,3,† , Naicheng Liu 1,2,3,†, Mingyang Xue 1 , Mengjie Zhang 1,2,3, Zidong Xiao 1, Chen Xu 1 ,
Yuding Fan 1 , Junqiang Qiu 2,3, Qinghua Zhang 2,3,* and Yong Zhou 1,*

1 Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China;
somnium_zp@163.com (P.Z.); m200110460@st.shou.edu.cn (N.L.); xmy@yfi.ac.cn (M.X.);
m200100231@st.shou.edu.cn (M.Z.); xiaohzau@163.com (Z.X.); xuchen@yfi.ac.cn (C.X.); fanyd@yfi.ac.cn (Y.F.)

2 Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai
Ocean University, Shanghai 201306, China; jqqiu@shou.edu.cn

3 National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University,
Shanghai 201306, China

* Correspondence: qhzhang@shou.edu.cn (Q.Z.); zhouy@yfi.ac.cn (Y.Z.)
† These authors contributed equally to this work.

Simple Summary: β-sitosterol is a natural product with significant lipid-lowering and cholesterol-
lowering effects. However, the mechanism of its action on aquatic products is not fully understood.
We selected zebrafish as the research object. Through the observation of lipids in zebrafish, we
found that β-sitosterol can reduce the accumulation of triglycerides and cholesterol in zebrafish, and
reduce the related phenotypic changes caused by high-sugar and high-fat diet, thereby reducing
lipid accumulation in zebrafish. This will provide a research basis for the development and use
of β-sitosterol.

Abstract: Objective: Non-alcoholic fatty liver disease (NAFLD) is strongly associated with hyper-
lipidemia, which is closely related to high levels of sugar and fat. β-sitosterol is a natural product
with significant hypolipidemic and cholesterol-lowering effects. However, the underlying mech-
anism of its action on aquatic products is not completely understood. Methods: A high-fat diet
(HFD)-induced NAFLD zebrafish model was successfully established, and the anti-hyperlipidemic
effect and potential mechanism of β-sitosterol were studied using oil red O staining, filipin staining,
and lipid metabolomics. Results: β-sitosterol significantly reduced the accumulation of triglyceride,
glucose, and cholesterol in the zebrafish model. Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analysis showed that differential lipid molecules in β-sitosterol mainly regulated the lipid
metabolism and signal transduction function of the zebrafish model. β-sitosterol mainly affected
steroid biosynthesis and steroid hormone biosynthesis in the zebrafish model. Compared with the
HFD group, the addition of 500 mg/100 g of β-sitosterol significantly inhibited the expression of Ppar-
γ and Rxr-α in the zebrafish model by at least 50% and 25%, respectively. Conclusions: β-sitosterol
can reduce lipid accumulation in the zebrafish model of NAFLD by regulating lipid metabolism and
signal transduction and inhibiting adipogenesis and lipid storage.

Keywords: β-sitosterol; non-alcoholic fatty liver disease model; zebrafish; high-fat diet; blood fat
untargeted lipidomics; lipid metabolism

1. Introduction

Lipids are essential nutrients for animal growth and play a vital role in the metabolism
and immunity of organisms [1]. Lipids are considered essential nutrients for aquatic an-
imals, providing fish with the energy needed for survival, and assume a significant role
in aquatic nutrition [2]. The inclusion of lipids in aquatic feed has the potential to supply
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essential nutrients for optimal fish growth [3]. However, insufficient dietary lipid levels
lead to the consumption of protein in feed for energy supply, resulting in decreased pro-
tein utilization. Conversely, a higher lipid content can effectively conserve protein and
reduce production costs [4]. As a means of enhancing feed efficiency and minimizing
protein consumption, the utilization of high-fat feed has become prevalent in aquaculture.
Nevertheless, the adoption of a high-fat diet (HFD) may result in certain adverse effects.
Specifically, the consumption of an HFD may result in certain adverse consequences. For
instance, HFD may cause the accumulation of fat in the liver and abdomen of cultured
fish, thereby inducing metabolic disorders [5,6]. Excessive fat intake can lead to weakened
immunity, weakened disease resistance, and inflammatory responses in fish [5,7]. Addi-
tionally, it can induce lipid peroxidation in aquatic organisms and generate reactive oxygen
species (ROS) [3]. Research has indicated that the provision of HFD may impede the growth
performance and liver antioxidant capacity of largemouth bass (Micropterus salmoides), as
well as diminish their immune response [8,9]. Similar studies in Atlantic salmon and
rainbow trout have shown that higher fat intake reduces their growth performance [10–12].
Although studies have shown that a high-quality diet can promote the growth of fish, this
is mainly due to increased fat deposition [13]. Therefore, the identification of appropriate
supplements to mitigate the adverse consequences of a high-fat regimen is of paramount
significance in the field of aquaculture.

β-sitosterol exhibits diverse physiological activities such as anti-inflammatory and
antioxidant effects [14], hypolipidemic properties [15], sterol-lowering effects [16], etc.
Research has demonstrated that β-sitosterol possesses hepatoprotective properties in mice,
as evidenced by its ability to decrease cholesterol and triglyceride levels in a mouse model
of HFD-induced nonalcoholic fatty liver disease (NAFLD) [17,18]. In the context of the
rat model of type 2 diabetes mellitus (T2DM) induced by an HFD and streptozocin, the
administration of β-sitosterol has been shown to stabilize blood glucose levels and reduce
hyperglycemia. These findings suggest that β-sitosterol exhibits an insulin-like biological
activity [15].

The accumulation of lipid metabolites is closely associated with obesity or obesity-
related NAFLD [19]. NAFLD is often associated with metabolic syndrome features, such as
dyslipidemia, hypertension, and T2DM [20]. The intrahepatic triglyceride accumulation
(i.e., steatosis, the hallmark feature of NAFLD) results from an imbalance between complex
molecular pathways of lipid metabolism [20]. Animal models are critical tools for studying
NAFLD, as well as the development of therapeutic drugs and prevention and treatment
strategies [20]. There are several studies on NAFLD model organisms, such as rats [15],
mice [21], and zebrafish [22]. Zebrafish are relatively inexpensive and easy to use and main-
tain compared with mammalian models [23]. They develop quickly and are opticrpmally
transparent, allowing for easy observations of phenotypic responses [23]. An HFD-induced
obese zebrafish model exhibited clinical manifestations of NAFLD, including hyperinsu-
linemia and impaired glucose tolerance [24]. The lipid metabolism process in zebrafish,
encompassing lipid absorption and transport, oxidative metabolism, and related processes,
bears a striking resemblance to that of mammals [25], and it can also reveal the changes in
lipid metabolism in fish. These benefits render zebrafish highly suitable models for inves-
tigating diseases associated with lipid metabolism, such as diabetes and NAFLD [26,27].
NAFLD is a metabolic disorder with multiple causes, long-term hyperglycemia causes
macrovascular or microvascular complications, such as retinopathy [28]. Meanwhile, a
zebrafish model of HFD-induced NAFLD has achieved good application progress [20].
Therefore, in a diet-induced zebrafish model of NAFLD, the establishment of the model
can be judged by examining the changes in body indicators, such as lipid changes [24],
genetic changes [29], retinal vascular changes [28], etc. Moreover, zebrafish lipidomics has
been extensively employed in diverse fields such as drug screening, metabolic syndrome,
etc. [30–32]. The present study constructed an NAFLD model by administering HFD to
both zebrafish larvae and adults. The impact of β-sitosterol on lipid metabolism in aquatic
organisms was then investigated using lipidomic analysis. The findings of this study offer
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empirical evidence to support the use of β-sitosterol as a feed supplement to enhance lipid
metabolism in cultured fish.

2. Materials and Methods
2.1. Reagents

β-sitosterol was purchased from Shanghai YuanYe Biotechnology Co., Ltd. (Shanghai,
China). Oil red O stain solution, filipin stain solution, dimethyl sulfoxide (DMSO), tricaine
methanesulfonate (MS222), and phenylthiourea (PTU) were purchased from Sigma-Aldrich
(St. Louis, MO, USA). Cholesterol, egg yolk powder, and glucose were purchased from
Sangon (Shanghai, China). Zebrafish feed was purchased from Shengsuo Co., Ltd. (Yantai,
Shandong, China).

2.2. Zebrafish Stocks and Rearing Conditions

AB and Tg (fli1a: EGFP) zebrafish strains were procured from the National Zebrafish
Resource Center, which is affiliated with the Institute of Aquatic Biology at the Chinese
Academy of Sciences (Wuhan, China). Zebrafish were maintained according to standard
protocols (zfin.org). Adult and larval zebrafish were fed regularly twice a day. Before mat-
ing, an equal number of male and female zebrafish was introduced into a designated mating
tank. The subsequent day, natural spawning occurred, and the resulting embryos were col-
lected. Following microscopic examination, fertilized eggs were chosen and subsequently
incubated at 28 ◦C, with the E3 culture medium (Nanjing EzeRinka Biotechnology, Nanjing,
China) replaced every 24 h. All animal experiments were approved by the Animal Experi-
mental Ethical Inspection of Laboratory Animal Centre, Yangtze River Fisheries Research
Institute, Chinese Academy of Fishery Sciences (ID number: YFI 2022-zhouyong-1201).

2.3. Preparation of Reagents

To prepare a stock solution of 1 mg/mL, β-sitosterol was dissolved in a mixture of
DMSO (30%) and E3 culture medium (70%). The resulting solution was then utilized to
create a working solution of the desired concentration. All the remaining reagents were
prepared according to the instructions.

2.4. Preparation of HFD and Establishment of a Zebrafish Model of NAFLD

Formulation of larval zebrafish HFD: Following the dissolution of 10 g of egg yolk
powder and 1 g of cholesterol, the resulting mixture was homogenized on a magnetic stirrer
and subsequently dried overnight in a freeze dryer (SCIENTE, Ningbo, China).

Formulation of adult zebrafish HFD: After the dissolution of 10 g of egg yolk powder,
10 g of cholesterol, and 3 g of glucose, the resulting mixture was homogenized with 100 g
of zebrafish feed using a magnetic stirrer. Subsequently, the mixture was dried overnight
in a freeze-dryer (SCIENTE, Ningbo, China). The HFD for the experimental group was
enriched with 50 mg of β-sitosterol, while the control group received an equivalent amount
of DMSO as the β-sitosterol group.

Construction of a larval zebrafish model of NAFLD: Fish were raised to 5 days post-
fertilization (dpf) in an E3 medium, with 0.003% 1-phenyl-2-thiourea (PTU) added at 22 h
post-fertilization (hpf) to clear pigment [33]. Zebrafish at 5 dpf were selected for the ex-
periment, and the larvae were fed with HFD twice a day for 5 days. During feeding, 3%
glucose solution was added for soaking, and the feeding time was 1 h. After feeding, a
fresh E3 culture medium was replaced. The experimental group was given 200 µg/mL of
β-sitosterol, the positive control group received 62.5 µg/mL of bezafibrate (a peroxisome
proliferator-activated receptor activator that reduces blood lipids), and the control group
received the same amount of DMSO as the β-sitosterol group. Subsequently, the accumula-
tion of triglyceride and cholesterol in zebrafish larvae was detected [29]. Toxicity tests were
used to determine bezafibrate and β-sitosterol concentrations.

Construction of an adult zebrafish model of NAFLD: This model was established by a
feeding regimen of HFD administered twice daily for one month. Subsequently, the liver of
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the zebrafish was collected to determine the levels of cholesterol and triglyceride, followed
by statistical analysis to confirm the establishment of the model [34].

2.5. Oil Red O Staining of Zebrafish Larvae

Oil red O staining was utilized to detect the accumulation of triglycerides [35]. Ze-
brafish were euthanized using MS-222 (4%) [36] and subsequently fixed with Bouin’s
solution (Sigma, St. Louis, MO, USA). The zebrafish were then fixed at 4 ◦C for 24 h,
followed by washing with 1× phosphate-buffered saline with Tween (PBST) for five cycles,
each lasting 15 min. The samples were dehydrated using a series of methanol solutions:
25% methanol (containing 75% PBST), 50% methanol (containing 50% PBST), 75% methanol
(containing 25% PBST), and 100% methanol, each for 15 min. Subsequently, the zebrafish
were immersed in a solution of oil red dye (0.5% methanol) overnight, followed by incu-
bation in methanol solutions of varying concentrations: 100% and 75% (containing 25%
PBST), 50% (containing 50% PBST), and 25% methanol. Samples were photographed under
a microscope (Olympus, Tokyo, Japan). Image J 1.48 software was utilized to process the
image and determine the grayscale. Subsequently, a difference analysis was conducted. Six
zebrafish were used in each group.

2.6. Filipin Staining of Zebrafish Larvae

The accumulation of triglycerides was detected by filipin staining [37]. Zebrafish
were anesthetized using MS-222 (4%) [36] and subsequently fixed with Bouin’s solution.
The fixation process was carried out in a refrigerator at 4 ◦C for 24 h. Following fixation,
the specimens were washed five times in 1 × PBST, for 15 min each time. A working
solution of filipin at a concentration of 50 µg/mL was added to the specimens and allowed
to react in the dark for 30 min. The specimens were washed five times in 1 × PBST and
then photographed under a microscope. The fluorescence intensity was calculated from
the processed fluorescence images using Image J 1.48 software. Afterward, the difference
analysis was carried out. Six zebrafish were used in each group.

2.7. Zebrafish Eyeball Lens Extraction and Vascular Diameter Statistics

The blood vessel diameter of each lens was measured in the zebrafish [28]. Cell
samples from the modeled zebrafish larvae were fixed in 4% paraformaldehyde at 4 ◦C
for 24 h. Subsequently, they were washed thrice with distilled water, for 20 min each time.
Cells were then incubated with 3% trypsin (Tris-HCl, pH 7.8) at 37 ◦C for 80 min, with
gentle reversal every 20 min. The digestion process was terminated, and the lens was
dissected under a dissecting microscope (Olympus, Tokyo, Japan). The vascular images of
the lens were scanned using single-photon laser confocal microscopy (Olympus, Tokyo,
Japan). The diameter of the vitreous vessels was calculated using Image J 1.48 software.
Subsequently, a difference analysis was conducted. Six zebrafish were used in each group.

2.8. Quantification of Cholesterol, Glucose, and Triglyceride Levels in Hepatic Tissue of
Adult Zebrafish

After euthanizing zebrafish with MS-222, the liver tissue of zebrafish was extracted and
subsequently diluted with sterile phosphate-buffered saline to obtain a tissue homogenate
concentration of 1%. The resultant mixture was subjected to centrifugation at 5000× g
at 4 ◦C for 20 min, yielding a supernatant that was utilized for subsequent analysis [38].
Protein concentrations in the tissue homogenate were measured using a bicinchoninic acid
(BCA) kit (Biyuntian, Shanghai, China). Subsequently, cholesterol and triglyceride levels in
the tissue homogenate were evaluated using tissue triglyceride and cholesterol assay kits
(Nanjing Jiancheng Bioengineering Institute, Nanjing, China). The data were analyzed for
significant differences. Each group consisted of three biological replicates, with 30 zebrafish
in each group.
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2.9. Enzyme-Linked Immunosorbent Assay (ELISA)

The liver of zebrafish was subjected to ELISA to quantify the expression of Ppar-γ
and Rxr-α. Each group consisted of three biological replicates, with 30 zebrafish in each
group, which were homogenized in cold phosphate buffer (with a ratio of 1 g tissue
sample to 9 mL of phosphate buffer) at pH 7.4. After centrifugation at 3000× g at 4 ◦C
for 10 min, the supernatant was collected, and the contents of Ppar-γ and Rxr-α were
analyzed using corresponding ELISA kits (Jianglai biology, Shanghai, China) following the
manufacturer’s instructions.

2.10. Lipidomics Sample Preparation and Analysis

Adult zebrafish in the blank control group (BC), HFD group (HFD), and β-sitosterol
group (B) were euthanized after an ice water bath [39]. Subsequently, the liver tissue was
obtained and transferred to an enzyme-free EP tube and cryopreserved in liquid nitrogen.
Each group consisted of three biological replicates, with nine liver tissue samples in each
replicate. One portion of the tissue samples was sent to Biomarker Technologies (Shandong,
China) for lipidomic sequencing and data analysis, whereas the other portion was used for
subsequent analysis.

2.11. Reverse Transcription-Quantitative Polymerase Chain Reaction (RT-qPCR)

Total RNA was extracted using TRIzol reagent [40]. RNA integrity was determined by
electrophoresis using 1.5% agarose gels. The concentration (A260) and purity (A260/A280,
A260/A230) of the RNAs were measured using a NanoDrop 1000 instrument (Thermo
Fisher Scientific, Wilmington, DE, USA). The RNA was reverse transcribed into complemen-
tary DNA (cDNA) using a cDNA reverse transcription kit (Trans Gen Biotech, Shanghai,
China). Each group consisted of three biological replicates, with three liver tissue samples
in each replicate. RT-qPCR was conducted under standard cycle conditions, consisting of
an initial denaturation step at 95 ◦C for 10 min, followed by 40 cycles of amplification at
95 ◦C for 30 s and annealing/extension at 60 ◦C for 30 s. The 2−∆∆Ct method was employed
for data analysis [41]. Primer sequences used in this study are shown in Table 1. β-actin is
the housekeeping gene used in this study.

Table 1. Primer sequence.

Genes GenBank
Accession NO. Amplicon Length (bp) Primer Sequences (5′-3′)

pparγ NM_131467.1 152
F CTGCCGCATACACAAGAAGA
R TCACGTCACTGGAGAACTCG

rxra U29940 128
F CTGCCAGATAGACAAACGCCA
R CATTATCACTCCTCTCCCGACC

β-actin NM_181601.4 131
F AGGTCATCACCATTGGCAAT
R GATGTCGACGTCACACTTCAT

2.12. Statistical Analysis

Differences between groups were compared using a t-test or one-way analysis of
variance (ANOVA) and the least significant difference test. A probability level of 5%
(p < 0.05) was deemed significant. In instances where the normality test was not met,
Kruskal–Wallis non-parametric one-way ANOVA was utilized, and differences between
groups were assessed using the Mann–Whitney test.

3. Results
3.1. β-Sitosterol Reduces Triglyceride and Cholesterol Levels in Zebrafish

Triglycerides were predominantly stored in the visceral, intestinal, and aortic regions
of the heart in the HFD group. Oil red O and filipin staining results showed that the fluo-
rescence intensity of cholesterol was markedly elevated in the HFD group compared with
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the negative control group (Figure 1A,B). The accumulation of triglycerides and cholesterol
in the abdominal region was considerably mitigated after the administration of the positive
drug bezafibrate, although a residual amount of triglyceride deposition persisted in the lo-
calized area (Figure 1A,B). Similarly, β-sitosterol administration did not result in significant
triglyceride accumulation in the abdominal region (Figure 1A). The fluorescence intensity of
cholesterol staining exhibited a significant reduction (Figure 1B). Simultaneously, combined
with quantitative analysis results, it was discovered that β-sitosterol significantly decreased
triglyceride and cholesterol levels in zebrafish (Figure 1C,D).
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Figure 1. β-sitosterol reduces the content of triglyceride and cholesterol in zebrafish. (A) Oil red O
staining results, scale: 1 mm. (B) Filipin staining results, scale: 1 mm. (C) Quantitative results of
oil red O staining, n = 6. (D) Quantitative results of Filipin staining, n = 6. Results are expressed as
mean ± SE of the three repeated samples. ## p < 0.05, ### p < 0.01 compared with the negative control
group; * p < 0.05, ** p < 0.01 compared with the HFD group.

3.2. Effects of β-Sitosterol on the Microvessels of the Zebrafish Vitreous Vascular System

The lipid content alteration in zebrafish blood was assessed by measuring the blood
vessel diameter of each lens [28]. As shown in Figure 2A, vascular branches were signifi-
cantly fewer in the negative control group than in the HFD group. Meanwhile, bezafibrate
administration significantly reduced the branch density, and similar results were observed
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after treatment with β-sitosterol (Figure 2A). The blood vessel diameter at the location
indicated by the yellow arrow (Figure 2A) was reassessed for further analysis. The results
showed that compared with the control group, the vascular diameter was significantly
increased in the HFD group. However, β-sitosterol treatment significantly reduced the
vascular diameter compared with the HFD group. No significant change was detected in
the bezafibrate group, which may be attributed to the low concentration (Figure 2B).
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Figure 2. Changes in microvessels in the zebrafish vitreous vascular system. (A) Confocal scan of
the outer vasculature surrounding the ocular globe in Tg (fli1a: EGFP) zebrafish larvae. Through
the translucent lens, transparent blood vessels (yellow arrows in (A)) can be seen from the outside,
and red arrows indicate the branches between the vascular arcs. Scale: 10 µm. (B) Quantitative
analysis of the vascular diameter in confocal scanning images, n = 6. The unit of length is in pixels
(px). ### p < 0.01 compared with the negative control group; * p < 0.05 compared with HFD group; ns,
no significant difference.
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3.3. Effects of β-Sitosterol on Triglyceride and Cholesterol Levels in Adult Zebrafish Liver

Triglyceride and cholesterol levels in the liver of adult zebrafish were assessed using
tissue triglyceride and cholesterol assay kits to evaluate the establishment of a zebrafish
model of NAFLD. The results showed that the HFD group exhibited a significant increase
in both triglyceride and cholesterol contents (Figure 3A,B). Specifically, the triglyceride
content reached 15.6 mmol/L (Figure 3A) and the cholesterol content reached 6.3 mmol/L
(Figure 3B). However, β-sitosterol treatment significantly reduced the contents of both
triglyceride and cholesterol in the liver of adult zebrafish (Figure 3A,B). The triglyceride
content was 11.1 mmol/L, and the cholesterol content was 4.7 mmol/L, which decreased
by 29% and 25%, respectively. Overall, these findings indicate that β-sitosterol can decrease
the levels of triglycerides and cholesterol in the liver of adult zebrafish. Furthermore, an
adult zebrafish model of NAFLD was successfully established and used for subsequent
lipid metabolism analysis.
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Figure 3. β-Sitosterol reduces the contents of triglyceride and cholesterol in the liver of zebrafish.
(A) Triglyceride content in the liver of zebrafish. (B) Cholesterol content in the liver of adult zebrafish.
Results are expressed as mean ± SE of the three repeated samples. #### p < 0.01 compared with the
control group; ** p < 0.01 compared with the HFD group.

3.4. Lipid Metabolome Analysis of Adult Zebrafish Liver

Correlation analysis was performed among the control, HFD, and β-sitosterol groups.
The square of the Spearman rank correlation coefficient rho (r) served as the evaluation
index for biological repeated correlation. As shown in Figure 4A, the r2 value of the samples
within the group was proximate to 1, signifying a high degree of similarity among the
samples within the group. Conversely, the r2 value between the samples across different
groups was comparatively low, indicating a low level of similarity among the samples
between the groups. This suggests that the sample’s reliability is exceedingly high.

Principal component analysis (PCA) was employed to assess the overall metabolic
differences and degree of variation between samples within each group. The analysis
was conducted separately in both positive (POS) and negative (NEG) ion modes. The
results from the PCA showed complete segregation of control, HFD, and β-sitosterol
groups, suggesting a significant alteration in metabolite levels among the three groups
(Figure 4B,C). The classification results revealed that glycerophospholipids constituted the
highest proportion of metabolites among the three groups, followed by fatty acyls and
glycerolipids (Figure 4D). A detailed metabolite classification is presented in Supplementary
Table S1.



Animals 2024, 14, 1289 10 of 24

Animals 2024, 14, x FOR PEER REVIEW 10 of 24 
 

 

 

Figure 4. Cont.



Animals 2024, 14, 1289 11 of 24

Animals 2024, 14, x FOR PEER REVIEW 11 of 24 
 

 

 

Figure 4. Lipid metabolome analysis of adult zebrafish liver. (A) Correlation analysis between sam-
ples in control, HFD, and β-sitosterol groups. (B) PCA analysis results in the positive POS ion mode. 
The X-axis represents the first principal component, and the Y-axis represents the second principal 
component. (C) PCA analysis results in NEG ion mode. (D) Lipid classification of the top 10 metab-
olites. B, β-sitosterol group; BC, blank control group; HFD, HFD group; PCA, principal component 
analysis; POS, positive; NEG, negative. 

3.5. Analysis of Differentially Expressed Lipid Metabolites (DELMs) in Zebrafish Liver of HFD 
and β-Sitosterol Groups 

The preceding analysis has demonstrated the successful establishment of the HFD 
group model (Figure 3A,B). To further investigate the impact of β-sitosterol on zebrafish 
with high-sugar and HFDs, two groups were selected for subsequent analysis: the HFD 
group and the β-sitosterol group. The orthogonal projections to latent structures discrimi-
nant analysis (OPLS-DA) methodology is similar to PCA analysis. OPLS-DA is suitable 
for diagnosing dissimilarities between sample groups based on the outcomes of mass 
spectrometry analysis and can ascertain anomalous experimental samples through the 

Figure 4. Lipid metabolome analysis of adult zebrafish liver. (A) Correlation analysis between
samples in control, HFD, and β-sitosterol groups. (B) PCA analysis results in the positive POS ion
mode. The X-axis represents the first principal component, and the Y-axis represents the second
principal component. (C) PCA analysis results in NEG ion mode. (D) Lipid classification of the top
10 metabolites. B, β-sitosterol group; BC, blank control group; HFD, HFD group; PCA, principal
component analysis; POS, positive; NEG, negative.



Animals 2024, 14, 1289 12 of 24

3.5. Analysis of Differentially Expressed Lipid Metabolites (DELMs) in Zebrafish Liver of HFD
and β-Sitosterol Groups

The preceding analysis has demonstrated the successful establishment of the HFD
group model (Figure 3A,B). To further investigate the impact of β-sitosterol on zebrafish
with high-sugar and HFDs, two groups were selected for subsequent analysis: the HFD
group and the β-sitosterol group. The orthogonal projections to latent structures discrimi-
nant analysis (OPLS-DA) methodology is similar to PCA analysis. OPLS-DA is suitable
for diagnosing dissimilarities between sample groups based on the outcomes of mass
spectrometry analysis and can ascertain anomalous experimental samples through the
analysis of their dispersion patterns [42]. The evaluation model utilizes R2X, R2Y, and
Q2Y as prediction parameters. R2X and R2Y indicate the model’s interpretation rate of the
X and Y matrices, respectively. The X matrix serves as the model input, specifically the
lipid quantitative matrix, while the Y matrix functions as the model output, specifically
the sample grouping matrix. The predictive capacity of the model is denoted by Q2Y,
which determines the model’s ability to accurately differentiate sample groupings based
on metabolic expression. A higher value of R2Y and Q2Y in the index indicates greater
stability and dependability of the model, with the ability to effectively screen DELMs. An
exemplary model is denoted by Q2Y > 0.9. The results showed that the value of Q2Y and
R2Y was 0.995 and 1, respectively (Figure 5A), signifying the stability and dependability
of the experimental model. To ensure the reliability of the OPLS-DA model, a permuta-
tion test was conducted. The grouping of samples is randomly disrupted (replaced) and
OPLS-DA modeling is executed based on the permutation group, with R2Y and Q2Y being
computed. The results of multiple modeling are presented as scatter plots. As shown in
Figure 5B, the Q2Y fitting regression line exhibited a positive slope and the R2Y point was
typically positioned above the Q2Y point, suggesting that the model is both significant
and autonomous. The results of PCA (Figure 4B,C) and OPLS-DA (Figure 5A,B) showed
a complete separation between the HFD group and the β-sitosterol group, suggesting a
significant alteration in the lipid metabolite levels between the two groups.
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3.6. Analysis of DELMs in Zebrafish Liver of HFD and β-Sitosterol Groups

Based on the results of OPLS-DA, the variable importance in projection (VIP) values
of OPLS-DA multivariate analysis were used to preliminarily screen out lipids with dif-
ferent varieties or tissues [43]. Meanwhile, the p-value or fold change (FC) obtained from
univariate analysis was integrated to effectively identify DELMs. FC ≥ 1, VIP ≥ 1, and
p-value < 0.05 were set as the screening criteria to screen DELMs [43]. A combination of POS
and NEG ion modes yielded 3305 DELMs in the B group compared with the HFD group, of
which 1764 metabolites were upregulated and 1541 were downregulated (Figure 6A). The
volcano plot showed that the five metabolites exhibiting the most prominent changes were
downregulated and classified as glycerophospholipids (GP), propanol lipids (PR), glyc-
erophospholipids (GP), and fatty acyl (FA) (Figure 6A). A detailed metabolite classification
is displayed in Supplementary Table S2. Preliminary assessment suggests that β-sitosterol
exhibits the most prominent downregulation of glycerophospholipid metabolites. Figure 6B
summarizes the lipid logFC results of the top 10 upregulated and downregulated lipid
metabolites in the experimental group compared with the control group, obtained through
differential metabolite analysis and log conversion processing of the difference multiples.
The results primarily comprise GP, sterol lipids (ST), polyketides (PK), adrenergic lipids
(PR), sphingolipids (SP), fatty acyl (FA), and glycerolipids (GL). A detailed metabolite
classification is displayed in Supplementary Table S3.
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Figure 6. Analysis of differentially expressed lipid metabolites (DELMs) between HFD and β-
sitosterol groups. (A) Volcano plot results; the x-axis represents the difference in multiple changes in
the group compared with each substance (log2), and the y-axis represents the p-value (log10). The
size of the scatter represents the VIP value of the OPLS-DA model. The larger the scatter point, the
larger the VIP value, and the more reliable the DELMs screened. The blue dots in the figure represent
downregulated DELMs, the red dots represent upregulated DELMs, and the gray represents the
detected non-significant lipids. (B) Top 10 upregulated and downregulated lipid metabolites based
on log2FC. The x-axis represents the change in the difference multiples of each substance in the
group (taking log2 as the bottom) based on the upregulation and downregulation; upregulation is
represented by the red color, downregulation is indicated by the blue color, and logFC is represented
by the column length.
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3.7. KEGG Functional Annotation and Enrichment Analysis of DELMs

KEGG pathway and pathway-based network analyses of DELMs were performed.
DELMs were annotated using the KEGG database, and the top 20 most significant DELMs
within the pathway were selected. The enrichment of DELMs was primarily observed in
lipid metabolism (Figure 7A), as well as in steroid biosynthesis and steroid hormone biosyn-
thesis (Figure 7B). The enrichment network diagram revealed that the processes driving the
synthesis of steroids, terpenoid backbone, ubiquinone, and other terpenoid–quinone are
intricately interconnected (Figure 7C). This observation may be attributed to the potential
influence of certain differential metabolites on multiple metabolic pathways simultaneously.
Figure 7D shows the enhanced biological functions of the B group compared with the HFD
group. Notably, upregulated metabolites were primarily involved in lipid metabolism
and signal transduction (Figure 7D). Moreover, downregulated metabolites were primarily
involved in lipid metabolism of the biological functions (Figure 7E). Since the function of
enrichment is not only a single metabolite, there are upregulation and downregulation of
steroid biosynthesis and steroid hormone biosynthesis in lipid metabolism. Collectively,
these data suggest that β-sitosterol can affect lipid metabolism and other pathways in
zebrafish, particularly those related to steroid and steroid hormone biosynthesis.
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Figure 7. Differential lipid KEGG functional annotation and enrichment analysis results. (A) The
annotation results of the TOP20 differential lipid KEGG enrichment. The entries shown in the same
box indicate the hierarchical classification annotation of the KEGG pathway, and the column length
shows the number of lipids annotated to each pathway. (B) Differential lipid KEGG annotation
results for the TOP20 enrichment point map. (C) Differential lipid KEGG annotation results from
TOP20 enrichment network map. (D) KEGG functional annotation and enrichment analysis results of
the upregulated metabolites in differential lipids. (E) KEGG functional annotation and enrichment
analysis results of the downregulated metabolites in differential lipids.
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3.8. Effects of β-Sitosterol Treatment on Ppar-γ and Rxr-α in Adult Zebrafish Liver

Further, RT-qPCR and ELISA experiments were carried out to explore the alterations in
Ppar-γ and Rxr-α. Analysis of the experimental data revealed that the HFD group had 1-fold
higher levels of Ppar-γ and a 25% increase in Rxr-α expression relative to the control group
(Figure 8). Conversely, treatment with β-sitosterol caused a significant reduction in the
expression of both Ppar-γ and Rxr-α (Figure 8). Notably, β-sitosterol exhibited a significant
inhibitory effect, reducing Ppar-γ expression by at least 50% and Rxr-α expression by at
least 25% in the zebrafish model (Figure 8).
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4. Discussion

The application of high-fat feed in aquaculture production has become a common prac-
tice as it conserves limited and scarce protein resources for energy purposes [44]. However,
the adoption of such a diet may cause metabolic challenges in farmed aquatic organisms,
which can potentially affect their overall health [5]. Such a diet may result in the accumu-
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lation of liver fat and the development of fatty liver [45], metabolic dysfunctions [46,47],
and other complications in aquatic organisms. Research has demonstrated that a high-fat
diet can stimulate the oxidation of fatty acids and glucose in species of Larimichthys cro-
cea, leading to the accumulation of lipids [48]. Consumption of a high-fat diet has been
shown to limit the growth and liver lipid accumulation in Micropterus salmoides [49]. There-
fore, identifying substances that ameliorate the adverse effects of high-fat diets on aquatic
organisms is an important research endeavor in the field of aquaculture. The natural com-
pound β-sitosterol has been shown to reduce blood lipid and cholesterol levels. Therefore,
we employed zebrafish as the experimental model to explore the role of β-sitosterol in
lipid metabolism regulation, with the aim of providing empirical evidence to guide the
utilization of β-sitosterol as an aquatic feed supplement.

Therefore, an NAFLD model of zebrafish larvae was constructed by HFD induction.
The efficacy of β-sitosterol in reducing triglycerides and cholesterol was examined through
oil red O staining and Filip staining. Observable characteristics of zebrafish were used as
markers to indicate changes in triglyceride and cholesterol levels among adult and juvenile
fish under varying experimental conditions. Our results show that administering a high-fat
diet (8% cholesterol) to adult zebrafish and zebrafish larvae resulted in an excess accumu-
lation of triglycerides and cholesterol within their bodies (Figure 1). This aligns with the
outcomes of a high-fat zebrafish model developed by Yan Kong, which involved feeding
zebrafish a diet containing 4% cholesterol [50]. After 5 days of consumption of β-sitosterol
using the aforementioned model, the accumulation of triglycerides and cholesterol in
zebrafish was decreased, which matched with the lipid-lowering properties of the drug
bezafibrate (Figure 1). This suggests that β-sitosterol can reduce the levels of triglyceride
and cholesterol. In a previous study, β-sitosterol was found to potentially decrease plasma
total cholesterol (from 340.3 ± 31 mg/dL to 272.7 ± 41.7 mg/dL) and triglyceride (from
208.8 ± 69.3 mg/dL to 151 ± 46.2 mg/dL) in the hamster model of hypercholesterolemia
induced by 0.2% cholesterol diet [51]. Similarly, in a rat model, β-sitosterol caused a sig-
nificant reduction of blood lipid levels [52]. In goldfish (Carassius auratus), intraperitoneal
injection of 200 µg/g β-sitosterol resulted in a 50% reduction in cholesterol concentration
in the gonads compared to the control group [53]. These results are consistent with the
present findings. In the pdx1−/− zebrafish mutant model with diabetes, impaired glucose
homeostasis caused excessive branching and extension of neovascularization in the retina,
accompanied by increased blood vessel diameter [28]. Moreover, in the larval stage of
zebrafish, these vascular abnormalities have shown responsiveness to pharmacological
interventions aimed at angiogenesis and hyperglycemia [25]. Hence, the change in lens
vascular diameter may serve as an assessment metric for evaluating the lipid-reducing
effectiveness of pharmaceuticals in zebrafish models with hyperglycemia and hyperlipi-
demia. Our findings indicate that β-sitosterol can significantly reduce the diameter of blood
vessels in the lens of zebrafish (Figure 2A,B), indicating that it can potentially mitigate lipid
accumulation in blood vessels and effectively lower blood lipids.

Having confirmed the impact of β-sitosterol on triglyceride and cholesterol levels in
juvenile zebrafish models, we further aimed to develop a type 2 diabetes model utilizing
the same diet induction method. Next, lipidomics analysis was performed to investigate
the effect of β-sitosterol on lipid metabolism in adult zebrafish. To increase the visibility of
triglyceride and cholesterol changes in zebrafish, a higher concentration of 200 µg/mL β-
sitosterol was utilized in the juvenile zebrafish model. Nevertheless, considering practical
production and application costs, a dosage of 0.4 mg/g of β-sitosterol was selected for
the adult fish model. In the adult fish model, we quantified the levels of triglyceride and
cholesterol in the liver. We found that there was a nearly two-fold increase in the levels
of triglyceride and cholesterol in the liver of zebrafish in the HFD group compared to the
control group. However, administration of β-sitosterol decreased the levels of triglyceride
and cholesterol, suggesting that even at low concentrations, β-sitosterol could exert a
lowering effect on these lipids.
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The liver plays a crucial role in the regulation of triglyceride and cholesterol
metabolism [50,54]. Consequently, we performed a non-targeted lipidomic analysis of
the liver tissue from adult fish. Lipidomics analysis carried out on zebrafish revealed that β-
sitosterol mainly affected lipid metabolism and signal transduction pathways (Figure 7D,E).
Compared to the HFD group, the group treated with β-sitosterol exhibited upregulated
and downregulated steroid biosynthesis and steroid hormone biosynthesis in zebrafish.
(Figure 7D,E). This phenomenon may be attributed to the effect of β-sitosterol on diverse
metabolites, which alters diverse biological functions. Future investigations based on a
combination of transcriptomics or proteomics with metabolomics are needed to explore
the mechanism of action of β-sitosterol. In this study, the biological functions such as
glycerophospholipid metabolism and sphingolipid metabolism were upregulated in the
β-sitosterol group (Figure 7D). Glycerophospholipids, which serve as the primary struc-
tural components of biofilms, play key roles in the regulation of cell signal transduction
and metabolism [55]. Moreover, sphingolipids are crucial components of biofilm struc-
ture [56]. Hence, β-sitosterol might improve zebrafish signal transduction function by
enhancing glycerophospholipid and sphingolipid metabolism. Compared to the HFD
group, the β-sitosterol group showed a decrease in arachidonic acid metabolism and unsat-
urated fatty acid biosynthesis in lipid metabolism (Figure 7E). Hyperglycemia stimulates
oxidative stress, leading to the occurrence of insulin disorders and diabetes [30]. For ex-
ample, ROS is known to cause mitochondrial damage and induce a significant reduction
in insulin secretion. Oxidative stress alters Ca2+ homeostasis, thereby increasing Ca2+

influx, which triggers the activation of phospholipase to produce arachidonic acid [30].
Furthermore, arachidonic acid, which can be converted into pro-inflammatory metabolites
such as hydroxyeicosatetraenoic acid, has been linked to hyperlipidemia and induction
of inflammatory responses [55]. In our previous studies, we found that β-sitosterol exerts
anti-inflammatory and antioxidant effects [14]. Therefore, β-sitosterol can confer anti-
inflammatory effects owing to its ability to inhibit arachidonic acid metabolism. In a
study based on Alismatis rhizome (AR) [55], it was observed that AR mitigated the upreg-
ulation of arachidonic acid metabolism induced by HFD, suppressed the expression of
pro-inflammatory factors, and exhibited anti-inflammatory properties, which aligns with
the effects of β-sitosterol in this investigation.

Studies have demonstrated that peroxisome proliferator-activated receptors (PPARs)
can regulate lipid synthesis and decomposition in cells [57]. Specifically, PPARγ upregulates
the expression of key adipogenic genes, thereby enhancing fat synthesis and storage in adi-
pose tissue. It interacts with RXRα to regulate gene transcription [58,59]. The PPARγ/RXRα
pathway modulates lipid and glucose metabolism in adipocytes and muscle cells [60]. In
this study, we found a significant upregulation of Ppar-γ and Rxr-α expression in the
zebrafish model constructed using HFD. Particularly, there was a two-fold increase in ex-
pression levels in the HFD group compared to the control group (Figure 8). These findings,
in conjunction with those presented in Figure 3, suggest that activation of Ppar-γ and Rxr-α
may contribute to the increase in fat accumulation and establishment of a zebrafish type
2 diabetes model. Similar observations were reported in a rat model induced by HFD,
where PPAR-γ and RXR-α expression was increased in the liver [61,62]. In the zebrafish
model induced by HFD, and treated with 10 µM 3,4-dichloroaniline (3,4-DCA), the expres-
sion of pparγ was upregulated by approximately 50% compared to the control group [63].
Furthermore, administration of bisphenol S (BPS) or overfeeding in zebrafish resulted
in the accumulation of visceral fat and up to a two-fold increase in rxrα expression [64].
These results are consistent with our present findings. However, in contrast to the HFD
group, the β-sitosterol group had a 50% reduction in Ppar-γ expression and a 20% reduc-
tion in Rxr-α expression (Figure 8). These observations suggest that β-sitosterol inhibits
adipogenesis and fat accumulation by suppressing Ppar-γ and Rxr-α expression, thereby
reducing lipid and cholesterol levels. In mice, HFD resulted in the upregulation of PPAR-γ
expression [65,66]. Conversely, treatment with rose fruit extract inhibited the expression of
PPAR-γ (by 38.8% compared to the HFD group), thereby preventing lipid accumulation
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in mice fed on HFD [66]. These findings are similar to those obtained in this study. Given
the intricate pathogenic mechanism of elevated glucose and fat levels, several factors may
contribute to the aberrant lipid metabolism. Therefore, it is not sufficient to explore genes
associated with lipid metabolism while investigating the pathogenic mechanism. With the
maturation and development of molecular biology techniques, there is a growing potential
to leverage transgenic zebrafish and gene knockout techniques for more comprehensive
research. The increase in glucose and lipid levels is driven by other factors beyond aberrant
lipid metabolism. Thus, a comprehensive understanding of the pathological mechanism
is required to identify other factors involved. The ongoing advancement and refinement
of molecular biology techniques provide the potential to further investigate the utility of
transgenic zebrafish or other technologies.

5. Conclusions

A model of type 2 diabetes was established in zebrafish using a high-sugar and high-
fat diet. The efficacy of β-sitosterol in reducing the accumulation of triglycerides and
cholesterol in zebrafish, as well as in mitigating the related phenotypic changes caused
by the mentioned diet, was confirmed through oil red O and filipin staining. Using
non-targeted lipidomics investigations, the effect of β-sitosterol on lipid metabolism in
zebrafish was examined to primarily affect lipid metabolism and signal transduction, with
a particular emphasis on steroid biosynthesis and steroid hormone biosynthesis. Moreover,
β-sitosterol inhibited adipogenesis and fat storage by suppressing the expression of Ppar-γ
and Rxr-α, thereby mediating its lipid-lowering and cholesterol-lowering properties. This
study demonstrated that β-sitosterol altered lipid metabolism in fish, suggesting that it can
be utilized as a feed supplement to address the issue of superfluous lipid accumulation in
aquatic commodities.
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