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Abstract: Here we describe the molecular composition and resistance to decomposition of humic
acids isolated from selected soils of the Russian Arctic and Antarctic. The degree of soil organic matter
stabilization was assessed using modern instrumental methods: nuclear magnetic resonance spectroscopy
(cross peak magic-angle spinning (CP/MAS) 13C-NMR and 1H-13C heteronuclear-correlation (HETCOR)).
Analysis of the humic acids showed that aromatic compounds prevail in the organic matter formed in
cryoconites, located on the surfaces of the glaciers. The predominance of aliphatic fragments is revealed
in the soils of the Yamal peninsula and Antarctica. This could be caused by sedimentation of fresh organic
matter exhibiting low decomposition stage due to the severe climate and processes of hydrogenation in
the humic acids, destruction of the C-C bonds, and formation of chains with high hydrogen content.
These processes result in formation of aliphatic fragments in the humic acids.
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1. Introduction

Polar soils play a key role in the global carbon balance as they contain maximum stocks of soil
organic matter (SOM) within the whole pedosphere [1]. The accumulation of humus in the profile of
arctic soils is associated with permafrost retinization processes, cryogenic mass exchange processes,
in situ organic matter formation from root remnants, as well as with an inheritance from parent
rocks [2]. The area occupied by permafrost-affected soils amounts to more than 8.6 million km2, which
is about 27% of all land areas north of 50◦ N [3]. The storage of SOM in high latitudes was estimated at
1672 × 1012 kg, which comprises about 70% of all SOM in the world [3–5].

Low average temperatures and a short vegetation season in the arctic zone cause the accumulation
of organic matter throughout the Quaternary period [6]. The biomass formed during the short vegetation
season initially accumulates in the upper active soil layer. Thus, there is an annual accumulation of
organic matter to which the alluvial sedimentation of organic residues contributes [4]. Cryoturbation
and cryogenic mass exchange also lead to the incorporation of organic matter into deeper soil horizons.
Another process is the movement of organic matter in a dissolved state and its accumulation on the
border with the permafrost table [5,7].

According to cryoturbation processes, small fragments of organic matter separate from the lower
parts of the surface horizons under the influence of ice penetration, move inside the profile, and mix
with the mineral part of the underlying horizons. Such movement of organic masses along the profile
leads to its compaction, homogenization, and destruction of plant remnants [8,9]. As a result of slope
processes, organogenic horizons often turn out to be sealed under the material that arrived as a result
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of solifluction [9,10]. Unlike cryoturbated material, buried organogenic horizons are characterized by
high porosity; plant remnants, including roots, are relatively much less destroyed [11].

Only 0.35% (45,000 km2) of Antarctica is ice-free [12]. The extreme variation in Antarctica’s
climate has important effects on soil properties and distribution. In continental Antarctica, plant life is
restricted to mosses, lichens, and algae, with vascular plants limited to the Antarctic island north of
67◦ S, particularly in the South Orkney and South Shetland Islands [13]. Birds play an important role
in modifying the soils of coastal Antarctica. Seabirds and nesting birds constitute the dominant factor
influencing the soil organic carbon (SOC) and nutrient levels in Antarctic soils. Specific soil-forming
processes in the South Orkney Islands (SOI) and South Shetland Islands (SSI) include cryoturbation,
phosphatization, brunification, podsolization, sulfurization, and andosolization [14,15]. At higher
landscape positions, eutrophic, alkaline soils prevail that are normally devoid of vegetation and with
low SOC [16]. Birds are the main source of soil organic carbon in the soils of Antarctica; specific
ornithogenic soils are formed in the rookery sites [12]. The organic carbon content in the upper
organo-mineral horizons (up to 20 cm) can reach 38%. Significant accumulation of organic matter was
found earlier in ornithogenic soil types, and the minimum organic carbon content was identified in
Leptosol on basalts and andesites under communities of mosses and lichens [17]. The organic matter of
Antarctic soils is poorly humified; fulvic acids and detrital forms of undecomposed humus prevail [18].
The organic matter of Antarctic Leptosol contains a significant proportion of water-soluble fragments.
In general, these features are associated with the low microbiological activity typical of Antarctic
soils [19].

The circumpolar environments are characterized by a low degree of humification of organic
matter, which is associated with a short vegetation season, as well as low levels of plant remnant in the
soil. In the soils of the coastal zones of Antarctica, the formation of huge carbon stores has been noted,
comparable to those in soils of similar regions of the Arctic [20,21].

Various methods have been used to investigate the humic acids (HAs) of soil organic matter. There
are also many methods for determining HAs composition. Fourier-transform infrared spectroscopy
(FTIR), ultraviolet-visible spectroscopy (UV-ViS), cross-polarization, magic-angle spinning, molecular
fluorescence spectroscopy (MF), and electron spin resonance spectroscopy (ESR) are all useful and often
applied in SOM studies [22,23]. Here, we use two modern instrumental methods: 1H-13C HETCOR
(heteronuclear-correlation) and 13C CP/MAS (cross peak magic-angle spinning) NMR spectroscopy.
One-dimensional (1D) solid-state 13C NMR techniques have provided some structural information on
HAs, including quantitative determination of various types of chemical groups [19,24–28]. However,
this does not provide the opportunity to characterize detailed differences between the atoms included
in such groups and in many cases does not allow for the signals to be clearly distinguished as a result of
their considerable overlap due to broad lines and the diversity of structures of functional groups [29–32].
By the application of two-dimensional (2D) NMR techniques, such problems of peak overlap can be
reduced, and the chemical structure corresponding to a given peak can be identified more specifically.
As dipolar interactions act through space, the correlation of unprotonated carbons with unbound
protons is possible, which provides additional structural information [30]. Two-dimensional correlation
of 13C chemical shifts with 1H chemical shifts, termed 2D heteronuclear-correlation 1H-13C HETCOR
NMR, can provide more structural information than 13C or 1H NMR spectroscopy. The HETCOR
method has been used to determine organic compounds in solutions of organic substances and has also
been adapted for solids using 1H homonuclear dipolar decoupling and can now be used to determine
humic acids in soils [29–33].

The HETCOR experiment correlates chemical shifts of 1H with chemical shifts of X-nuclei
(for example, 13C, 15N). The experiment provides excellent resolution in an indirect 1H measurement.
Homonuclear decoupling during the 1H evolution is achieved using the FSLG (Frequency Switched
Lee Goldburg) sequence, which works even at relatively high MAS frequencies. Decoupling from
protons during evolution is not necessary, since the high MAS speed already provides this [34,35].
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Mixing is carried out during the contact magnetization transfer pulse. Since the transfer of
magnetization from protons to X (for example, 13C) occurs quickly, the contact time should be short in
order to avoid transfer over long distances, which leads to a nonspecific cross-peak pattern. There
is a modification of the base sequence that uses magnetization transfer at the LG bias frequency for
protons. In this case, the magnetization to the X nucleus passes only from closely located protons [34,35].

The bioclimatic conditions determine the soil formation in the polar regions, and their specific
composition of Has; however, their high diversity, low degree of knowledge of the regions, and the use
of classical methods for studying organic matter do not allow us to state the molecular composition
of HAs in polar soils with a high degree of confidence. The formation and transformation of HAs
is a complex process in which a group of factors is involved, such as climate, composition and
activity of the microbiological community, quality of plant residues, pH, and hydrophobicity of
environment [26–28,36]. At present, there are a number of works devoted to the study of taiga and
tundra soils using 13C (CP/MAS) NMR spectroscopy; however, there are few studies on Antarctic
and Arctic soils. Studies on the organic compounds of HAs for the soils of the polar area by the
1H-13C (HETCOR) NMR spectroscopy have not been carried out to current time. The advantage of this
method is that, when analyzing the spectra of HAs, we can observe cross-peaks of H-C bonds, while
for the 13C (CP/MAS) NMR spectroscopy we can only observe chemically bound carbon. The HETCOR
method allows the study of single HAs fragments. Thus, the combination of the two methods 1H-13C
(HETCOR) and 13C (CP/MAS) NMR spectroscopy can reliably determine the molecular structure of
HAs [30].

For further study of the fundamental processes of humus formation and the accumulation
of specific organic compounds in the polar regions, modern instrumental methods are required.
The methods of analysis of molecular composition that we have proposed will help to understand the
fundamental processes of soil formation and create new ideas about the complex composition and
structure of natural high molecular compounds of HAs in permafrost-affected soils [26–28].

1H-13C (HETCOR) and 13C (CP/MAS) NMR spectroscopy are powerful tools for studying
molecular-level structure and dynamics in HAs. Thus, this study aimed to determine the molecular
composition of organic matter in selected soils of the Russian Arctic and Antarctic using
13C-1H(HETCOR) and 13C NMR spectroscopy.

2. Materials and Methods

2.1. Study Area

The study area is located around the Grønfjorden area in western Spitsbergen, Svalbard, continental
part (Yamal peninsula) of the Arctic and maritime part of Antarctica, King-Gorge isl. The study area is
presented in Figure 1. The climatic characteristics of the study regions are given in Table 1.

The Grønfjorden study area is characterized by the presence of glaciers. Glaciers are considered
an important land-forming agent, which is responsible for destruction, transportation, and deposition of
a significant amount of sediments, and strongly affecting the soil parent materials [37,38]. The presence
of extant surfaces of the ice caps results in formation of cryoconite in the pores and microcaves of the
ice [39]. This is a specific form of organic matter accumulation. These cryoconites could be considered
as specific types of soil formation, similar to biological crusts or endolithic soils of various extreme
environments [40]. Yamal is a peninsula in northwestern Siberia, on the territory of the Yamalo-Nenets
Autonomous Okrug of Russia. The peninsula is 700 km long and up to 240 km wide. It is washed by
the Kara Sea and the Gulf of Ob. The southern part of the peninsula mainly has a parallel-ridge relief,
quite rare in the middle and northern latitudes of the Yamal. Excess moisture leads to the formation
of numerous lakes and swamps [41,42]. Regarding the soils of King George Island, South Shetland
Archipelago, on the territory of Antarctica, the parent materials here are presented by andesites, basalts,
and tuffs; the coastal areas are covered by maritime sands and gravels; and the periglacial plots are
occupied by moraines and some fluvioglacial materials [12,43].
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Figure 1. The study area. (1) King-George, Antarctica; (2) Grønfjorden area, Spitsbergen; (3) Yamal peninsula.

Table 1. Climate parameters of study regions.

Climate Parameters King-George Isl.,
Antarctica

Grønfjorden Area,
Spitsbergen, Arctic Yamal Peninsula, Arctic

Geographical coordinates 62◦01′27” S 58◦20′56” W 77◦59′51” N 14◦00′38” E 67◦35′02” N 67◦07′34” E
Mean annual air temperature (◦C) −9.5 −5.8 −5.9

Mean air temperature (◦C):
of the warmest month 0.6 8 8
of the coldest month −16 −18 −25

Annual precipitation (mm) 148 563 380
in summer (mm) 49 87 59

2.2. Soils and Sampling Strategy and Procedure

The soils were classified according to WRB classification [44]. The soil samples were taken,
considering the spatial picture of the vegetation cover and the position in the landscape. Samples of
soil were selected in various elements of the landforms. Sample descriptions are given in Table 2.

2.3. Soil Basic Parametrs

Soil samples were air-dried (24 h, 20 ◦C), grounded, and passed through 2 mm sieve. Soil samples
were selected for each horizon to analyze physical and chemical properties. Analyses were conducted in
the certified laboratory of St. Petersburg State University at the Department of Applied Ecology, Russia.

Soils were analyzed according to the following methods: determination of actual acidity (pHH2O)
by a stationary pH meter in aqueous solution extract with ratio of a 1:2.5. The carbon and nitrogen
content was conducted by CHN analyzer (Euro EA3028-HT, Italy). Data were corrected for water and
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ash content. Oxygen content was calculated by difference of whole samples mass and gravimetric
concentration of C, N, H and ash. The chemical characteristic of soils are presented in Table 3.

Table 2. Description of the studied surface soil samples.

Area Sample No. Soil Description of the Studied Surface Soil
Horizons. Soil Description of Upper Horizon Color Index

Yamal peninsula 1 Histic Cryosol

The Yamal peninsula has many terraces formed
from marine abrasion and accumulation.
The terraces have complex structures built of
cryogenic-polygonal forms, thermokarst (lakes
and depressions), and long-term hydrolaccoliths.
Oxidized, loam, rusty spots around root
channels, well-aerated. The parent materials are
presented by cover loams. Vegetation cover are
presented by mosses and lichens community.

10YR 4/1

Grønfjorden area, Spitsbergen 2 Cryoconite

Ground moraine of the Aldegonda glacier in the
place of the cryoconite pool; grayish-black;
wet; loamy; with inclusions of a pebble. Without
vegetation cover. Organic microparticles, which
supposedly were derived from aerosols,
were sampled on the glacier slope from the
locations of cryoconite soil like bodies.

10YR 5/2

King-George isl., Antarctica 3 Leptosol

The parent materials here are presented by
andesites, basalts, and tuffs; wet; loamy; ornitic.
Vegetation cover are presented by
Deschampsia Antarctica.

7.5 YR 4/2

Table 3. The basic chemical characteristic of study soil with ±SD.

Soil Group C, g·kg−1 N, g·kg−1 C/N pHH2O

Histic Cryosol 0.74 ± 0.03 0.11 ± 0.005 6.72 5.7
Cryoconite 2.80 ± 0.14 0.18 ± 0.009 15.55 5.2

Leptosol 1.01 ± 0.05 0.08 ± 0.004 12.625 4.9

2.4. 1H-13C (HETCOR) and 13C (CP/MAS) NMR Spectroscopy Methods

HAs were extracted from each sample according to a published IHSS protocol [45]. The soil or
cryoconite samples were treated with 0.1 M NaOH (soil/solution mass ratio of 1:10) under nitrogen gas.
After 24 h of shaking, the alkaline supernatant was separated from the soil residue by centrifugation at
1.516× g for 20 min and then acidified to pH 1 with 6 M HCl to precipitate the HAs. The supernatant,
which contained fulvic acids, was separated from the precipitate by centrifugation at 1.516× g for
15 min. The HAs were then dissolved in 0.1 M NaOH and shaken for 4 h under nitrogen gas before the
suspended solids were removed by centrifugation. The resulting supernatant was acidified again with
6 M HCl to pH 1, and the HAs were again isolated by centrifugation and demineralized by shaking
overnight in 0.1 M HCl/0.3 M HF (soil/solution ratio of 1:1). Next, the samples were repeatedly washed
with deionized water until pH 3 was reached, then freeze-dried. Solid-state CP/MAS 13C-NMR spectra
of HAs were measured with a Bruker Avance 500 NMR spectrometer in a 3.2-mm ZrO2 rotor. The magic
angle spinning speed was 20 kHz in all cases, and the nutation frequency for cross-polarization was
u1/2p 1/4 62.5 kHz. Repetition delay was 3 seconds. The number of scans was 6500–32,000. The contact
time used was 0.1–0.75 ms. Short contact time can provide more intense cross-peaks in short distance
(Alkil zone). By increasing contact time, we can obtain intense cross-peaks in long distance (Aromatic
zone and Carboxyl groups). Since the dipolar interaction in solids acts through space, correlation of
unprotonated carbons with nearby (nonbonded) protons is possible, identifying the environment of
those unprotonated groups; for instance, it can be determined whether COO groups are attached to
aliphatic or aromatic cores [30,32]. HAs extraction yields were calculated as the percentage of carbon
recovered from the original soil sample [46]. Elemental compositions of studied soils are presented
in Table 4.
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Table 4. Elemental compositions of the studied humic acids with ± SD.

Soil Group C, % H, % N, % O, % H/C O/C C/N

Histic Cryosol 36.1 ± 1.81 4.6 ± 0.23 5.5 ± 0.27 53.8 0.13 1.49 6.56
Cryoconite 44.1 ± 2.21 6.1 ± 0.31 4.9 ± 0.24 44.9 0.14 1.02 9.00

Leptosol 35.5 ± 1.77 4.4 ± 0.22 5.7 ± 0.28 54.4 0.12 1.53 6.23

Solid-state 2D dipolar HETCOR experiments were performed to correlate 13C and 1H chemical
shifts. This experiment is analogous to the wideline separation (WISE) experiment previously
described by Schmidt-Rohr et al., with the exception that it is performed at a higher MAS speed [29–31].
Two-dimensional C-H correlation spectra were obtained using the standard HETCOR technique [34]
with frequency switched Lee-Goldburg (FSLG) homonuclear dipolar decoupling at 13 kHz. All chemical
shifts are presented in ppm relative to TMS (tetramethylsilane). The deconvolution of the spectra
obtained was performed using the DMFIT software program [35].

Various molecular fragments were identified by CP/MAS 13C-NMR spectroscopy (Table 5),
including carboxyl (-COOR); carbonyl (–C=O); CH3-, CH2-, CH-aliphatic; -C-OR alcohols, esters,
and carbohydrates; phenolic (Ar-OH); quinone (Ar=O); and aromatic (Ar-). This indicates the great
complexity of the structure of HAs and the polyfunctional properties that cause their active participation
in soil processes [26].

Table 5. Chemical shifts of atoms of the 13C molecular fragments of humic acids.

Chemical Shift, ppm The Type of Molecular Fragments

0–46 C, H-substituted aliphatic fragments
46–60 Methoxy and O, N-substituted aliphatic fragments

60–110 Aliphatic fragments doubly substituted by heteroatoms (including
carbohydrate) and methine carbon of ethers and esters

110–160 C, H-substituted aromatic fragments; O, N-substituted aromatic fragments
160–185 Carboxyl groups, esters, amides, and their derivatives
185–200 Quinone groups; groups of aldehydes and ketones

3. Discussion of Results

The relative content of carbon atoms of the main structural fragments of HA was estimated by
integrating the absorption lines in the corresponding ranges of chemical shifts.

The chemical shifts are shown in Table 6.

Table 6. Percentage of carbon in the main structural fragments of humic acids from the studied
surface soil horizons (according to CP/MAS 13C-NMR data). Sample numbers correspond to Table 2;
AR—aromatic fraction; AL—aliphatic fraction; C,H-alkyl/O,N-alkyl—C, H-alkyl was summarized in
0–47 ppm, O, N-alkyl—in the range 47–60 and 60–105 ppm.

Sample
Chemical Shifts. ppm

AR AL AR/AL C,H-Alkyl/O,N-Alkyl
0–46 46–60 60–110 110–160 160–185 185–200

1 35 8 25 18 11 3 29 71 0.41 1.06
2 37 8 20 26 8 1 34 66 0.52 1.32
3 44 8 18 21 8 1 29 71 0.41 1.69

3.1. 13C-1H (HETCOR) and 13C (CP/MAS) NMR Spectroscopy of HAs Isolated from Soils of Yamal Peninsula

According to the 13C (CP/MAS) NMR spectroscopy, a significant amount of aliphatic fragments
accumulate in HAs of soils from the Yamal peninsula (Figure 2A). Our data are in line with previous
studies in the Arctic region [28,47–49]. The accumulation of C,H-substituted aliphatic fragments
leads to the conservation and accumulation of organic substances in the soils of Yamal peninsula.
The accumulation of oxygen-containing (-O-CH) fragments of HAs is also characteristic of Arctic
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soils, which is associated with better solubility in water, migration of organic acids along the profile,
and their accumulation at the permafrost table [28,49,50].
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and (C) 1H-13C (HETCOR) NMR with a contact time 0.75 ms.

The low content of aromatic fragments in the HAs indicates a low level of humification of organic
matter, which is associated with the condensation of low-molecular precursors of humification and
a low level of stabilization of organic matter [49]. The accumulation of aliphatic fragments is due to
the composition of organic residues entering the soil, moss-lichen tundra vegetation predominates
in the Yamal, which is more enriched in aliphatic compounds [27]. A high degree of hydrophobicity
of the region is associated with the low microbiological activity of soils, which reduces the rate
of transformation of organic residues in the soil and contributes to the accumulation of paraffin
fragments [46]. The ratio of C,H-alkyl to O,N-alkyl, which characterizes the degree of decomposition
of organic matter, is minimal for Yamal soils, which indicates a low degree of humification of organic
matter relative to the other studied soils.

To obtain additional information regarding the spatial bonds between different functional groups,
two-dimensional correlation spectra (2D HETCOR) with different contact times (0.1–0.75 ms) were
obtained. The obtained spectra allow the correlation of protons and attached carbons (H-C bound).
If either there is a direct C-H bond or the contact time is considerable, it is possible to observe
the cross-peaks of the carbons. Depending on the contact time, in these spectra, cross-peaks were
observed. In the short contact time spectrum (Figure 2B), we can observe a high degree of correlation
of the aliphatic zone of HAs (-CH; -CH2; -O-CH; -O-CH3) and low intensity of the aromatic zone of
HAs (AR-H, C).

For a contact time of 0.75 ms (Figure 2C), we can observe intense cross-peaks in aliphatic and
aromatic zones. In the alkyl-C,H zone, we observed cross peaks corresponding to fragments -CH-H,C,
and α-CH. Cross-peaks corresponding to -CH-O,N fragments are observed in the range from 50 to
80 ppm. For a contact time of 0.75 ms, there is a cross-peak corresponding to anomers and COO-H,C
fragments that were not visible in the short contact time spectrum (0.1 ms), indicating that the group is
not attached directly to the aromatic core [30].
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Thus, we observe a similar composition of HAs with 13C (CP/MAS) NMR spectroscopy. According
to the data obtained by the 2D HETCOR method, we see intense cross peaks corresponding to the
Alkyl zone of HAs and less intense corresponding to the aromatic zone. The data obtained indicate
a relativity high concentration of -O-CH group that may lead to high solubility of HAs in complex
with trace metals in water during their migration, along with the profile and conservation of organic
matter in the soils of Yamal.

3.2. 1H-13C (HETCOR) and 13C (CP/MAS) NMR Spectroscopy of HAs Isolated from Cryoconite of
Grønfjorden Area, Spitsbergen

HAs were isolated from cryocanite in the Aldegonda glacier region; aliphatic fragments
predominate in them, accounting for up to 66% of the total (Table 3), but the content of aromatic
fragments reaches 34%, which is more typical of the taiga zone [51,52]. In comparison with other
studied regions, the organic matter of cryocanites is more humified [24,51,52]. The specificity of
the accumulation of organic matter in cryocanites is associated with wind accumulation and water
redistribution of organic matter in glacier regions. The relatively high aromaticity of HAs could be
interpreted as a result of the strong alteration of transported organic matter in conditions of strong
insolation and absence of intensive organic precursors of humification accumulation in semi-isolated
micro-depressions. Moreover, that effect might be related to coal dust, for example, from the adjacent
coal mines of Barentsburg. The aromaticity of HAs indicates the stabilization of organic matter in
Svalbard cryocanites. According to the C, H-Alkyl to O, N-Alkyl ratio in Svalbard cryocanite, there is
a relatively high degree of decomposition of organic remnants relative to the organic horizons of Arctic
cryogenic soils, which is reflected in the relatively high degree of humification of the organic matter of
Svalbard cryocanites.

Spectra were obtained for HAs of cryocanites using the 1H-13C (HETCOR) NMR spectroscopy with
different contact times (0.1–0.75 ms). Depending on the contact time, in these spectra, cross-peaks were
observed. In the short contact time spectrum (Figure 3B), we can observe a high level of correlation of the
Alkyl zone and, to a lesser extent, the aromatic zone. In the aliphatic zone, long chains predominantly
accumulate with methylene (up to 20 ppm), peptides (-C(O)NH- groups up to 45 ppm), the highest
degree of correlation, amines (CN(H)-CH-) with 45–55 ppm, a large group of oxygen-containing
fragments, esters and ethers (-O-CH3) and (-O-CH) from 55 to 80 ppm, anomers (-O-CH-X), from 103 to
105 ppm, as well as a large aromatic zone (CARH) 110 to 135 ppm, H-substituted aromatic fragments.

For a contact time of 0.75 ms (Figure 3C), we can observe intense cross-peaks in the aliphatic
and aromatic zones. With increasing contact time on the spectra, single structural fragments become
more noticeable; at 0.1 ms, we can generally observe aliphatic and aromatic zones. Thus, a significant
amount of H-substituted aliphatic fragments (-C-CH3; -C-CH2) accumulates in the HAs of cryocanites.
With an increase in time, we observe a cross-peak in the region of methoxy fragments (CH3-O) from
4.2 to 5.8 ppm for 1Hδ. Only H-substituted aromatic fragments are present in the aromatic zone of HAs
(CARH), and O, N substituted aromatic fragments are absent. At a contact time of 0.75 ms, a cross-peak
appears in the –COO-H, C region, from 165 to 176 ppm 13Cδ. As in the Yamal spectra, the group
–COO-H,C was not visible in the short contact time spectrum (0.1 ms), indicating that the group is not
directly attached to the aromatic core.

According to the obtained data, 1H-13C (HETCOR) completely correlates with 13C (CP/MAS)
NMR peaks; there is an intense correlation of cross-peaks in the regions of aliphatic zones and lower in
aromatic ones, which indicates with relatively high rates of humification of organic matter in severe
Arctic climate.
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3.3. 1H-13C (HETCOR) and 13C (CP/MAS) NMR Spectroscopy of HAs Isolated from Soils of
King-George isl., Antarctica

HAs were isolated from the soils of King-George Island located in the maritime part of Antarctica.
Soil formation here is directly related to avifauna. The main source of organic carbon and nitrogen
is guano [14,18,53]. A significant amount of aliphatic HAs fragments accumulates in these soils,
accounting for up to 71%, while the content of aromatic fragments reaches 29%; the same ratio was
found for the soils of Yamal. From the data obtained, it can be concluded that the composition of the
HAs of the Arctic and Antarctic soils are highly homogeneous. At the same time, the composition
of the aliphatic group differs from Arctic soils; the proportion of oxygen-containing groups in the
Antarctic soil decreases, which leads to low migration rates of HAs along the soil profile and a low
degree of solubility of HAs in water, which might be associated with a low degree of hydromorphism
of the studied area. The accumulation of H-substituted aliphatic fragments is associated with the
composition of precursors of humification and the condensation of low molecular in HAs. This leads
to the conservation and storage of organic matter in the soil and a low degree of humification. This is
directly connected with restriction in such humification precursors as lignin-derived compounds.
According to the C,H-Alkyl to O, N-Alkyl ratio, the degree of decomposition of organic remnants
is the highest among the soils studied. We suppose that this is a result of the fact that birds use
mainly remnants of Deschampsia antarctica for nest building, which contain an increased portion of
phenyl-propanous organic precursors [6].

HAs spectra of soils were obtained by 1H-13C (HETCOR) NMR spectroscopy with different contact
times (0.2–0.75 ms). Depending on the contact time, in these spectra, cross-peaks were observed. In the
short contact time spectra (Figure 4B), we can observe an intense correlation of cross-peaks in the region
of the aliphatic group and less so in the aromatic zone. As part of the aliphatic group, H-substituted
aliphatic fragments (CH-H,C and α-CH) were detected in the range from 24 to 40 ppm, as well as
oxygen-containing functional groups (CH3-O; CH2-O, N; CH-O, N). Cross-peaks for the aromatic zone
are observed only in the range from 118 to 130 ppm.
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For a contact time of 0.75 ms (Figure 4C), as well as for the spectra described above, we observe
intense cross-peaks in the aliphatic region and the lowest intensity in the aromatic region. Functional
group COO-H,C also appears, which is not attached directly to the aromatic core.

HAs of soils of Antarctica mainly consist of low molecular chains of H-substituted aliphatic
fragments, which leads to the conservation of organic matter in the studied soils of Antarctica.

The use of modern instrumental methods such as one- and two-dimensional NMR spectroscopy is
a reliable way to study the molecular composition of HAs in soils. Our results about 13C (CP/MAS) NMR
spectroscopy are in agreement with previous studies [6,11,18,19,24,26–28,46,47,49]; the accumulation of
aliphatic compounds in HAs composition can be related to the activity and composition of microbiota,
hydrophobicity, and the composition of humification precursors [27,28,36,46,47]. Excessive moisture in
the areas of King George isl. and the Yamal Peninsula may be the main factor affecting the composition
of HAs in soils, as they limit the development of aerobic microorganisms in the soil and lead to the
formation of anaerobic communities [28,36,46]. This method allows you to calculate the integrated
signal intensities, as well as to separate the signals when they are imposed or at a high noise level.
However, the use of 1H-13C (HETCOR) NMR spectroscopy can complement the 13C (CP/MAS) NMR
spectroscopy method, thereby increasing the accuracy of detection of individual HAs fragments
in soils. At present, the use of 1H-13C (HETCOR) NMR has been performed mostly for kerogen
and polymers [29,30,32]. However, we were unable to find any works devoted to the study of
two-dimensional NMR spectroscopy of HAs of polar soils, so further studies using this method are
necessary to expand the database on the structure of HAs of polar soils.

4. Conclusions

Based on the analysis of a 1H-13C (HETCOR) and 13C (CP/MAS) NMR spectroscopy of HAs, it can
be concluded that:

• HAs of the polar regions as a whole have a similar structure; aliphatic fragments over aromatic
fragments prevail in their composition. HAs from cryoconite of Spitsbergen differ from typical
soils of the Arctic and Antarctic; up to 34% of aromatic structural fragments accumulate in its
composition, which is associated with the specifics of the formation of cryoconites on the Svalbard
archipelago. Condensation of low molecular HAs fragments in the soils of Yamal and Antarctica
was noted, which leads to the conservation of organic matter in these soils.
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• The use of two methods of NMR spectroscopy allowed for a more detailed study and analysis of
the composition of HAs in soils and cryoconites. Analysis of cross-peaks at different time contacts
allowed us to correlate H-C bonds and reveal the composition of the HAs.
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surface soil horizons in a non-glaciated catchment, SW Spitsbergen. Pol. Polar Res. 2016, 37, 49–66. [CrossRef]

53. Abakumov, E.; Trubetskoj, O.; Demin, D.; Trubetskaya, O. Electrophoretic evaluation of initial humification
in organic horizons of soils of western Antarctica. Polarforschung 2014, 83, 73–82.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1038/s41598-018-21682-6
http://www.ncbi.nlm.nih.gov/pubmed/29463846
http://dx.doi.org/10.5817/CPR2018-1-4
http://dx.doi.org/10.1016/j.scitotenv.2017.10.053
http://www.ncbi.nlm.nih.gov/pubmed/29751428
http://dx.doi.org/10.17223/19988591/47/1
http://www.ncbi.nlm.nih.gov/pubmed/27441094
http://dx.doi.org/10.1080/02757540.2010.497759
http://dx.doi.org/10.1515/popore-2017-0007
http://dx.doi.org/10.1016/j.catena.2017.04.024
http://dx.doi.org/10.1515/popore-2016-0006
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Area 
	Soils and Sampling Strategy and Procedure 
	Soil Basic Parametrs 
	1H-13C (HETCOR) and 13C (CP/MAS) NMR Spectroscopy Methods 

	Discussion of Results 
	13C-1H (HETCOR) and 13C (CP/MAS) NMR Spectroscopy of HAs Isolated from Soils of Yamal Peninsula 
	1H-13C (HETCOR) and 13C (CP/MAS) NMR Spectroscopy of HAs Isolated from Cryoconite of Grønfjorden Area, Spitsbergen 
	1H-13C (HETCOR) and 13C (CP/MAS) NMR Spectroscopy of HAs Isolated from Soils of King-George isl., Antarctica 

	Conclusions 
	References

