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Simple Summary: In this study, the effect of dietary lecithin on skeletal muscle gene expression of
collagen precursors and enzymes was investigated in gilts. Thirty-six finisher gilts were fed with
diets containing either 0, 4, 20 or 80 g/kg soybean lecithin for six weeks. Then, rectus abdominis
muscle was sampled and analyzed for eight genes involved in collagen synthesis and degradation
(COL1A1, COL3A1, MMP-1, MMP-13, TIMP-1, TIMP-3, lysyl oxidase and α-subunit P4H) using
quantitative real-time PCR. The results showed that lecithin down-regulated COL1A1 and COL3A1
as well as tended to down-regulate α-subunit P4H expression.

Abstract: The purpose of this study was to investigate the effect of dietary lecithin on skeletal muscle
gene expression of collagen precursors and enzymes involved in collagen synthesis and degradation.
Finisher gilts with an average start weight of 55.9 ˘ 2.22 kg were fed diets containing either 0, 4, 20
or 80 g/kg soybean lecithin prior to harvest for six weeks and the rectus abdominis muscle gene
expression profile was analyzed by quantitative real-time PCR. Lecithin treatment down-regulated
Type I (α1) procollagen (COL1A1) and Type III (α1) procollagen (COL3A1) mRNA expression
(p < 0.05, respectively), indicating a decrease in the precursors for collagen synthesis. The α-subunit
of prolyl 4-hydroxylase (P4H) mRNA expression also tended to be down-regulated (p = 0.056),
indicating a decrease in collagen synthesis. Decreased matrix metalloproteinase-1 (MMP-1) mRNA
expression may reflect a positive regulatory response to the reduced collagen synthesis in muscle
from the pigs fed lecithin (p = 0.035). Lecithin had no effect on tissue inhibitor metalloproteinase-1
(TIMP-1), matrix metalloproteinase-13 (MMP-13) and lysyl oxidase mRNA expression. In conclusion,
lecithin down-regulated COL1A1 and COL3A1 as well as tended to down-regulate α-subunit P4H
expression. However, determination of muscle collagen content and solubility are required to support
the gene functions.
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1. Introduction

Soy lecithin is a by-product from the processing of soybean oil. It is widely used in the
food industry as an emulsifier and stabilizing agent in the production of foods such as margarine,
mayonnaise, chocolate and baked goods. Lecithin is also consumed because of its purported health

Animals 2016, 6, 38; doi:10.3390/ani6060038 www.mdpi.com/journal/animals

http://www.mdpi.com/journal/animals
http://www.mdpi.com
http://www.mdpi.com/journal/animals


Animals 2016, 6, 38 2 of 8

benefits. For example, a review [1] reported numerous data supporting the effect of lecithin in
lowering the blood cholesterol level in hyperlipidemic animals and humans. The prevention and
treatment of alcoholic liver disease have also provided evidence that components of lecithin have
anti-fibrogenic properties. Lecithin not only prevented hepatic collagen accumulation through
decreased collagen synthesis [2–4], but also enhanced the breakdown of existing collagen [5] through
stimulation of collagenase activity [6]. Regulation of collagen synthesis could be exerted at the
gene level, during transcription and translation levels within the cells, as well as during the
extracellular assembly and cross-linking [7]. The determination of RNA expression of specific collagen
types and prolyl-4 hydroxylase activity levels has been used to investigate collagen synthesis [8].
Dilinoleoylphosphatidylcholine (DLPC), an active ingredient of lecithin, down-regulated Type I (α1)
procollagen (COL1A1) gene expression [2–4] in hepatic cells. The latter authors suggested that the
decreased collagen molecule precursor gene expression and collagen synthesis by lecithin may explain
the mechanisms involved in the prevention of collagen accumulation in cases of alcoholic liver fibrosis.
However, to the best of our knowledge, there are no published articles that have investigated the effect
of lecithin on key genes involved in intramuscular collagen synthesis and degradation. Therefore, the
aim of this study was to investigate the effect of dietary lecithin on muscle collagen precursors
COL1A1 and Type III (α1) procollagen (COL3A1), α-subunit of prolyl 4-hydroxylase (P4H), and
lysyl oxidase as well as matrix metalloproteinase-1 (MMP-1), matrix metalloproteinase-13 (MMP-13),
tissue inhibitor metalloproteinase-1 (TIMP-1) and tissue inhibitor metalloproteinase-3 (TIMP-3) mRNA
expression levels.

2. Materials and Methods

2.1. Animals and Experimental Design

The experiment was conducted at Rivalea (Australia), Corowa, NSW and all procedures outlined
in this investigation were approved by the Rivalea Animal Care and Ethics Committee (09M073C).
Thirty-six Large White ˆ Landrace crossbred finisher gilts (PrimeGroTM Genetics, Rivalea Pty Ltd.,
Corowa, NSW, Australia) were randomly allocated into individual pens at entry to the facility at
15 weeks old with an average weight of 55.9 ˘ 2.22 kg. During a one-week acclimatization period, the
pigs were fed the control diet (commercial finisher diet) at 80% of ad libitum. After the acclimatization
period, the pigs were split into three blocks (each containing 12 pigs) and started on the test diets over
three days. Blocking factor was the start date for test diets. Each block was started on the test diets
on different days to ensure a smooth transfer of the pigs from the farm to the abattoir for slaughter
and carcass data collection over three days. The test diets were randomly allocated within each of
the blocks that included (i) control diet; (ii) Ultralec® F de-oiled soybean lecithin (ADM Australia Pty
Ltd., Bondi Junction, NSW, Australia) at 4 g/kg of commercial finisher diet; (iii) soybean lecithin at
20 g/kg of commercial finisher diet; and (iv) soybean lecithin at 80 g/kg of commercial finisher diet.
All diets were formulated to contain 0.6 g available lysine/megajoule (MJ) digestible energy (DE) and
14.2 MJ DE/kg. Diets were pelleted and fed to the pigs starting from 17 weeks old through to slaughter
at 23 weeks old. All pigs had ad libitum access to feed and water via nipple drinkers for six weeks prior
to reaching an average final slaughter live weight of 103.9 ˘ 6.40 kg. The pigs were slaughtered in
a commercial abattoir at the conclusion of the 42 days experimental period. The pigs were stunned
using a carbon dioxide Dip-lift stunner (Butina®, Sjelland, Denmark) set at 85% CO2 and exposed
for 1.8 min. Exsanguination, scalding, de-hairing and evisceration were performed according to the
standard procedures practiced in commercial abattoirs. The rectus abdominis muscles were collected
25 min post-slaughter in Falcon® centrifuge tubes (Thermo Fisher Scientific Inc., Waltham, MA, USA)
and immediately immersed in liquid nitrogen, then stored at´80 ˝C. This muscle was selected because
of convenience of sampling at the slaughter house.
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2.2. RNA Extraction and cDNA Synthesis

Approximately 200–300 mg of the muscle powder was pulverized in the presence of liquid
nitrogen using a mortar and pestle. The total RNA was extracted using Trizol® reagent (Invitrogen,
San Diego, CA, USA) followed by isolation using PureLinkTM Micro-to-Midi RNA isolation system kit
(Invitrogen, San Diego, CA, USA) following instructions of the manufacturer. The yield and integrity
of the extracted RNA were determined using ExperionTM automated electrophoresis system (BIORAD,
Gladesville, NSW, Australia) and ExperionTM RNA StdSens analysis kit (BIORAD, Gladesville, NSW,
Australia). Samples displaying RNA quality indicator (RQI) ě 8.0 and 28S:18S ribosomal RNA ratio
close to 1.5 were considered sufficient quality RNA. One microgram total RNA from each sample was
reverse transcribed into cDNA using the SuperScript® III First-Strand Synthesis System (Invitrogen,
San Diego, CA, USA) for RT-PCR and 50 ng/µL random hexamer primer (Invitrogen, San Diego, CA,
USA), according to manufacturer’s instructions into a final volume of 20 µL and stored at ´80 ˝C.

2.3. Primer Design

The sequences of genes of interest were obtained from the National Centre for Biotechnology
Information database [9]. The genes sequences were copied into the Invitrogen OligoPerfectTM

Designer software (Invitrogen, San Diego, CA, USA) [10] and this software locates primer sequences
within the given mRNA sequence that meets individual specifications of size, annealing temperature,
Guanine and Cytosine (GC) content, region of analysis, product size, salt concentration and primer
concentration. Then, the primers for the genes were designed using Netprimer (PREMIER Biosoft
International, Palo Alto, CA, USA) [11]. Only primers MMP-1 and Ribosomal 18s (R18s) were designed
based on porcine sequences. As complete genomes of the pig are currently only partially sequenced,
COL1A1, COL3A1, α-subunit of P4H, lysyl oxidase, MMP-13, TIMP-1 and TIMP-3 primers were
designed based on mouse (Mus musculus) sequences. Characteristics of the primers used for real-time
quantitative PCR are listed in Table 1. R18s was used as the reference gene for normalization because
its expression level was constant across all test samples and was not affected by the experimental
treatment compared to β-actin (data not shown). The primers were validated using a real-time PCR
of cDNA synthesized from an RNA pool made of all samples. A standard curve was generated from
serial dilutions of cDNA by plotting the log of the starting dilution factor of the template against
cycle threshold (CT) value obtained during amplification of each dilution. The amplification efficiency
(E) was calculated using the formula E = (10´1/slope ´ 1) ˆ 100. The amplification efficiency for
all tested genes varied from 95% to 100% (Table 2). All reactions were done in triplicate and the
coefficient of determination (R2) of all standard curves were >0.90, indicating acceptable accuracy
and reproducibility (Table 2). The specificity of primers was confirmed by melting curve analysis.
A non-template (without cDNA) reaction was included with each PCR run to validate that primers
were not amplifying contaminating DNA.

2.4. Quantitative Real-Time PCR

The cDNA were amplified by real-time PCR using SYBR® Green I (BIORAD, Gladesville,
NSW, Australia) on the BIORAD MyiQTM Single-Colour Real-Time PCR Detection System (BIORAD,
Gladesville, NSW, Australia) following the manufacturer’s instructions. Each PCR reaction contained
2 µL of cDNA mixed with 1–3 µL of each primer (volume fluctuates depending on the optimized
primer concentrations as shown in Table 2), 12.5 µL of SYBR® Green I Supermix (BIORAD, Gladesville,
NSW, Australia) and RNase free water (Invitrogen, San Diego, CA, USA) to make up a final volume
of 25 µL. The thermo cycle protocol consisted of initial hot start at 95 ˝C for 3 min as the initial
denaturation step of one cycle, followed by 40 cycles at 95 ˝C for 10 s (denaturation), 51.0 to 61.2 ˝C for
45 s (annealing) and an extension step at 95.0 ˝C for 1 min. Optimized annealing temperatures for each
gene are specified in Table 2. PCR runs for each sample were performed in triplicate. The CT values for
each target gene were normalized with the reference gene (R18s) for both test and the control groups.
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The mean ∆CT value was used in the ∆CT method to calculate the relative expression values for the
test and the control groups. The fold change in each target gene mRNA level in the lecithin diet was
calculated relative to the control diet which was set to 1.

Table 1. Characteristics of the primers used for quantitative real-time PCR.

Gene 1 Species Primers Primer Sequence (from 5’–3’) Accession
Number

Amplicon
Size (bp)

COL1A1 Mouse
Forward GTCTGGTTTGGAGAGAGCAT

BC050014.1 189Reverse CTTCTTGAGGTTGCCAGTCT

COL3A1 Mouse
Forward TGATGTCAAGTCTGGAGTGG

NM_009930.2 223Reverse TCCTGACTCTCCATCCTTTC

MMP-1 Pig Forward GTTCCACAAATGAGTGCTGA
EU722905.1 212Reverse ATAATAACGACGGCTCATCC

MMP-13 Mouse
Forward GTGACTGGCAAACTTGATGA

BC125320.1 211Reverse TCACATCAGACCAGACCTTG

TIMP-1 Mouse
Forward CCCAGAAATCAACGAGA

BC034260.1 154Reverse TGGGACTTGTGGGCATA

TIMP-3 Mouse
Forward ACACGGAAGCCTCTGAAA

BC014713.1 231Reverse TGGAGGTCACAAAACAAGG

Lysyl oxidase Mouse
Forward CTGCTTGATGCCAACACA

M65142.1 156Reverse TGCCGCATAGGTGTCATA

α-subunit P4H Mouse
Forward CCCAGTCAGGTCTGCTATTC

BC009654.1 204Reverse GGAACAGTCTCTGGACAACC

R18s Pig Forward GAACGCCACTTGTCCCTCTA
AY265350.1 219Reverse GACTCAACACGGGAAACCTC

1 COL1A1 = Type I (α1) procollagen; COL3A1 = Type III (α1) procollagen; MMP-1= Matrix metalloproteinase-1;
MMP-13 = Matrix metalloproteinase-13; TIMP-1 = Tissue inhibitor metalloproteinase-1; TIMP-3 = Tissue
inhibitor metalloproteinase-3; α-subunit P4H = α-subunit of prolyl 4-hydroxylase; R18s = Ribosomal 18 s.

Table 2. Optimized quantitative real-time PCR conditions for genes of interest.

Gene 1

Optimized
Annealing

Temperature
(˝C)

Optimized
Primer

Concentration
(nM)

Optimized
Threshold
Cycle (CT)

Coefficient of
Determination

(R2)

Amplification
Efficiency (%)

COL1A1 60.9 50 310.00 0.903 96.4
COL3A1 53.4 200 128.80 0.976 100
MMP-1 60.9 100 335.42 0.963 99.8

MMP-13 58.7 700 310.65 0.929 95.2
TIMP-1 58.7 1100 189.70 0.924 99.9
TIMP-3 60.9 300 125.02 0.994 99.9

Lysyl oxidase 58.7 200 195.72 0.952 100
α-subunit P4H 51.0 400 280.84 0.923 98.0

R18s 61.2 60 201.50 0.999 97.4
1 COL1A1 = Type I (α1) procollagen; COL3A1 = Type III (α1) procollagen; MMP-1= Matrix metalloproteinase-1;
MMP-13 = Matrix metalloproteinase-13; TIMP-1 = Tissue inhibitor metalloproteinase-1; TIMP-3 = Tissue
inhibitor metalloproteinase-3; α-subunit P4H = α-subunit of prolyl 4-hydroxylase; R18 s = Ribosomal 18 s.

2.5. Statistical Analysis

Data were analyzed using a single-factor analysis of variance (ANOVA) with a fixed effect model
for dietary treatment using GenStat (13 Ed., VSN International Ltd., Hemel Hempstead, Dacorum,
UK). The contrasts assessed were for control versus pooled lecithin treatments as there were no dose
effects (data not shown). The results were considered statistically significant when p < 0.05 and were
considered as trends when 0.05 ď p ď 0.10. The TIMP-3 gene had a ∆CT value of 50.5 which was
considered relatively high (data not shown). This may indicate low amplification and so these data
have not been reported.
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3. Results

Pigs fed dietary lecithin for six weeks significantly (p < 0.05) down-regulated skeletal muscle
COL1A1, COL3A1 and MMP-1 mRNA expression by 0.33-fold, 0.44-fold and 0.08-fold, respectively,
compared to pigs fed with the control diet (Figure 1a–c). Dietary lecithin tended (p = 0.056) to
down-regulate α-subunit P4H mRNA expression by 0.5-fold, compared to pigs fed with the control
diet (Figure 1g). Dietary lecithin had no significant effect on MMP-13, TIMP-1 and lysyl oxidase mRNA
expression, when compared to pigs fed with the control diet (p > 0.05) (Figure 1d–f).
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Figure 1. Effects of dietary lecithin on (a) Type I (α1) procollagen (COL1A1); (b) Type III (α1)
procollagen (COL3A1); (c) matrix metalloproteinase-1 (MMP-1); (d) matrix metalloproteinase-13
(MMP-13); (e) tissue inhibitor metalloproteinase-1 (TIMP-1); (f) lysyl oxidase; and (g) α-subunit of
prolyl 4-hydroxylase (α-subunit P4H) gene expression. mRNA levels were measured in triplicate in
each rectus abdominis muscle from pigs fed with control diet (0 g/kg lecithin) or lecithin diet that
were pooled across doses of lecithin (4, 20 and 80 g/kg lecithin). The expression level normalized
against the Ribosomal 18s (R18s) reference gene. Fold change in COL1A1, COL3A1, α-subunit of P4H,
lysyl oxidase, MMP-1, MMP-13 and TIMP-1 mRNA levels in lecithin diet was calculated relative to
the control diet which was set as 1. Error bars indicate standard error (SE) of control (n = 9) or lecithin
(n = 27) diet group. Mean values statistically significantly different from control in pair comparison
(p < 0.05 in ANOVA). The results were considered as trends when 0.05 ď p ď 0.10 in ANOVA.
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4. Discussion

In the present study, we report for the first time that dietary lecithin decreased mRNA levels of
COL1A1 and COL3A1 in the skeletal muscle of pigs. Fibrillar collagen Types I and III are involved in
collagen fibril organization and collagen biosynthesis. The synthesis rates of Types I and III collagen
are regulated by their corresponding mRNA expression levels [12]. Hence, the down-regulation of
COL1A1 and COL3A1 expression in the present study may indicate a reduction in the synthesis
rates of Types I and III collagen, respectively. The fibrillar collagen Types I and III mRNA expression
were well coordinated with α-subunit P4H mRNA expression and prolyl-4 hydroxylase activity in
rat skeletal muscle induced with a mechanical stimulus [13,14]. A simultaneous decrease in collagen
precursors and α-subunit P4H mRNA expression were evident in the present experiment, although
enzyme activity was not measured. The level of α-subunit P4H mRNA expression is an important
determinant in the initiation of collagen biosynthesis [15] and its reduced level of expression reflects
improper formation of a functional collagen fibril.

The effect of DLPC has been studied extensively on liver fibrosis treatment and prevention caused
by alcohol abuse. DLPC prevented collagen accumulation as evidenced by down-regulation of COL1A1
expression in hepatocyte cell culture [2–4]. Dietary lecithin supplement in pigs reduced chewiness and
hardness of the longissimus muscle [16] and the improvement in pork chewiness was suggested to be
associated with reduced intramuscular collagen [17]. As a point of reference, the collagen content of
the longissimus muscle was 1.51, 1.13, 1.09 and 1.07 mg/g for these same pigs fed 0, 4, 20 and 80 g/kg
dietary lecithin, respectively [17]. Since COL1A1 and COL3A1 are precursors for collagen synthesis, it
is necessary to investigate if lecithin could have a similar effect in reducing the collagen content of the
rectus abdominis muscle to support the gene functions. Collagen solubility is the main basis for the
determination of intramuscular collagen contribution to meat toughness [18,19] and increased collagen
solubility positively correlated with tenderness [20,21]. Collagen type was shown to contribute to
meat collagen solubility. For example, Bao et al. [22] reported a negative correlation between muscle
COL3A1 expression and collagen solubility. Similarly, Burson et al. [23] found a negative correlation
between the muscle percentage of Type III collagen and collagen solubility (r = ´0.49) in beef. It is,
however, necessary to investigate the effect of lecithin on collagen solubility if its relationship to meat
tenderness is to be studied.

Our study showed that lecithin decreased MMP-1 expression which may reflect a positive
regulatory response to the reduced collagen synthesis. MMP-1 and MMP-13 were identified to
being involved in the degradation of fibrillar collagen Types I and III [24–26]. Once the MMPs are
present in active forms in the extracellular matrix, the tissue inhibitor metallo proteinases (TIMPs)
inhibit active MMPs by binding in a 1:1 molar ratio to establish a balance between collagen synthesis
and degradation.

5. Conclusions

In conclusion, supplemental lecithin down-regulated expression of the key genes involved in
collagen synthesis, namely COL1A1 and COL3A1, and it tended to down-regulate the expression of
α-subunit P4H. As a result of this, it may be possible that the MMP-1 expression was down-regulated
to control any further decrease of collagen in the muscle of pigs fed lecithin.
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