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Simple Summary: The use of supplemental dietary nitrate (NO3
−) to minimize enteric methane

(CH4) emissions from ruminants is hindered by potential toxicity effects. In the current study,
the potential effects of feeding encapsulated NO3

− (EN), microencapsulated blend of essential oils
(MBEO), and their combination on growth performance and enteric CH4 emissions of beef cattle were
evaluated. There was no interaction effect between feeding EN and MBEO on CH4 emissions and the
presence of MBEO did not affect the potential of EN to reduce CH4. Feeding MBEO increased CH4

emissions without affecting animal performance. Inclusion of EN as a replacement for urea reduced
CH4 emissions without incurring any adverse effects on cattle health and performance.

Abstract: A long-term study (112 days) was conducted to examine the effect of feeding encapsulated
nitrate (NO3

−), microencapsulated blend of essential oils (EO), and their combination on growth
performance, feeding behavior, and enteric methane (CH4) emissions of beef cattle. A total of
88 crossbred steers were purchased and assigned to one of four treatments: (i) control, backgrounding
high-forage diet supplemented with urea (1.17% in dietary DM); (ii) encapsulated NO3

− (EN),
control diet supplemented with 2.5% encapsulated NO3

− as a replacement for urea (1.785% NO3
−

in the dietary DM); (iii) microencapsulated blend of EO (MBEO), control diet supplemented with
150 mg/kg DM of microencapsulated blend of EO and pepper extract; and (iv) EN + MBEO, control
diet supplemented with EN and MBEO. There was no interaction (p ≥ 0.080) between EN and MBEO
on average dry matter intake (DMI), average daily gain (ADG), gain to feed ratio (G:F), feeding
behavior, and CH4 emission (using GreenFeed system), implying independent effects of feeding EN
and MBEO. Feeding MBEO increased CH4 production (165.0 versus 183.2 g/day; p = 0.005) and yield
(18.9 versus 21.4 g/kg DMI; p = 0.0002) but had no effect (p ≥ 0.479) on average DMI, ADG, G:F, and
feeding behavior. However, feeding EN had no effect on ADG and G:F (p ≥ 0.119) but reduced DMI
(8.9 versus 8.4 kg/day; p = 0.003) and CH4 yield (21.5 versus 18.7 g/kg DMI; p < 0.001). Feeding
EN slowed (p = 0.001) the feeding rate (g of DM/min) and increased (p = 0.002) meal frequency
(events/day). Our results demonstrate that supplementing diets with a blend of EO did not lower
CH4 emissions and there were no advantages of feeding MBEO with EN. Inclusion of EN as a
replacement for urea reduced CH4 emissions but had no positive impact on animal performance.
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1. Introduction

Over the past decades, livestock research has been focused on developing strategies to reduce
the environmental impacts of ruminant animals [1]. As enteric methane (CH4) emission is the major
contributor of total emissions in ruminant farming, different mitigation strategies including feed
additives (e.g., inhibitors, ionophores, plant bioactive compounds, electron receptors, dietary lipids),
feed (e.g., high starch grains, lipids), and feeding management (e.g., forage quality and management,
feed processing, feeding frequency, precision feeding) have been directed towards minimizing enteric
CH4 emissions [1].

Feeding nitrate (NO3
−) to ruminant animals as a replacement for urea has received attention

as a promising methane-mitigating approach, as several studies have shown that feeding NO3
−

can decrease enteric CH4 [2–7]. Similarly, a recent in vitro experiment [8] and metabolism study
using beef heifers [9] at our lab were also in line with the previous reports. Conversely, reduction
in enteric CH4 was not observed from feedlot animals managed outdoors and supplemented with
encapsulated NO3

− at 1.25 and 2.5% on a dry matter (DM) basis [10,11]. Furthermore, despite its
positive effects on CH4 reduction, feeding NO3

− could pose a potential risk of NO3
−/nitrite (NO2

−)
toxicity to animals. Nitrate intoxication can occur when the concentration of NO2

− (reduced form of
NO3

−) accumulates in the rumen and is absorbed into the blood stream, increasing methemoglobin
(MetHb) level. When ample hemoglobin (Hb) is converted to MetHb, the animal suffers from oxygen
starvation [12]. A slow release form of NO3

− (encapsulated NO3
−) was developed to ensure the slow

release of NO3
− to rumen microbes and minimize potential toxicity [7–11].

Bacterial resistance to multiple antibiotics is a worldwide health problem. As such, following
the prohibition of the use of growth-promoting antibiotics in animal feeds by the European Union
(1831/2003) [13], interest in the use of essential oils (EO) as potential alternatives to antibiotics and
studying their effects and mechanisms on ruminal fermentation has been the focus of livestock
research [14,15]. Large numbers of in vitro and in vivo studies have investigated the potential effects of
EO on modifying rumen function [14–16]. However, the mode of action remain poorly understood [17].
Furthermore, in addition to its impact on rumen function, EO have been shown to have antioxidant,
anti-inflammatory, immune modulation, mucolytic, as well as thermoregulation and blood oxygenation
properties [14,18,19] and minimize stress in feedlot cattle [20]. These impacts have not been studied in
detail yet. Hori et al. [21] reported that capsaicin (an alkaloid from chili pepper) increased peripheral
blood flow with positive impact on body thermoregulation. Recently, Silva et al. [19,22] reported that
the use of a blend of EO (Activo® Premium) increased milk efficiency, digestible organic matter intake,
and O2 saturation of Hb in dairy cows. The improved oxygenation of blood may be beneficial for cattle
fed NO3

−. Using the same product for sheep, Soltan et al. [23] reported a reduction in CH4 emissions
without affecting dry matter intake (DMI) and nutrient digestibility. Overall, research on the effects of
EO in beef cattle diets is fairly limited [17,24].

Therefore, the current study aimed to explore the effects of feeding encapsulated NO3
− (EN) and

a microencapsulated blend of EO (MBEO) alone or in combination on feed consumption and behavior,
animal performance, and enteric CH4 emissions from feedlot beef steers fed a high-forage diet. Because
the mode of action of NO3

− and EO differ, we hypothesized that feeding NO3
− in combination with

EO would improve animal performance and reduce enteric CH4 production.

2. Materials and Methods

All experimental procedures were reviewed and approved by the Animal Care and Use Committee
at the Lethbridge Research and Development Centre (ACC 1626) under the guidelines of the Canadian
Council on Animal Care [25] and the Veterinary Drug Directorate of Health Canada (DSTS No. 197834).
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2.1. Animals and Experimental Design

A total of 88 crossbred steers (mean arrival BW of 287 ± 19 kg) were purchased from the local
auction market. The experiment was conducted as a completely randomized design in a 2 × 2 factorial
arrangement of treatments. A total of 22 animals per treatment were assigned and housed in four
large adjacent pens (17 × 12.7 m; 10 m2 per animal). The four treatments (Table 1) were: (i) control,
a typical backgrounding high-forage diet (800 g/kg DM corn silage) supplemented with urea (1.17%
in dietary DM); (ii) EN, control diet supplemented with 2.5% encapsulated calcium ammonium NO3

−

in dietary DM providing 1.785% NO3
− in the dietary DM (GRASP Ind. & Com. LTDA, Curitiba,

Brazil); (iii) MBEO, control diet supplemented with 150 mg/kg DM of commercial microencapsulated
blend of EO and pepper extract (Activo® Premium, GRASP Ind. & Com. LTDA, Curitiba, Brazil); and
(iv) EN + MBEO, control diet supplemented with 2.5% encapsulated calcium ammonium NO3

− in
dietary DM and 150 mg/kg in the dietary DM of MBEO. The commercial blend of EO was a blend
of natural and identical to natural terpenoids (carvacrol), phenylpropanoids (cinnamaldehyde and
eugenol), and alkaloids (capsaicin from capsicum oleoresin) and fed to the animals according to the
manufacturer’s recommended level. It was mixed with ground barley before feeding, and the blend
was fed at the rate of 75 g/day to provide the full dose starting day 1. Encapsulated NO3

− was added
directly into the total mixed ration (TMR) daily and contained 85.6% DM, 17.6% N, 19.6% Ca, and
71.4% NO3

− on a DM basis. Diets were formulated to be isonitrogenous, although chemical analysis
indicated that the TMR containing EN were slightly lower in crude protein (CP) content (13.1 versus
14.3% DM; Table 1). The TMR were offered twice daily at 0900 h and 1600 h. Due to the high amount
of Ca in encapsulated NO3

−, the concentration of limestone was reduced in the EN and EN + MBEO
diets to provide a similar Ca level across the diets.

The experiment was conducted over a total of 112 days (28 days adaptation and 84 days of
measurement), with the measurement period conducted in three consecutive periods of four weeks.
In order to avoid the risk of intoxication, animals that received diets containing encapsulated NO3

−

were acclimatized gradually using a step-up protocol during the first 28 days of adaptation; 0.625%,
1.25%, 1.875%, and 2.5% NO3

− in dietary DM. Each pen was equipped with five automated feeding
stations (GrowSafe System Ltd., Airdrie, AB, Canada) to measure individual daily feed intake and
feeding behavior. Animals were fitted with radio-frequency identification (RFID) ear tags to record
feeding events of individual animals. Standard feedlot management procedures were implemented.
Pens were bedded with straw and animals were implanted with steroids following the Standard
Operating Procedure (SOP code: GEN. 1001) at Lethbridge Research and Development Centre.
However, ionophores and antibiotics for liver abscess control were not added to the diets.

Table 1. Feed ingredients and chemical composition of the experimental diets with no additives
(control, −EN, and −MBEO), or supplemented with encapsulated nitrate (+EN), microencapsulated
blend of essential oils (+MBEO), and combination of EN and MBEO (+EN +MBEO).

Item
−EN 1 +EN

−MBEO 1 +MBEO −MBEO +MBEO

Ingredients, % of dry matter (DM)
Corn silage 2 80 80 80 80

Barley grain, dry rolled 3 10 10 10 10
Supplement 10 9.99 7.5 7.48
Canola meal 3.70 3.70 3.70 3.70
Limestone 1.55 1.55 0.43 0.43
Salt (NaCl) 0.11 0.11 0.11 0.11

Urea 1.17 1.17 0.24 0.24
LeRDC beef feedlot premix 4 0.05 0.05 0.05 0.05

Molasses, dried 0.05 0.05 0.05 0.05
Barley ground 3.31 3.31 2.85 2.85

Canola oil 0.07 0.05 0.07 0.06
EN 0.0 0.0 2.5 2.5

MBEO 0.0 0.015 0.0 0.015
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Table 1. Cont.

Item
−EN 1 +EN

−MBEO 1 +MBEO −MBEO +MBEO

Chemical composition (% of DM)

DM (as-is) 44.0 44.0 43.8 43.8
OM 93.9 93.9 92.5 92.5
CP 14.3 14.3 13.1 13.1

NDF 42.0 42.0 41.2 41.1
ADF 28.1 28.1 27.9 27.9

Starch 29.8 29.8 29.3 29.3
NO3

− 0.12 0.16 1.66 1.68
GE (Mcal/kg DM) 5 5.39 5.39 5.32 5.29

DM = dry matter; OM = organic matter; CP = crude protein; NDF = neutral detergent fiber; ADF = acid detergent
fiber; NO3

− = nitrate. 1 EN = Encapsulated nitrate (EN) was manufactured by GRASP Ind. & Com. LTDA,
Curitiba, Paraná, Brazil; DM, 85.6%; N, 17.6%; Ca, 19.6%; and NO3

−, 71.4% on a DM basis. The source of
nitrate was the double salt of calcium ammonium nitrate decahydrate [5Ca(NO3)2•NH4NO3•10H2O]; MBEO =
Commercial microencapsulated blend of natural and identical to natural terpenoids (carvacrol), phenylpropanoids
(cinnamaldehyde and eugenol), and alkaloids (capsaicin from capsicum oleoresin) manufactured by GRASP
Ind. & Com. LTDA, Curitiba, Paraná, Brazil. 2 DM, 32% (±1.3 SD) on as-is basis and OM, 96% (±0.1 SD);
CP, 8% (±0.2 SD); NDF, 47.3% (±2.1 SD); ADF, 32.8% (±3.8 SD); starch, 28% (±3.6 SD) on a DM basis. 3 OM,
98% (±0.5 SD); CP, 14% (±0.8 SD); NDF, 16.6% (±1.8 SD); starch, 55% (±1.6 SD) on a DM basis. 4 Lethbridge
Research and Development Centre (LeRDC) beef feedlot vitamin-mineral premix contained (on a DM basis) CaCO3,
34.83%; ZnSO4, 28.37%; CuSO4, 10.31%; ethylenediamine dihydriodide (80% concentration), 0.15%; selenium 1%
(10,000 mg Se/kg, Na2SeO3), 5.04%; CoCO3, 0.08%; MnSO4, 14.61%; vitamin A (500,000,000 IU/kg), 1.72%; vitamin
D (500,000,000 IU/kg), 0.17%; and vitamin E (500,000 IU/kg), 4.73%. 5 Gross energy (GE, Mcal/kg DM); corn silage,
5.60 (±0.35 SD); dry rolled barley grain, 4.91 (±0.05 SD); control and MBEO supplement, 4.24 (±0.15 SD); and EN
supplement, 4.69 (±0.18 SD).

2.2. Sample Collection

Body weight (BW) was measured before feeding (nonfasted BW) on 2 consecutive days at the
start and end of the experiment and once at the end of each period (4 weeks) to calculate average daily
gain (ADG). Feed ingredients, TMR offered, and orts were sampled weekly and composited by period
for further chemical and particle size analyses. Blood samples from all animals were collected before
feeding from the jugular vein into two sodium and one lithium heparinized tubes (10-mL) and one
K2EDTA Vacutainer® tube (8-mL; Becton Dickinson Breda, Etten-Leur, The Netherland) on weeks 0
(experimental day 28, which was end of the adaptation period and beginning of Period 1), 4, 8, and 12
to determine acid-base balance, blood gases, total Hb, MetHb, packed cell volume (PCV), and NO3

−

and NO2
− concentrations. Whole blood was analyzed within 30 min for total Hb and MetHb levels.

2.3. Emission Measurements

Methane and hydrogen were measured using the GreenFeed emission monitoring (GEM) system
(C-Lock Inc., Rapid City, SD, USA). The GEM system was placed in one of the pens and animals
were moved rotationally (conveyer belt approach) once a week, such that a new pen of cattle could
access the system each week. Thus, once the animals were adapted to the GEM system (28 days),
each treatment group had access to the system for seven days within a period, totaling three weeks
of measurement per treatment group (pen) during the 84-day period. This approach allowed us to
eliminate any possible pen effect because all animals spent the same amount of time in each pen.

The GEM system allows free movement of animals (in and out of the system) and gasses are
measured only when the animal’s head is in the “head chamber” unit as determined by a proximity
sensor. The system is equipped with RFID reader to recognize individual animal visits by its electronic
ear tag. Upon visiting the system, animals were provided with pellets from the overhead hopper
(as bait) to keep them in the unit for sufficient eructation time to achieve a representative measurement.
The pellet was composed of ground barley, canola meal, canola oil, dried molasses, and salt (NaCl) with
a composition of 14.6% CP, 42.1% starch, 19.6% neutral detergent fiber (NDF), 11.8% acid detergent
fiber (ADF), and 4.8 Mcal/kg DM gross energy (GE, DM basis). Maximum daily pellet drops per
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animal was set to 36 drops in the GEM system (6 visits per day × 6 drops per visit) to restrict the
amount of pellet consumption. Animals could visit the system anytime during the day, but they were
eligible for pellet drops only during the 6 visits. Thus, animals were required to wait for 4 h before
getting their next pellet drop. The interval between pellet drops was set to 35 s to keep the animal for
3 to 7 min in the hood of the GEM system.

Once the animal’s head was in the hood of the GEM system, air was drawn passed the nose and
mouth of the animal at about 25 to 40 L/s into the collection pipe. The system measured CH4 and
hydrogen continuously, concomitantly with air flow, temperature, atmospheric pressure, and relative
humidity. Each gas was analyzed by a separate nondispersive infrared analyzer that was calibrated
weekly. Daily CH4 emissions for individual animals were calculated by aggregating and averaging the
visit flux by time of day, or “bin” over the study period, whereas hydrogen was calculated using an
“arithmetic averaging method”, a straight averaging of the visit fluxes [26].

Eating behavior of the individual animal was analyzed from the GrowSafe feed bunk data. A meal
was defined as a visit to the bunk, followed by an absence from the bunk for 300 s or greater. Meal
size was calculated from the amount of feed consumed during a visit. Feeding rate was calculated
by dividing the amount of feed consumed by meal duration (time spent at feeder), and head down
duration per meal was calculated by dividing meal duration by number of meals per day.

2.4. Sample Analyses

Ingredient, TMR, and ort samples were composited by period and treatment. A portion of
TMR and ort samples was used to determine particle size distribution using the Penn State Particle
Separator with 3 screens (18, 8, and 1.18 mm) [27]. Composited samples of ingredients, TMR, and orts
were analyzed for DM content by drying at 55 ◦C for 72 h. Samples were ground through a 1-mm
screen using a Wiley mill (A. H. Thomas, Philadelphia, PA, USA) for chemical analyses. Subsamples
were further ground with a ball grinder (mixer mill MM200, Retsch, Haan, Germany) and analyzed
for nitrogen (N) using flash combustion (Carlo Erba Instruments, Milan, Italy). Crude protein of
ingredients was calculated by multiplying the N content by 6.25. The NDF and ADF of ingredients
were determined with a FIWE 6 fiber analyzer (VELP® Scientifica, Via Stazione, Italy), using the
principles described by Van Soest et al. [28], including α-amylase and sodium sulfite for the NDF
analysis. The GE content of ingredients and TMR was determined using a bomb calorimeter (model
E2k; CAL2k, Johannesburg, South Africa). Nitrate in TMR and orts was extracted (method 968.07) [29]
and the concentrations were determined using a NO3

−/NO2
− Colorimetric Assay Kit (detection

limit for NO3
− and NO2

− was 2 µmol/L in the original sample; Cayman Chemical Co., Ann Arbor,
MI, USA).

Blood gas and electrolytes were determined using IDEXX VetStat® electrolyte and blood gas
analyzer (IDEXX Laboratories, Westbrook, ME, USA). Hemoglobin and MetHb were determined using
an aliquot of fresh whole blood (5 µL) from the individual animal, collected using sodium heparinized
tubes (GEM OPL; Instrumentation Laboratory Company, Lexington, MA, USA). The remaining
blood from sodium heparinized tube was centrifuged (AccuSpin 3/3R; Fisher Scientific, Pittsburgh,
PA, USA) at 3000× g for 20 min at 4 ◦C to obtain plasma samples for NO3

− and NO2
− determination

(NO3
−/NO2

− Colorimetric Assay Kit; Cayman Chemical Co., Ann Arbor, MI, USA). Hematocrit
samples taken in EDTA Vacutainer® tubes were used to determine PCV (%) using a microcapillary
reader (model MH, International Equipment Co., Boston, MA, USA).

2.5. Statistical Analysis

Data were analyzed as a 2 × 2 factorial design using the MIXED procedure of SAS (SAS Inst.,
Inc., Cary, NC, Canada) considering animal as experimental unit. Normality of distribution and
homogeneity of variance was determined using the Univariate procedure of SAS. Subsequently, data
were analyzed using the following model: yijk = µ + ENi + MBEOj + EN × MBEOij + eijk; where yijk is
the observation k in level i of EN and level j of MBEO, µ is the overall mean, ENi is the effect of ith EN
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treatment (control and MBEO versus EN and EN + MBEO), MBEOj is the effect of jth MBEO treatment
(control and EN versus MBEO and EN + MBEO), EN × MBEOij is the interaction of the ith EN and
jth MBEO treatment, and eijk is residual error. Period was used as a repeated measure in the model.
In the case of significant interactions, the PDIFF option was included in the LSMEANS statement to
account for multiple comparisons. Different time-series covariance structures were evaluated and the
best one (unstructured covariance order one) was selected based on the lowest Akaike and Bayesian
information criteria. Statistical significance was declared at p ≤ 0.05.

3. Results

Analyzed average NO3
− concentration in the EN diets (16.7 ± 1.10 g NO3

−/kg dietary DM) was
very close to the formulated level of 17.85 g NO3

−/kg dietary DM. Average daily consumption of
NO3

− was higher (p < 0.001) for EN but not affected by MBEO and EN × MBEO (Table 2). However,
when daily NO3

− intake was plotted over the experimental periods, an interaction effect (p < 0.01)
was observed where animals fed MBEO consumed more NO3

− at the beginning of the experiment
(period 1) and less at the end compared with animals fed EN (Figure 1).

Final BW was reduced (p = 0.012) by 4.1% for EN (444 versus 463 kg) but it was not affected
by MBEO (p = 0.336) and EN × MBEO (p = 0.835; Table 2). Over the experimental period, animals
gained 135, 119, and 113 kg for the control, MBEO, and EN, respectively. Interaction effects between
EN and MBEO on ADG and G:F were not consistent throughout the experimental period; significant
interactions (p ≤ 0.009) were observed for day 29 to 56 and day 57 to 84 but no effect (p ≥ 0.20) occurred
for the other days. However, the lack of interaction between EN and MBEO on average DMI (p = 0.479),
ADG (p = 0.08), and average G:F (p = 0.240) indicates the independent effect of the two additives
(Table 2). Feeding EN reduced average DMI by 6.0% (8.9 versus 8.4 for −EN and +EN, respectively;
p = 0.003) but had no effect on ADG (p = 0.12) and average G:F (p = 0.43). However, average DMI,
ADG, as well as average G:F were not affected by MBEO (p ≥ 0.48).
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Figure 1. Nitrate intake of backgrounding beef steers fed a high-forage diet with no additives (control,
−EN −MBEO) or supplemented with encapsulated nitrate (EN), microencapsulated blend of essential
oils (MBEO), and combination of EN and MBEO (EN + MBEO). Error bars indicate standard deviation.
For the statistical analysis, EN represents the main effect of encapsulated nitrate (−EN −MBEO
and −EN +MBEO) versus (+EN −MBEO and +EN +MBEO); MBEO represents the main effects of
microencapsulated blend of essential oils (−EN −MBEO and +EN −MBEO) versus (−EN +MBEO and
+EN +MBEO); EN + MBEO represents the interaction between main effects of EN and MBEO.
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Table 2. Body weight, average daily gain, dry matter intake, feed efficiency, and feeding behavior
of backgrounding beef steers fed a high-forage diet with no additives (control, −EN −MBEO),
or supplemented with encapsulated nitrate (+EN), microencapsulated blend of essential oils (+MBEO),
and combination of EN and MBEO (+EN +MBEO).

Item 2

−EN 1 +EN 1

SEM
p-Value

−MBEO +MBEO −MBEO +MBEO EN MBEO EN ×
MBEO Period

Number of animals 22 22 22 22 --- --- --- --- ---

Body weight, kg
Initial 332 331 331 331 5.03 0.939 0.953 0.989 ---
day 28 371 363 359 356 5.59 0.088 0.348 0.604 ---
day 56 397 395 387 382 6.12 0.060 0.541 0.839 ---
day 84 439 426 413 407 6.92 0.002 0.184 0.561 ---

Final (d 112) 467 458 446 441 7.60 0.012 0.336 0.835 ---

ADG (kg/day)
day 1 to 28 1.417 1.137 0.986 0.910 0.060 <0.0001 0.004 0.093 ---

day 29 to 56 0.934 b 1.136 a 1.010
a,b 0.916 b 0.050 0.153 0.281 0.004 ---

day 57 to 84 1.497 a 1.110 b 0.917 b 0.909 b 0.055 <0.0001 0.001 0.001 ---
day 85 to 112 0.998 1.153 1.190 1.173 0.053 0.049 0.200 0.111 ---

DMI (kg/day) 3

day 1 to 28 7.71 7.53 7.05 7.12 0.180 0.004 0.768 0.489 ---
day 29 to 56 7.85 8.31 7.82 7.69 0.180 0.072 0.359 0.100 ---
day 57 to 84 9.35 8.81 8.67 8.47 0.197 0.011 0.063 0.388 ---
day 85 to 112 9.47 9.53 8.95 8.73 0.180 0.001 0.673 0.447 ---

G:F
day 1 to 28 0.184 0.150 0.139 0.127 0.007 <0.0001 0.002 0.123 ---

day 29 to 56 0.118 b 0.136 a 0.129
a,b 0.118 b 0.006 0.504 0.571 0.009 ---

day 57 to 84 0.160 a 0.126 b 0.106 c 0.105 c 0.005 <0.0001 0.002 0.002 ---
day 85 to 112 0.105 0.121 0.132 0.134 0.005 0.0001 0.088 0.182 ---

Average (day 29 to 112)
DMI (kg/day) 3 8.93 8.87 8.47 8.28 0.176 0.003 0.479 0.713 <0.0001
ADG (kg/day) 1.065 1.157 1.073 1.018 0.042 0.119 0.657 0.080 0.0001

G:F 0.123 0.128 0.125 0.121 0.004 0.432 0.921 0.240 0.811

Average daily NO3
– consumed

(g/animal) 4 9.43 12.43 127.20 120.37 5.030 <0.001 0.723 0.370 0.160

Feeding behavior 5

Total meal duration, min/day 183.6 183.4 188.2 186.6 4.71 0.410 0.849 0.883 <0.0001
Head down duration per meal,

min/meal 9.6 9.3 10.2 9.6 0.68 0.572 0.519 0.793 0.323

Head down duration, min/day 80.9 84.0 97.1 91.6 4.83 0.016 0.810 0.377 <0.0001
Feeding/meal frequency, events/day 9.2 9.6 10.4 10.4 0.30 0.002 0.495 0.440 <0.0001

Feeding rate, g DM/min 46.2 46.1 42.7 41.1 1.29 0.001 0.514 0.553 <0.0001
1 EN represents the main effect of encapsulated nitrate (−EN −MBEO and −EN +MBEO) versus (+EN −MBEO
and +EN +MBEO); MBEO represents the main effects of microencapsulated blend of essential oils (−EN −MBEO
and +EN −MBEO) versus (−EN +MBEO and +EN +MBEO); +EN +MBEO represents the interaction between main
effects of EN and MBEO. 2 Animals that received diets containing encapsulated NO3

− were acclimatized gradually
using a step-up protocol during the first 28 days of adaptation; 0.625%, 1.25%, 1.875%, and 2.5% NO3

− in dietary
DM. Animals that received MBEO were supplemented with 150 mg/kg DM microencapsulated blend of EO since
the beginning of the experiment. 3 Dry matter intake for animals that visited the GreenFeed emission monitoring
system included the amount of pellet consumed while visiting the system. 4 NO3

− consumption was calculated
from NO3

− analysis of TMR and ort samples. 5 A meal was defined as a visit to the bunk, followed by an absence
from the bunk for 300 s or greater. Total meal duration = total time spent at feeder, head down duration per meal =
meal duration/number of meals per day, feeding rate = DM consumed by time at feeder (DMI/meal duration).
a, b, c Means within a row for each treatment with different lower case letter are significantly different (p ≤ 0.05).

Feeding or eating behavior was not affected (p ≥ 0.377) by MBEO and EN × MBEO (Table 2).
However, feeding EN reduced feeding rate (g DM/min; p = 0.001), which resulted in longer head
down duration (min/day; p = 0.016) during meals and greater (p = 0.002) meal frequency per day.

Inclusion of EN and MBEO in the diet did not change (p ≥ 0.128) particle size distribution of TMR
or the large (≥18 mm) and medium (8 to 18 mm) particles of orts (Table 3). However, there was an
interaction (p < 0.04) between EN and MBEO for the small (1.2 to 8 mm) and bottom (fine, <1.2 mm)
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particles of orts because inclusion of EN induced selective sorting in favor of fine particles to a greater
extent when MBEO was not added.

Table 3. Particle size distribution of total mixed ration (TMR) and orts (n = 3) from beef steers fed a
backgrounding diet with no additives (control, −EN −MBEO), or supplemented with encapsulated
nitrate (+EN), microencapsulated blend of essential oils (+MBEO), and combination of EN and MBEO
(+EN +MBEO).

Item
−EN 1 +EN 1

SEM
p-Value

−MBEO +MBEO −MBEO +MBEO EN MBEO EN ×
MBEO Period

TMR, % (as-is basis)
Large (≥18 mm) 2.57 3.93 3.43 3.23 0.331 0.817 0.128 0.056 0.020

Medium (8 to 18 mm) 61.58 66.65 65.19 66.61 1.917 0.462 0.219 0.451 0.413
Small (1.2 to 8 mm) 31.99 28.13 29.63 28.89 1.430 0.706 0.388 0.510 0.707
Bottom (<1.2 mm) 2.92 1.83 1.41 2.02 0.554 0.479 0.766 0.401 0.269

Orts, % (as-is basis)
Large (≥18 mm) 11.48 14.27 12.65 9.52 3.886 0.732 0.973 0.586 0.115

Medium (8 to 18 mm) 57.26 62.71 61.01 58.86 2.211 0.982 0.483 0.136 0.111
Small (1.2 to 8 mm) 29.65 a 24.11 b 24.02 b 30.70 a 0.775 0.564 0.49 0.0001 0.001
Bottom (<1.2 mm) 1.71 a 0.79 a,b 0.49 b 0.78 a,b 0.232 0.039 0.225 0.04 0.017

Orts, % of total offered (DM basis) 1.08 1.01 1.36 2.62 0.477 0.096 0.259 0.215 0.037
1 EN represents the main effect of encapsulated nitrate (−EN −MBEO and −EN +MBEO) versus (+EN −MBEO
and +EN +MBEO); MBEO represents the main effects of microencapsulated blend of essential oils (−EN −MBEO
and +EN −MBEO) versus (−EN −MBEO and +EN +MBEO); +EN +MBEO represents the interaction between main
effects of EN and MBEO. a, b Means within a row for each treatment with different lower case letter are significantly
different (p ≤ 0.05).

Animal visits to the GEM system and the impacts of feeding EN and MBEO on enteric CH4

and hydrogen emissions and yield are presented in Table 4. An interaction between EN and MBEO
was observed for the number of animals that visited the GEM system (p = 0.021), but there were no
treatment effects (p ≥ 0.089) on the average number of good visits or visit duration. The effect of EN
and MBEO on CH4 emissions was independent as indicated by the lack of interaction effects (p ≥ 0.174)
for these variables. Feeding EN reduced enteric CH4 emissions by 17.6% (190.9 versus 157.3 g/day
for –EN and +EN, respectively; p < 0.0001), whereas feeding MBEO increased CH4 emissions by 11.0%
(165.0 versus 183.2 g/day for –MBEO and +MBEO, respectively; p = 0.005). Similarly, CH4 yield
(emissions corrected for intake) was 13.0% lower for EN (21.5 versus 18.7 g/kg DMI for −EN and
+EN, respectively; p < 0.0001) but 13.6% higher for MBEO (18.9 versus 21.4 g/kg DMI for −MBEO
and +MBEO, respectively; p = 0.0002). When CH4 emission was expressed in terms of energy loss,
feeding EN resulted in a 10.8% lower loss of GE as CH4 (5.37 versus 4.79% of GE intake for −EN
and +EN, respectively; p = 0.001), whereas feeding MBEO resulted in 10.6% more loss of GE as CH4

(4.83 versus 5.34% GE intake for –MBEO and +MBEO, respectively; p = 0.002). Correspondingly, an
interaction (p = 0.02) was observed between additives for daily hydrogen production because addition
of EN increased hydrogen production to a greater extent when MBEO was not added. However, when
corrected for DMI and expressed as yield, feeding EN increased hydrogen yield by 57.3% (0.052 versus
0.081 g/kg DMI for −EN and +EN, respectively; p < 0.001), whereas MBEO and EN × MBEO had no
effect (p ≥ 0.12).

The diurnal pattern of CH4 production and animal visits to the GEM system by hour are presented
in Figure 2. Hourly CH4 emissions increased after morning (1000 h) and afternoon (1600 h) feeding
and production rate for +EN was consistently lower throughout the day relative to −EN. Furthermore,
+EN reduced CH4 emissions consistently throughout the experimental period, implying that the
effectiveness of EN did not decline over time (Figure 3). Animals frequented the GEM system to the
greatest extent at midnight (0000 h) and the lowest number of visits was observed between 0300 h and
0400 h for all treatments.
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Table 4. Visitation to the GreenFeed emissions monitoring (GEM) system, pellet consumption,
and emission and yield of CH4 and hydrogen from backgrounding beef animals fed a high-forage
diet with no additives (control, −EN, −MBEO) or supplemented with encapsulated nitrate (+EN),
microencapsulated blend of essential oils (+MBEO), and combination of EN and MBEO (+EN +MBEO).

Item
−EN 1 +EN 1

SEM
p-Value

−MBEO +MBEO −MBEO +MBEO EN MBEO EN ×
MBEO Period

GEM system visitation
Number of animals that visited 18 a 16 b 17 a,b 18 a 0.5 0.741 0.339 0.021 0.010

Good visits per animal per period 2 33.0 33.1 33.3 34.3 1.66 0.647 0.743 0.807 0.210
Visit duration (min:s) 4:06 4:07 4:39 4:18 0.12 0.089 0.210 0.389 <0.0001

Pellet consumed, kg DM/day 0.79 0.84 0.82 0.88 0.030 0.262 0.065 0.911 <0.0001
DMI 3, kg/day 9.02 8.89 8.56 8.30 0.207 0.010 0.322 0.713 <0.0001

GE intake, Mcal/day 46.64 47.30 44.83 43.56 1.075 0.009 0.766 0.353 <0.0001

CH4
g/day 184.14 197.69 145.89 168.78 6.533 <0.0001 0.005 0.458 <0.0001

g/kg of DMI 20.69 22.35 17.00 20.46 0.683 <0.0001 0.0002 0.174 <0.0001
% of GE intake 5.19 5.55 4.46 5.12 0.169 0.001 0.002 0.350 0.0002

Hydrogen 4

g/day 0.428 c 0.455 c 0.734 a 0.639 b 0.0265 <0.0001 0.192 0.022 <0.0001
g/kg of DMI 0.050 0.053 0.084 0.078 0.0031 <0.0001 0.571 0.123 <0.0001

1 EN represents the main effect of encapsulated nitrate (−EN −MBEO and −EN +MBEO) versus (+EN −MBEO
and +EN +MBEO); MBEO represents the main effects of microencapsulated blend of essential oils (−EN −MBEO
and +EN −MBEO) versus (−EN +MBEO and +EN +MBEO); +EN +MBEO represents the interaction between main
effects of EN and MBEO. 2 Good visits were selected based on the distance of the animal’s head from the proximity
sensor and the duration that the animal’s head in the “head chamber”. Good visits were used to calculate the
average daily CH4 emissions. 3 DM intake included both TMR and pellet consumption. 4 Hydrogen emission was
calculated using the “arithmetic averaging method”, a straight-forward averaging of the visit fluxes defined as the
sum of the visit fluxes divided by the number of measurements [26]. a, b, c Means within a row for each treatment
with different lower case letter are significantly different (p ≤ 0.05).

There was no interaction (p ≥ 0.20) between EN and MBEO on blood partial pressure of carbon
dioxide (pCO2) and oxygen (pO2), total concentration of CO2 (tCO2), saturation of O2 (SatO2) and
CO2 (SatCO2), bicarbonate (HCO3

−), total Hb, base excess (BE), pH, and packed cell volume (PCV)
(Table 5). However, an interaction between the additives was observed for blood MetHb (p = 0.008) and
plasma NO3

−-N (p = 0.003) contents, because blood MetHb and plasma NO3
−-N increased to a lesser

extent when MBEO was added. None of the animals showed visual signs of methemoglobinemia
throughout the experiment, observing a maximum individual MetHb concentration of 4.1% of total Hb
for the +EN +MBEO treatment, a level that is not a threat to animal health and wellbeing. Furthermore,
feeding EN (+EN) increased (p = 0.05) blood HCO3

− and total CO2 relative to treatment without EN.
Feeding MBEO had no effect on all measured blood parameters. Plasma NO3

−-N concentration for
the EN and EN + MBEO treatments was reduced over the experimental period (Figure 4a); however,
plasma NO2

−-N concentrations reached maximum at the fourth week of the experimental period for
all the treatments and sharply reduced thereafter (Figure 4b).
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microencapsulated blend of essential oils (MBEO), and combination of EN and MBEO (EN + MBEO). The arrows indicate time of feeding at 0900 h and 1600 h, and 0000 h 
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Figure 2. Diurnal pattern of CH4 emissions (g/day, solid and broken lines) and animal visits to the GreenFeed emission monitoring (GEM) system over 24-h period
(% of total visits, bar graphs) for backgrounding beef steers fed a high-forage diet with no additives (control, −EN, −MBEO), or supplemented with encapsulated
nitrate (EN), microencapsulated blend of essential oils (MBEO), and combination of EN and MBEO (EN + MBEO). The arrows indicate time of feeding at 0900 h
and 1600 h, and 0000 h indicates midnight. There were no significant differences among treatments for the animal visits at individual time points throughout the
hours of the day. For CH4 emissions, error bars indicate standard deviation and ns = p > 0.05; * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001. For the statistical analysis, EN
represents the main effect of encapsulated nitrate (−EN −MBEO and −EN +MBEO) versus (+EN −MBEO and +EN +MBEO); MBEO represents the main effects of
microencapsulated blend of essential oils (−EN −MBEO and +EN −MBEO) versus (−EN +MBEO and +EN +MBEO); EN + MBEO represents the interaction between
main effects of EN and MBEO.
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Figure 3. Enteric CH4 emissions over the experimental period for beef steers consuming a high-forage
diet with no additives (control, −EN −MBEO) or supplemented with encapsulated nitrate (EN),
microencapsulated blend essential oils (MBEO), and combination of EN and MBEO (EN + MBEO).
Error bars indicate standard deviation. For the statistical analysis, EN represents the main effect of
encapsulated nitrate (−EN −MBEO and −EN +MBEO) versus (+EN −MBEO and +EN +MBEO);
MBEO represents the main effects of microencapsulated blend of essential oils (−EN −MBEO and +EN
−MBEO) versus (−EN +MBEO and +EN +MBEO); EN + MBEO represents the interaction between
main effects of EN and MBEO.

Table 5. Jugular blood acid-base balance of beef steers (n = 22) fed a high forage backgrounding
diet with no additives (control, −EN, −MBEO) or supplemented with encapsulated nitrate (+EN),
microencapsulated blend of essential oils (+MBEO), and combination of EN and MBEO (+EN +MBEO).

Item 2
−EN 1 +EN 1

SEM
p-Value

−MBEO +MBEO −MBEO +MBEO EN MBEO EN × MBEO Period

pCO2, mmHg 40.91 39.55 41.39 41.82 0.974 0.165 0.632 0.364 <0.0001
tCO2, mmol/L 3 29.30 29.55 30.43 30.49 0.506 0.048 0.762 0.844 <0.0001

HCO3
−, mmol/L 3 28.06 28.34 29.15 29.20 0.486 0.051 0.724 0.813 <0.0001

BE, mmol/L 3 4.82 5.28 5.49 5.65 0.380 0.180 0.424 0.691 0.209
pH 7.48 7.50 7.48 7.49 0.008 0.857 0.334 0.200 0.0001

pO2, mmHg 42.79 43.03 41.88 44.03 1.127 0.968 0.294 0.402 0.0077
SatO2, % total Hb 78.00 79.15 77.27 78.91 1.223 0.694 0.261 0.844 <0.001

PCV, % 43.03 43.40 43.49 43.83 0.571 0.444 0.539 0.979 0.0001
Total Hb, g/dL 16.15 15.98 16.42 16.29 0.210 0.170 0.479 0.934 <0.0001

MetHb, g/100 g Hb 0.70 b 0.87 b 1.45 a 1.22 a 0.053 <0.0001 0.710 0.008 0.0003
Min., g/100 g Hb 0.00 0.25 0.20 0.55 --- --- --- --- ---
Max., g/100 g Hb 1.95 2.53 3.40 4.10 --- --- --- --- ---

Plasma
NO3

−-N, mg/L 0.082 c 0.076 c 1.135 a 0.812 b 0.052 <0.0001 0.002 0.003 <0.0001
NO2

−-N, µg/L 2.536 2.621 2.178 1.971 0.129 0.0002 0.636 0.260 <0.0001
1 EN represents the main effect of encapsulated nitrate (−EN −MBEO and −EN +MBEO) versus (+EN −MBEO
and +EN +MBEO); MBEO represents the main effects of microencapsulated blend of essential oils (−EN −MBEO
and +EN −MBEO) versus (−EN +MBEO and +EN +MBEO); +EN +MBEO represents the interaction between main
effects of EN and MBEO. 2 pCO2, partial pressure of carbon dioxide; tCO2, total concentration of CO2; HCO3

−,
bicarbonate; BE, base excess; pO2, partial pressure of O2; SatO2, O2 saturation as percent of oxygen based on total
hemoglobin saturation capacity; PCV, packed cell volume; Hb, hemoglobin; MetHb, methemoglobin; NO3

−, nitrate
and NO2

−, nitrite. 3 These parameters were calculated from parameters measured by VetStat analyzer. a, b, c Means
within a row for each treatment with different lower case letter are significantly different (p ≤ 0.05).
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4. Discussion

Supplementation of NO3
− in ruminant diets has been proposed as an alternative to increase

non-protein nitrogen intake while effectively minimizing enteric CH4 emissions [30]. However, it is
also well documented that over-consumption of NO3

− can be toxic to animals [12]. Encapsulation of
NO3

− has been used [7,29] to ensure slow release of NO3
− in the rumen and increase the efficiency of

microbes to fully reduce NO3
− to ammonia, thus minimizing the risk of NO3

−/NO2
− toxicity.

Essential oils have been shown to favorably affect rumen fermentation in vitro, but the observed
responses have not translated into improved production characteristics in the few existing studies with
beef cattle [17]. Furthermore, previous studies have reported that the immune modulation, antioxidant,
thermoregulation, and blood oxygenation properties of EO may improve animal productivity and
energetics [14,18]. Despite the use of NO3

− and EO in ruminant diets, previous studies have not
explored their possible interaction on enteric CH4 mitigation and animal productivity. The main
finding in the current study is that the effects of EN were mostly independent from those of MBEO,
as most of the variables examined showed a lack of significant interaction between EN and MBEO,
thus considering the responses to these additives as generally independent.

4.1. Nitrate

In the literature, the impact of feeding NO3
− to ruminants on DMI varies among studies.

For example, using unencapsulated NO3
− (2% in diet DM) Lund et al. [31] reported 11% reduction in

DMI for dairy cattle fed a high-forage diet (58% DM). Similarly, Hulshof et al. [2] used unencapsulated
NO3

− (2.2% in dietary DM) and observed a decrease in DMI of 6% in beef cattle fed high-forage
diets (60% DM). Encapsulation of NO3

− ensures not only slow release in the rumen [8] but also has
a potential to minimize its negative impact on feed intake caused by its organoleptic properties [32].
This has been the case in some previous reports that used encapsulated NO3

− [7,10] but not in
others [11].

In our study, the lack of effects of EN on ADG and G:F were in agreement with Lee et al. [10] and
El-Zaiat et al. [7]. Lee et al. [10] supplemented encapsulated NO3

− (2.5% in dietary DM) to beef cattle
fed a high-forage diet (65% DM corn silage) and reported no effect on DMI and feed efficiency. Whereas
with the same inclusion rate in a high concentrate diet (80% DM of barley grain), the same authors
observed a 7.5% reduction in DMI and 11% improvement in feed efficiency for finishing beef cattle [11].
Changes in feeding and eating behavior following NO3

− supplementation may contribute to DMI and
feed efficiency responses [32,33]. For example, Lee et al. [10] observed significant sorting of the TMR
for large particles, which increased the proportion of small particles and decreased the proportion of
large particles in orts, as well as a considerable increase in NO3

− concentration in orts. Conversely,
in our study, feeding EN induced sorting in favor of fine particles but had no effect on either the
large and medium particles of orts or the total amount of orts (% of total offered). The reduction in
feeding rate (g DM/min) for EN was manifested in longer head down duration during meals and
more frequent meals per day. These changes in feeding behavior of cattle fed EN were consistent with
Velazco et al. [34], where NO3

−-fed cattle consumed a large number of meals per day and smaller in
size when compared to cattle fed a control diet.

Previous studies reported a reduction in enteric CH4 production in several species and categories
of animals due to NO3

− feeding [1,30]. Reductions in CH4 yield ranging between 4% (with 1% NO3
−

in diet DM; [9,10]) and 33% (with 2.7% NO3
− in diet DM; [7]) have been reported for ruminants fed

high-forage diets supplemented with encapsulated NO3
−. The observed reduction in CH4 yield in our

study for +EN (13.0%) was within the range of 12.2% and 18.3% reduction reported for beef heifers
fed a forage diet (50% DM barley silage) supplemented with encapsulated NO3

− at 2% and 3% in
diet DM, respectively [9]. Lower rate of reduction (6.2%) was also reported for backgrounding steers
fed a high-forage diet (65% DM corn silage) supplemented with encapsulated NO3

− (2.5% in diet
DM [10]). Little is known about the factors that may interfere with the efficiency of NO3

− reduction in
the rumen. Encapsulation of NO3

− [8], amount of NO3
− ingested, and intake rate of NO3

− [32,35],
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type of diet (e.g., roughage inclusion, N and S concentrations [10,11,35] as well as type of animals [35])
affect ruminal NO3

− utilization, and consequently, CH4 reduction. Furthermore, duration of feeding a
dietary additive may affect its efficacy in reducing enteric CH4 production over time [36]; however,
there was no decline in the effectiveness of EN over time in the current study (Figure 3).

Multiple in vitro [8] and in vivo studies [4,5,31] have reported an increase in hydrogen production
after feeding NO3

−. Similarly, a significant (p < 0.001) increase in hydrogen production and yield
was observed for the EN treatment in our study. It is generally believed that NO3

− reduction is a
thermodynamically favorable process relative to methanogenesis in which NO3

− acts as a hydrogen
sink [37]. However, considering the observed increase in hydrogen production following NO3

−

supplementation in previous studies as well as in the current study, the earlier hypothesis needs to
be re-examined. Perhaps the direct toxicity of NO3

− and its reduced intermediate (NO2
−) on rumen

microbes [3] may contribute as an additional mode of action in decreasing enteric CH4 production.
Furthermore, hydrogen is an energy-dense gas (142 kJ/g of hydrogen, [38]) and its emission by animals
could partially offset the energy gain by the decrease in CH4 production. For example, the calculated
energy lost in hydrogen production for the +EN treatment was 23.3 kcal per day or 6.9% of the observed
CH4 decrease with the use of EN.

The increased concentration of plasma NO3
− and NO2

− following supplementation of NO3
− in

the diets of ruminants implies that NO3
− is not fully reduced to ammonia. Lee et al. [10,32] observed a

dose-response increase in blood NO3
− and NO2

− when encapsulated NO3
− was fed. The observed

increase in blood NO3
− concentration for the EN treatment in our study was comparable to previous

reports [10,33]. Furthermore, NO2
− was present in the blood in a detectable range (2 to 3 µg/L of

NO2
−-N) but did not elevate blood MetHb levels (less than 4.1% of total Hb) to the threshold that

is considered to cause subclinical methemoglobinemia (30 to 40% [12]). Feeding NO3
− at 2 to 3% of

dietary DM has been widely reported without any toxicity issues [30]. Although NO3
− consumption

was relatively consistent over the experimental periods, blood NO3
− and NO2

− concentrations
gradually decreased during the study, which could be due to a combination of factors, including a
possible gradual improvement in microbial capacity to reduce dietary NO3

− [39], physiological change
of the experimental animals [8], and change in the feeding behavior [8,10,40]. The lower feeding rate
(g DM/min) and higher meal frequency per day for EN may have helped to spread out the availability
of NO3

− to rumen microbes over a longer period, thus reducing the size of NO3
− pulses occurring in

the rumen, which in turn would have lowered the concentration of NO3
− and NO2

− in rumen fluid
and blood.

4.2. Essential Oils

The lack of effect of MBEO on average DMI and feed efficiency observed in our study is consistent
with previous in vivo studies that supplemented EO or blend of EO to beef cattle. For example,
Beauchemin and McGinn [41] reported that growing beef cattle fed a high-forge diet (75% DM
whole-grain barley silage) supplemented with 1 g/day blend of EO (Crina® Ruminants, mixture of
thymol, eugenol, vanillin, limonene, and guaiacol) did not show any difference in DMI and feed
efficiency. Similarly, using that same product (Crina® Ruminants) at 1 and 2 g/day, Tomkins et al. [39]
found no differences in DMI and animal performance for steers fed Rhodes grass hay (ad libitum).
For beef animals on finishing diets, a study conducted by Yang et al. [20] tested the effects of 3 doses
(0.4, 0.8, 1.6 g/day) of cinnamaldehyde or monensin on feedlot cattle performance, and reported that
none of the treatments affected performance variables. Furthermore, Meyer et al. [42] reported no effect
on DMI and feed efficiency for feedlot steers over a 115-day finishing period when fed a blend of EO
(thymol, eugenol, vanillin, guaiacol, and limonene) at 1 g/animal/day. However, the authors reported
improved efficiency for diets containing a blend of EO and tylosin. Furthermore, using higher doses
(3.5 and 7 g/animal/day) of a blend of EO (MixOil®, extracts from oregano, garlic, lemon, rosemary,
thyme, eucalyptus, and sweet orange), Rivaroli et al. [43] reported no effects on DMI and animal
performance parameters for crossbred bulls fed high-grain finishing diets for 120-days. A similar
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lack of effect has been observed in other animal species, including sheep [44] and dairy cows [18,42].
Overall, the results from our study are consistent with the literature that suggests supplementation of
diets with EO has no effects on DMI and performance of beef cattle.

Only few in vivo studies investigated the effect of EO on enteric CH4 emission with conflicting
results [16,17]. Furthermore, due to the variation in type of diets, dose rate, and the range of EO and
EO compounds used, it is challenging to make a direct comparison of CH4 emission outputs among
studies. Reduction in enteric CH4 emissions following supplementation of EO and blend of EO has
been reported for sheep [23,44] and buffalo [45], although others reported no effect on CH4 emissions
for beef [41,46] and dairy cattle [47]. However, in the current study, enteric CH4 emissions and yield
were increased by 11.0% and 13.6%, respectively. It is difficult to explain the observed increase in CH4

production. However, several factors, including the wide range of non-specific antibacterial activity of
EO that may favor methanogenesis [15] or positive impacts of EO on ruminal feed degradability [19,48],
may play a role.

Information on the effect of EO on the process of methanogenesis in ruminants is ambiguous [49,50].
The impact of EO on CH4 emissions may be attributed to direct impact on methanogenic archaea
(changing community structure or activity of methanogenesis pathway) and indirect impact on
microbial metabolic processes contributing to methanogenesis [17]. Essential oils can also affect
some protozoa that are symbiotically associated with archaea. Using meta-analysis, Khiaosa-ard and
Zebeli [51] reported a dose-response effect of EO on reducing protozoa, whereas Cobellis et al. [17]
reported no effect of EO on protozoa in most in vivo studies in ruminants. Furthermore, the
antimicrobial activity of EO varies with the quantity used, chemical composition (both components
present and their proportion), interaction among EO components, and chemical configurations [52,53].
Additive, antagonistic, and synergistic effects have been observed between components of EO [15,52].
The Activo® Premium used in the MBEO treatment contained carvacol, eugenol, capsaicin,
cinnamaldehyde, and pepper extract with diverse antimicrobial activities. For example, carvacrol
has shown a negative effect on Gram-negative bacteria [54], whereas eugenol has shown a broad
antibacterial activity by affecting both Gram-negative and Gram-positive bacteria [14,55].

Although reduction in DM digestibility following supplementation of EO has been reported in
most in vitro studies, in vivo studies have been inconsistent [17]. Yang et al. [48] fed garlic (5 g/cow
per day) and juniper berry (2 g/cow per day) to dairy cows consuming a ration containing forage
(40% DM) and reported a 12 to 15% increase in rumen DM and OM digestibility. However, total tract
digestibility of DM, OM, fiber, and starch were not affected. They suggested that the increased ruminal
digestibility was due to an 11% increase in dietary protein digestibility in the rumen compared with
control. In another study, Silva et al. [19] fed Activo® Premium at the rate of 150 mg/kg DM to dairy
cows consuming a diet containing corn silage (48% DM) and observed an increase in total tract OM
digestibility. It has also been reported that the effects of EO and EO blends are rumen pH and diet
dependent [14]. Benchaar et al. [56] reported that supplementation of 750 mg Crina® Ruminants per
day to dairy cows tended to increase total VFA concentration in the rumen of lactating cows when the
diet contained alfalfa silage, but tended to decrease total VFA concentration when the diet contained
corn silage. Overall, further long-term in vivo studies are required to determine the potential of using
EO in ruminant diets to lower enteric CH4 production.

Although studies report anti-inflammatory, immune modulation, antioxidant, thermoregulation,
and blood oxygenation properties of EO [14,18], blood parameters measured in our study did
not differ for the MBEO and EN + MBEO treatments. Recent findings suggest that due to their
phenolic nature, some EO are likely less susceptible to microbial degradation in the rumen and exhibit
activities post-ruminally by binding to specific receptors expressed in neurons, intestines, and other
cells [18,57]. However, Oh et al. [18] stated that these impacts of EO are likely dependent on the type
and physiological status of the experimental animals, as well as the type of diets. In dairy cattle,
providing EO either in the diet or by direct infusion into the abomasum had an effect on the immune
system of the animals, post-ruminal nutrient use, and animal physiology [18]. Silva et al. [19,22] fed
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Activo® Premium at 150 mg/kg diet DM to dairy cows in mid-lactation for 8 weeks and reported
increased O2 saturation of Hb and a greater proportion of O2 transported by blood in relation to total
gases for cows fed a blend of EO compared with a control. Furthermore, for feedlot cattle fed a finishing
diet containing dry-rolled barley grain (86% DM), Yang et al. [20] reported that supplementation with
cinnamaldehyde (0.4 to 1.6 g/day per animals) reduced stress and increased DMI during the early
feeding period when stress is greater. In our study, animals were fed a high-forage diet (80% DM) and
were likely under minimal stress.

5. Conclusions

The effects of feeding EN as a replacement for urea and MBEO alone or in combination with
EN on animal performance and enteric CH4 emissions from beef steers fed a high-forage diet were
investigated. Our results demonstrate that there were no advantages of feeding EN with MBEO.
Supplementing diets with MBEO neither improved animal performance nor lowered CH4 emissions.
However, EN reduced CH4 emissions and altered feeding behavior, whereas it had no impact on
animal health and performance. Accordingly, the use of EN could have important implications for
the Canadian beef sector in particular and global ruminant agriculture in general. In 2016, CH4

emissions from enteric fermentation represented 3.5% of the Canadian national greenhouse gas
inventory, with beef cattle production accounting for 80% of the emissions. A 30% adoption rate of EN
by beef producers, combined with 17.6% reduction of enteric CH4 emissions following the use of EN,
would result in 4% less total enteric emissions and 1.8% less agricultural emissions in Canada.
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