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Abstract: Mathematical models of different degrees of complexity, describing the motion of a snow
avalanche along a path with given center line and spatially varying width, are formulated and
compared. The most complete model integrates the balance equations for mass and momentum over
the cross-section and achieves closure through an entrainment function based on shock theory and
a modified Voellmy bed friction law where the Coulombic contribution to the bed shear stress is
limited by the shear strength of the snow cover. A simplified model results from integrating these
balance equations over the (time-dependent) length of the flow and postulating weak similarity of
the evolving avalanche shape. On path segments of constant inclination, it can be solved for the flow
depth and speed of the front in closed form in terms of the imaginary error function. Finally, the very
simplest model assumes constant flow height and length. On an inclined plane, the evolution of
flow depth and velocity predicted by the simplified model are close to those from the full model
without entrainment and with corresponding parameters, but the simplest model with constant flow
depth predicts much higher velocity values. If the friction coefficient is varied in the full model
with entrainment, there can be non-monotonous behavior due to the non-linear interplay between
entrainment and the limitation on the Coulomb friction.

Keywords: snow avalanches; mathematical models; snow entrainment; Voellmy and Grigorian
friction laws; hydraulic models; runout distance; analytic solutions

Editor’s foreword

The present paper was originally written in 1996 for the proceedings of a symposium held in Davos,
Switzerland, in late 1996, but that volume—and thus this paper—were never published due to circumstances
recounted in Section 1 of the Comment paper [1] written by the editor. In the editor’s opinion, it still contains
a host of valuable material that merits publication, but the manuscript needed to be edited to conform to the
standards of a refereed journal in 2019. Since the lead author died in 2015, he could not do this himself or
comment on the (substantial) changes made by the editor. Therefore, the original text and figures are reproduced
in Supplementary Materials Document (SMD) 1. In the original manuscript, all figures are contained in an
appendix, without captions. The most essential ones were inserted into the main text and given captions; SMD 2
contains the remaining figures. Besides the history of the paper, Reference [1] contains notes that relate to
references in the present paper and explain why certain changes were made or expand on points that may be
difficult to understand for readers not familiar with the earlier work of the pioneers of avalanche research in the
Soviet era. Four particular aspects of this paper—the value of analytic solutions, the modified friction law, the
entranment model, and the non-monotonicity of the flow behavior in the friction coefficients—are also briefly
discussed in [1].
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1. Introduction

The mathematical modeling of snow avalanche movement is a basic task when estimating and
predicting possible hazard parameters for given climatic and geographical conditions ([1], Note 1).
There are three main topics arising in the quantitative description of snow avalanches: (1) the physics
and mechanics of the snow cover on mountain slopes and its evolution in time, potentially culminating
in the release of a snow avalanche; (2) the motion of snow masses on mountain slopes; (3) the impact
of moving snow on obstacles and structures. The mathematical modeling of these processes requires
application of different approaches and methods based on suitably simplified descriptions of these
complicated phenomena. A comprehensive survey of essential progress in this field and an analysis
of necessary future research was given years ago in [2]. Since that time, many new results and
publications have appeared, but there is still need for more efficient and practically applicable methods
in this field.

The topic of the present work is to present the state-of-the-art in avalanche dynamics by discussing
mathematical models for evaluating the main parameters of snow avalanche motion at different
degrees of simplification with regard to physics content and mathematical formulation. Such a
suite of models is necessary and useful: In situations where one does not have detailed information
about the slope and the snow cover parameters, etc., one needs an instrument for quick, but rough
estimations. In contrast, a detailed quantitative description is desirable when this information is
available. In all cases, constructing a mathematical model of moving snow masses implies significant
simplification by introducing averages of dynamical quantities and effective values of physical and
mechanical properties of flowing snow and the underlying bed. Of course, the models need to be
tested—and improved if necessary—by comparing the simulation results to data collected from real
avalanche events.

The problems of snow cover evolution and snow flow impact are not touched upon here.
The mathematical model of snow avalanches presented here was developed at the Department of
Mechanics of Natural Processes at the Institute of Mechanics of Moscow State University.

2. The Full Model

The mathematical problem of modeling the release and movement of snow masses on a mountain
slope is rather complicated and ill-posed due to our lack of knowledge about the failure processes and
gradual fragmentation of snow in the early phase of an avalanche event, as well as corresponding
open questions about the mechanical interactions between the snow fragments and particles and the
underlying soil or rock bed. To a first approximation, which is ordinarily sufficient for practical needs,
we can consider a rough model that averages the main dynamical variables, in the flow direction over
a scale much larger than the typical bed roughness and over the full local cross-section of the flowing
snow mass.

Such a procedure leads to so-called hydraulic models, which are widely used in engineering
hydraulics and give adequate results for practical purposes. So, it is reasonable to hope that the
hydraulic approach will also be appropriate when modeling the dynamics of snow avalanches.

Following this approach, we shall use the “full” mathematical model [3] described by the
differential equations

∂u
∂t

+ u
∂u
∂S

= g sin ψ− ku2

R
sign(u)− L

2F
∂

∂S

(
aF2

L2

)
− f1 − f2, (1)

∂F
∂t

+
∂(uF)

∂S
= q, (2)

where sign(u) =


1, u > 0
0, u = 0
−1, u < 0

and a = g cos ψ + u2

r .
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In deriving the system of Equations (1) and (2), we have assumed that the snow masses move in
a channel with rectangular local cross-section that varies with the longitudinal coordinate along the
channel axis. The structure of (1) also applies if the geometry of the channel cross-section varies but is
prescribed as a function of the longitudinal coordinate. Here, t, S are the time and space coordinate
along the avalanche trajectory on the bed (see Figure 1); u(S, t), F(S, t) are the unknown values of the
S-component of snow velocity averaged over the full cross-section of the flow and the area of this
cross-section, respectively; L(S), ψ(S) are the local width of the cross-section and local inclination of the
channel axis; g is the gravity acceleration, a(S, u) is the projection of the full acceleration (gravitational
plus centrifugal) of the snow “particle” onto the direction normal to the bed. Recall that u is averaged
over the cross-section and along the S-coordinate with averaging scale larger than the depth of the
flow. k is the hydraulic resistance coefficient; R = FL/(L2 + 2F) is the so-called hydraulic radius, and
r is the curvature radius of the channel axis. The values of f1, f2, q are specified as follows. We follow
Grigorian [4] and Grigorian and Ostroumov [5] for the friction force f1 on the bed surface and adopt
the expression ([1], Note 2)

f1 =


µa
(

1 +
h
L

)
if τ1 ≡ µρah ≤ τ∗,

τ∗
ρh

(
1 +

2h
L
− τ∗

Lµρa

)
if τ1 > τ∗,

(3)

where µ is the Coulomb friction law coefficient, ρ is the density of the flowing snow, h is the local flow
depth, and τ∗ is the upper limit of the friction shear stress that appears in the modified friction law of
Grigorian [4], expressed as ([1], Note 3)

τ =

{
µpn if µpn ≤ τ∗,
τ∗ if µpn > τ∗,

(4)

with pn the normal pressure on the sliding surface.

Figure 1. Schematic representation of an avalanche flowing in a rectangular channel of variable width
L(S), with S the coordinate along the centerline of the path and ψ(S) the local slope angle.
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The quantities f2 and q relate to entrainment of the (non-moving) snow cover at the frontal surface
of moving snow. This process is difficult to model mathematically, and our approach is as follows.
We suppose that the entrainment rate, represented by q, depends on the load p exerted on the snow
cover by the moving snow. The kinematics of the erosion process are shown in Figure 2, where δ0 is
the thickness of the (erodible) snow cover, δ is its thickness in the zone where that snow is gradually
being entrained, and ω is the propagation velocity of the front where new snow is being eroded and
mixed into the moving snow mass. Using the momentum and mass conservation laws, we can write
([1], Note 4)

ωρ0 = (ω− v)ρ1, (5)

ωvρ0 =

{
p− p∗ if p > p∗,
0 if p ≤ p∗

(6)

where ρ0 and ρ1 are the densities of undisturbed new snow and eroded snow; ω and v are the
interface-normal velocity components of the erosion front and of avalanching snow particles, p∗ is the
strength of the snow cover, and p is the full pressure (hydrostatic plus dynamic) exerted on the bed
(new snow) surface. Furthermore, we shall consider the case ρ1 > ρ0.

Figure 2. Entrainment near the front of the avalanche. The interface between the snow cover (with
original depth δ0(S) and instantaneous depth δ(S, t)) and the flowing avalanche is regarded as a shock
front that propagates into the snow cover with normal velocity ω.

The relations (5) and (6) lead to

ω =

√
p− p∗

ρ0(1− ρ0/ρ1)
= σ

√
p− p∗

ρ0
, σ ≈ const., (7)

with the parameter σ characterizing the degree of snow compaction during the erosion process.
The pressure p is expressed by the relation

p = ρ
(

ah cos α + Cu2 sin α
)

, α = arctan
(

∂δ

∂S

)
, (8)

where h(S, t) and δ(S, t) are the local depth of moving snow and the local thickness of the erodible
snow cover, respectively; C is an empirical constant. Using (7), we get the expression

q =
ω

cos α

ρ0

ρ
L =


σL

ρ cos α

√
(p− p∗)ρ0 if p > p∗,

0 if p ≤ p∗,
(9)



Geosciences 2020, 10, 35 5 of 20

for the entrainment rate q. The average density ρ is assumed to differ from ρ1 in general. These
considerations also lead to the following expression for the force contribution f2 ([1], Note 5):

f2 =


qu
F

+ a
∂δ

∂S
if δ > 0,

0 if δ = 0,
(10)

where the condition δ = 0 means that the new-snow layer is completely eroded and entrained at a
certain distance behind the avalanche front.

An alternative expression for q can be derived by connecting the snow erosion rate to the shear
forces, leading to an empirical relation of the type

q = ξ
[
ρ
(

u2 − u2
∗

)]n
, ξ, n, u∗ = const.. (11)

This alternative formula can easily be implemented in the mathematical model, but we will not
discuss this in detail here.

Finally, we have the set of relations (1)–(3), (8)–(10), giving the closed mathematical formulation
of the model. Before they can be used to solve a given problem, it remains to formulate the initial and
boundary conditions.

The initial conditions are

u(S, 0) = u0(S), F(S, 0) = F0(S), δ(S, 0) = δ0(S), (12)

where the functions u0(S), F0(S), and δ0(S) are to be specified for each case under consideration.
The boundary conditions describe the motion of the front and the “tail” part of the snow flow.

Even though the moving snow mass not only has a sharp frontal boundary but also a tail moving
down the mountain side, we suppose that the latter boundary has limited importance for the dynamics
of the main snow mass. Therefore, we adopt a simpler scheme with the tail of the avalanche at rest.
In other words, we will set the tail boundary conditions as

u(S0, 0) = 0, F(S0, 0) = 0 (13)

where S0 is the (constant) coordinate of the avalanche tail.
The boundary conditions at the avalanche front are evident:

u(S f , t) = w, w =
dS f (t)

dt
, F(S f , t) = 0, δ(S f , t) = δ0(S f ), (14)

where S f (t) is the coordinate of the front—a function of t to be determined in the course of solving
the problem.

This completes the full mathematical formulation of the initial–boundary value problem of snow
avalanche dynamics.

Now we consider a special case of the problem where the channel is infinitely wide (L → ∞),
making the motion effectively two-dimensional, and the slope is devoid of erodible snow. Such a
simplification of the problem allows to obtain results in a form suitable for analysis and parametric
comparisons, which serve as guideposts in more complicated cases.

In this case, we have the differential equations

∂u
∂t

+ u
∂u
∂S

= g sin ψ− f sign(u)− ku2

R
sign(u)− 1

2h
∂(ah2)

∂S
, (15)

∂h
∂t

+
∂(uh)

∂S
= 0, (16)
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initial conditions
u(S, 0) = u0(S), h(S, 0) = h0(S), (17)

with S ∈ [S0, S f (0)], and the boundary conditions

u(S0, t) = 0, h(S0, t) = 0, (18)

u(S f (t), t) = w(t), h(S f (t), t) = 0. (19)

Here, again, t and S are the time and the space coordinate along the avalanche path (see Figure 3),
S f (t) is the coordinate of the avalanche front, etc.; h(S, t) is the local depth of the avalanche; u0(S),
h0(S) are the initial distributions of u(S, t) and h(S, t), respectively; f is the retarding acceleration
given by the relation

f =


µa if τ1 ≡ µρah < τ∗,
τ∗
ρh

if τ1 ≥ τ∗,
(20)

where again µ is the Coulomb friction coefficient, ρ is the density of flowing snow, and τ∗ is the upper
limit of the frictional stress τ on the bed surface, as specified in the modified friction law proposed
in [4]. In the mathematical formulation of the problem (15)–(20), the set of parameters ψ(S), u0(S),
h0(S), µ, k, ρ, τ∗, is assumed known. The function ψ(S) describes the geometry of the slope and is
known if the topography of the slope is available. The other quantities in this parameter set have to be
estimated from the mechanical properties of snow, which depend on climatic and geographical factors
and—in the case of u0(S) and h0(S)—on the probable and admissible initial distributions of u and h.

Figure 3. Downslope evolution of the avalanche flow from the initial condition with fracture depth
h0(S) from the crown at S0 to the stauchwall at S f (0) to intermediate configurations h(S, t) extending
from S0 to S f (t). The front propagates at the speed w(t).

The problem formulated in terms of the full model can usually only be solved numerically on a
computer ([1], Note 6). This is recommended for “precise” calculations when detailed information
about the input data (ψ(S), k, etc.) is available and the mathematical predictions are to be calculated as
exactly as possible. The formulation (15)–(20) provides the necessary tools for such work.

However, in many real cases, there is insufficient information available on ψ(S), µ, and other
input quantities. Moreover, one often needs a simpler mathematical instrument for estimates—either
an explicit formula or a simple computational procedure that can be applied without a powerful
computer. For such purposes, we can construct different classes of simplified models, and those
derivations are the topic of the following parts of this work.
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3. A Simplified Version of the Full Model

A possible simplification procedure, considered initially in [6], is as follows. On the right-hand
side of (1), we neglect the third and last term and rewrite the resulting equation in a Lagrangian
coordinate system as

S = S(ξ, t), u =
∂S
∂t

, (21)

where ξ is the Lagrangian coordinate. This transforms (1) into

1
2

∂u2

∂S
= g sin ψ− f sign(u). (22)

The second step of the simplification procedure introduces the integrated form of the mass
conservation law instead of its differential form (16). Integration of h(S, t) over the coordinate S leads
to the relation

F(t) =
∫ S f (t)

S0

h(S, t)dS = κHl = const. ≡ F0, (23)

where F0 = F(0), H = maxS(h(S, t)), and l = S f (t)− S0. κ is a parameter characterizing the“fullness”
of the graph of h(S, t). Now we make the crucial and plausible assumption that κ is constant
([1], Note 7). Of course, κ changes over time but, as will be demonstrated by comparing numerical
results obtained from the full and simplified models, the deviations of κ from a constant value are not
dramatic; therefore, this hypothesis looks acceptable for estimations.

To evaluate the model (21)–(23) with simple calculation tools, one can divide the avalanche path
into several segments, introducing the dividing points S0, S1, S2, . . . , SN so that changes of ψ(S) can
be neglected within each segment Si ≤ S ≤ Si+1. This allows us to integrate (22) over [Si, Si+1], where
we get the relation

u2(S) = u2(Si) + 2(S− Si)
[

g(sin ψ)i − f i

]
, (24)

where

(sin ψ)i =
1

Si+1 − Si

∫ Si+1

Si

sin ψ(S)dS, f i =
1

Si+1 − Si

∫ Si+1

Si

f (S)dS (25)

(we consider only the case u > 0, sign(u) = 1). To calculate the velocity u from (24), we need
information about h to evaluate (25). As calculations with the full model demonstrate, the important
unknowns of avalanche motion—velocity, depth, and runout distance—are mainly determined by
the flow properties in the zone near the coordinate with the maximum value of h. The full-model
calculations show that this region is closely attached to the avalanche front and that the Lagrangian
coordinate of the phase with h(S(ξ)) = maxS(h(S, t)) changes little over time. For this reason, we can
further simplify the calculations by supposing that this coordinate remains unchanged in time and
coincides with the Lagrangian coordinate of the avalanche front. All these considerations allow us to
use the value H = max(h) instead of h and calculate l by the relation

l = S− S0, (26)

substituting S for S f because S-coordinates in the dynamically most significant zone near the
cross-section with H ≈ max(h) are close to S f . In [6], values in the range κ ≈ 0.3–0.4 are recommended
in cases where the geometry of the slope changes smoothly with S.

Of course, to assess the accuracy of the simplified model presented here, one needs to compare
parallel calculations for the same problem using the full and the simplified model. This was done,
and the results are presented in the next section.
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4. Comparison of Computations with the Full and Simplified Models

The calculations with the full model were performed in a simple geometry with ψ = const.
On the interval [S0 = 0, S f (0) = 100 m], different initial distributions h0(S), u0(S) were prescribed,
and different combinations of the values of the parameters µ, k, ρ, τ∗, and ψ were tested. Table 1 details
the parameter values for the different variants. The basic variant was ψ = 30◦, µ = 0.5, k = 0.02,
ρ = 500 kg m−3, τ∗ = 10 kPa ([1], Note 8). h0(S) was prescribed as triangular or parabolic forms with
different values of H0; for u0(0), a uniform distribution was used (see Figure 4). Figure 5a presents the
distribution of h/H as a function of S in different stages of the motion. Figure 5b plots the evolution
of κ, H, w, and S∗/S f against S f , where S∗ is the S-coordinate of the point where h = max(h) = H.
All these data relate to the basic variant. Figures S2.1–S2.9 in SMD 2 illustrate analogous results for
other variants.

Table 1. The set of numerical values of the problem parameters for tested variants ([1], Note 8).

Variant µ k τ∗ ρ ψ U0 H0 Profile
N — — kPa kg m−3 ◦ m s−1 m h0(s)

1 0.5 0.02 10 500 30 10 1 parabola
2 0.5 0.02 10 500 30 1 10 parabola
3 0.5 0.02 10 500 30 10 10 triangle
4 0.5 0.02 10 500 30 10 1 triangle
5 0.5 0.02 10 500 30 10 1 parabola
6 0.5 0.02 10 500 30 10 60 triangle
7 0.5 0.02 10 500 46 1 10 parabola
8 0.25 0.02 10 500 30 1 10 parabola
9 0.5 0.06 10 500 30 1 10 parabola
10 0.5 0.02 2.5 500 30 1 10 parabola

Figure 4. Initial conditions for calculations with the full model: The release depth was chosen either
with a parabolic or a triangular longitudinal profile (left panel), whereas the initial velocity was
assumed uniform (right panel).

The common feature of the solutions for all the variants is their fast approach towards an
asymptotic form, independent of the initial distribution. The asymptotic distribution of h can be
described approximately by the relation h/H = (S/S f )

2, and H, w and S∗/S f become smooth and
slowly varying functions of t with S∗/S f → 1, κ → 0.36 for all the variants calculated.

Note that the asymptotic behavior of the solution emerges after the avalanche body has spread to
the point where H < h∗ ≡ τ∗/(ρaµ), so that the Coulomb friction law governs the entire avalanche
body. Before this stage, significant changes in κ and S∗/S f are visible, and the character of these
changes depends essentially on the initial data.

We can conclude that the asymptotic simplification of the flow structure with κ = const.,
S∗/S f = const. ≈ 1 will occur in cases with slowly changing slope geometry, and for this very case
the simplified model is acceptable for simple estimations. In Table 2, the results of calculations with
the full and simplified model are presented in terms of w and H as functions of S f . One can see
that the simplified theory gives acceptable accuracy for H and overestimates the values of the front
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velocity w. This last effect is mainly due to our neglecting the resistance term −ku2/h in the equation
of motion of the simplified model and indicates the necessity of improving the simplified theory. Such
an improvement will be presented in the following section.

Figure 5. Representative example (variant 1 in Tables 1 and 2) of simulation results from the full model
on an inclined plane (slope angle 30◦). The flow started with a parabolic shape with maximum
depth 1 m and a uniform initial velocity of 10 m s−1. The friction coefficients are µ = 0.5 and
k = 0.02, the density is ρ = 500 kg m−3 and the strength of the snow cover 10 kPa. (a) Evolution
of the longitudinal profile of the flow depth h, scaled by the instantaneous front positions, S f (in m),
and maximum depth H(S f ), of the flow. (b) Evolution of the relative position of the maximum flow
depth, S∗/S f , of the shape factor κ, the front velocity w and the maximum flow depth H with front
position S f .
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Table 2. The results of calculations with the full model (Section 2), the simplified model of Section 3
(formulas (23) and (24)), and the improved simplified model described in Section 5 (formulas (36), (39)
and (40)) are presented in terms of the flow depth H and the front velocity w as functions of the front
position S f . For the simplified models, the value of the shape factor was always chosen as κ = 0.36
([1], Note 9).

Variant S f H (m) w (m s−1)

N (m) Full Formula Full Formula Formula Formula Formula
Model (23) Model (24) (36) (40) (39)

100 1.000 1.00 1.00 1.00 (10.64) (7.8)
200 0.722 0.929 5.23 11.49 5.98 5.862 5.51

1 600 0.323 0.309 3.37 25.61 3.21 3.203 3.18
1000 0.200 0.185 2.60 34.35 2.60 2.469 2.47
1400 0.146 0.132 2.22 41.27 2.09 2.080 2.08

2

100 10.000 1.00 1.00 1.00 — (24.65)
200 4.733 9.290 18.48 25.64 23.45 — 17.43
400 2.900 3.620 13.50 36.39 21.13 14.62 12.32
600 1.973 3.090 8.46 39.83 10.96 10.78 10.07

1000 1.607 1.850 7.60 45.95 8.01 7.78 7.80
1400 1.272 1.320 6.64 51.35 6.68 6.67 6.59

7

100 10.00 18.52 1.0 1.00 1.00 — (58.17)
200 6.25 9.29 28.0 32.00 30.12 — 41.13
400 4.00 4.63 28.5 51.00 30.52 34.49 29.10
600 3.00 3.09 25.5 64.00 25.82 25.45 23.75

1000 2.20 1.85 21.2 84.14 18.88 18.84 18.38
1400 1.50 1.32 16.0 100.0 15.74 15.73 15.52
2000 1.00 0.93 14.0 120.0 13.09 13.08 13.01
2500 0.75 0.74 12.0 134.0 11.75 11.68 11.63

8

100 10.00 18.52 1.0 1.00 1.00 — (50.72)
200 4.8 9.29 21.5 25.64 21.60 — 35.86
400 3.5 4.63 23.5 42.10 26.60 30.07 25.36
600 2.9 3.09 21.6 53.67 22.51 22.18 20.69

1000 2.0 1.85 17.0 71.63 16.47 16.42 16.03
1400 1.7 1.54 14.7 78.83 14.89 14.88 14.63

9

100 10.00 18.52 1.0 1.00 1.00 — (14.23)
200 4.90 9.29 13.5 25.64 18.41 12.84 10.06
400 2.70 4.63 5.9 36.39 7.92 7.49 7.11
600 2.25 3.09 5.3 39.83 5.95 5.94 5.81

1000 1.65 1.85 4.8 45.95 4.54 4.54 4.50
2000 1.50 1.54 4.2 48.70 4.14 4.14 4.11

5. Improvement of the Simplified Model

Including in the momentum equation the collisional term −ku2/h and using all other simplifying
considerations introduced in the previous section, we get the relations

1
2

∂u2

∂S
= g sin ψ− f − ku2

H
, (27)

H =
Fo

κl
. (28)

Introducing the definitions

A ≡
{

2(g sin ψ− µa) if τ ≡ µρaH < τ∗,
2g sin ψ if τ ≥ τ∗,

(29)
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B ≡ 2kκ
F0

, (30)

D ≡

 0 if τ < τ∗,
2τ∗κ
ρF0

if τ ≥ τ∗,
(31)

we can rewrite (27) in the form
∂u2

∂S
= A− Bu2S− DS. (32)

The solution of (32) on the segments S ∈ [Si, Si+1] with initial condition

u(Si) = u0,i (33)

is given by the relation ([1], Note 10)

u(S) =

√
−D

B
+ A exp

(
−BS2

2

) ∫ S

Si

exp
(

Bx2

2
dx
)
+

(
u2

0,i +
D
B

)
exp

(
B
2
(S2

i − S2)

)
. (34)

When calculating the coefficients A, B, and D, one should use the average of ψ over the interval
[Si, Si+1].

Defining the function

Z(ξ) ≡ exp
(
−ξ2/2

) ∫ ξ

0
exp

(
x2/2

)
dx (35)

and setting ξ ≡ S
√

B, we get

u(S) =

√
−D

B
+

A√
B

Z(
√

BS) +
(

u2
0,i +

D
B
− A√

B
Z(
√

BSi)

)
exp

(
B
2
(S2

i − S2)

)
(36)

The graph of Z(ξ) is shown in Figure 6.

Figure 6. Plot of the function Z(ξ) defined in Equation (35).

Consider now the qualitative features of solutions of (32). Using a new variable y,

y = u2 + D/B, (37)

we have, instead of (32), the equation
y′ = A− BSy, (38)
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and as u2 = y− D/B ≥ 0, we will be interested only in solutions of (38) satisfying the conditions
y ≥ D/B ≥ 0.

On the y-S plane, the hyperbolas yS = γ = const. ([1], Note 11) are the isoclines of (38), i.e., the
lines along which y′ = const. On the hyperbolas

y =
A

BS
, (39)

we have y′ = 0, so all the solutions have extrema there (more precisley, these are maxima, for if
γ < A/B then y′ > 0 and at γ > A/B y′ < 0). As a result, we can visualize the integral curves of
Equation (38) as shown in Figure 7. Depending on the initial data, when S → ∞ an integral curve
tends to the hyperbola (39), yS = A/B, either monotonically or after some initial rise to a maximum
value of y. It can easily be shown that y′′ = 0 on the curve

y =
AS

BS2 − 1
(40)

and that, at any given point of (40) with coordinate S = S∗, a solution of (38) touches some hyperbola
yS = γ∗ depending on the initial data. For S > S∗, this solution becomes “captured” between the
curve (40) and the hyperbola yS = γ∗. This leads to simple estimates for large values of S:

A
BS

<
AS

BS2 − 1
< y <

γ∗
S

. (41)

On the basis of this improved model, a series of calculations have been performed with the
same parameter values as for the non-improved model, and the results are shown in Table 2,
illustrating the performance of the improved model compared to the “exact” results of the full model.
The correspondence between these two sets of results is very good over a wide range of the key
parameters of the problem. At large values of S, even the simplest relation (39) delivers estimations of
high accuracy. Note that all these calculations were performed for κ = 0.36. This value, thus, can be
recommended for practical use over a wide range of parameters.

Figure 7. Integral curves corresponding to solutions of Equation (38) together with the hyperbolas
y = A/(BS), on which the integral curves attain their maximum, y = γ∗/S and y = AS/(BS2 − 1),
on which the integral curves have their inflection point.
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6. The Simplest Model for Rough Estimations

In the literature, one can find many articles that use a very simple scheme for snow avalanche
dynamics. In this scheme, the avalanche is considered as a material point, neglecting the spatial extent
of the flowing snow mass and its changes in time. Here, we will consider the problem in this case and
establish what kind of assumptions are needed to derive such a model from the “exact” one. The main
differential equations of the material point model are as follows:

dS
du

= u, m
du
dt

= mg sin ψ− r, (42)

where m is the total mass, which is assumed to be constant, r is the resistance force between the moving
body and the underlying base surface, and other denotations are as before. We can write the relation

m = ρHlb, (43)

where ρ is the snow density (assumed constant), H, l, b are the height, length, and width of the
avalanche body, respectively. For the resistance r, we have

r = lbτ, (44)

where τ is the average frictional stress on the bed surface. So, we reduce (42)–(44) to

dS
dt

= u,
du
dt

= g sin ψ− τ

ρH
, (45)

and it is obvious that, to derive Equation (45) from the corresponding momentum Equation (1) of
the full model, we must neglect the term representing the gradient of normal force acting at the
cross-section of the avalanche body ([1], Note 12), (ρg/2F)∂F/∂S, and include the hydrodynamic
resistance term, −kρu2/R, in the expression for τ, if desired. Up to this point, there is no difference
between the simplified model of Section 3 and that under consideration here. Such a difference appears
when we look at the next simplification in this simplest point-mass model, which assumes the flow
depth H to be constant. As calculations with the full or simplified model reveal, H varies significantly
in the course of the avalanche propagation along the mountain slope. One may, nevertheless, hope
that it is admissible for rough estimations to use H = const.

Consider now the evaluation of the simplest model for several hypotheses about the bed shear
stress τ.

6.1. Solutions for the Coulomb and Voellmy Friction Laws

In point-mass model calculations ([1], Note 13), often the Coulomb friction law is used, with τ

expressed as
τ = µpn, pn = ρgH cos ψ, (46)

in which the hydrodynamic term (quadratic in u) is neglected. In this case, the problem is solved
by quadrature:

u2 = u2
0 + 2g

∫ S

S0

[sin ψ(ξ)− u cos ψ(ξ)]dξ, (47)

u0t =

∫ S

S0

dξ√
1 + 2g

u2
0

∫ ξ
S0
[sin ψ(ξ ′)− µ cos ψ(ξ ′)]dξ ′

, (48)

where S0, u0 are the initial position and velocity of the avalanche body.
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For a given slope geometry, the right-hand sides of (47) and (48) are known functions of S (as ψ(S)
is known). So, the numerical evaluation of these expressions reduces to rather simple calculations.
Note that if the slope is steep enough, i.e., sin ψ− µ cos ψ > 0, the avalanche motion will accelerate in
time. In the opposite case, the motion decelerates and even stops on the slope if the inclined part of the
trajectory is long enough.

To obtain explicit formulas for analyzing the avalanche behavior, we consider an avalanche
path consisting of two segments, the first inclined at an angle ψ1 = const. and the second horizontal
(ψ2 = 0). Using (47) and assuming u0 ≥ 0, we have ([1], Note 14)

u = u0

√
1 +

2g(S− S0)

u2
0

(sin ψ1 − µ cos ψ1). (49)

With l1 ≡ S1 − S0, where S1 is the coordinate of the end of the first slope segment, we get the
initial velocity in the second segment as

u1 = u0

√
1 +

2gl1
u2

0
(sin ψ1 − µ cos ψ1) . (50)

Using (47) in this segment with (50), instead of u0, and substituting ψ2 = 0, we have ([1], Note 15)

u2 = u2
1 − 2gµ(S− S1). (51)

In the second segment, the avalanche decelerates and completely stops at some distance S2. So,
for this distance, we have (substituting u = 0, S = S2 in (51))

l2 ≡ S2 − S1 =
u2

1
2gµ

. (52)

Note that this runout distance l2 does not depend at all on the avalanche size.
Using (50) and (52) and the definition of l1, we obtain the full runout distance L = S2 − S0 as ([1],

Note 16)

L = S2 − S0 =
u2

0
2gµ

+

(
1 +

sin ψ1

µ
− cos ψ1

)
l1. (53)

If sin ψ1 − µ cos ψ1 < 0, the avalanche may stop on the slope; in the opposite case, it runs out on
the horizontal path segment.

We can now easily extend this simplest model with a resistance term that is quadratic in the
velocity. In the inclined segment of the path, we have (assuming u0 ≥ 0) ([1], Note 17)

u =

√
gH
k

(sin ψ1 − µ cos ψ1) +

[
u2

0 +
gH
k

(sin ψ1 − µ cos ψ1)

]
exp

(
−2k

H
(S− S0)

)
, (54)

u1 =

√
gH
k

(sin ψ1 − µ cos ψ1) +

[
u2

0 +
gH
k

(sin ψ1 − µ cos ψ1)

]
exp

(
−2kl1

H

)
(55)

instead of (49) and (50).
On the horizontal path segment, we find

u =

√
−µgH

k
+

[
u2

1 +
µgH

k

]
exp

(
−2k

H
(S− S1)

)
. (56)
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So, if we set u = 0 here, we get

l2 ≡ S2 − S1 =
H
2k

ln

[
1 +

sin ψ1

µ
− cos ψ1 +

(
ku2

0
µgH

− sin ψ1

µ
+ cos ψ1

)
exp(−2kl1/H)

]

instead of (52).
Finally, we have for the full runout distance ([1], Notes 16 and 18)

L =
H
2k

ln

[
1 +

sin ψ1

µ
− cos ψ1 +

(
ku2

0
µgH

− sin ψ1

µ
+ cos ψ1

)
exp(−2kl1/H)

]
+ l1. (57)

When k→ 0, Equation (54)–(57) reduce to (49)–(53), as they should.

6.2. Solution with the Stress-Limited Friction Law

Consider now the case of very big avalanches for which the snow depth H almost everywhere in
the avalanche body exceeds the critical value H∗ = τ∗/(µρ cos ψ) beyond which the friction law τ =

τ∗ = const. is applicable instead of the Coulomb law ([1], Note 13). In this case, after integrating (44),
we have the following relations in the initial segment of the avalanche path:

u = u0 +

(
g sin ψ1 −

τ∗
ρH

)
t, S− S0 = u0t +

1
2

(
g sin ψ1 −

τ∗
ρH

)
t2. (58)

At the mountain foot, at S− S0 = S1 − S0 = l1, we have

t = t1, u = u1 = u0 +

(
g sin ψ1 −

τ∗
ρH

)
t1, l1 = u0t1 +

1
2

(
g sin ψ1 −

τ∗
ρH

)
t2
1, (59)

and

t1 =

√
u2

0 + 2
(

g sin ψ1 −
τ∗
ρH

)
l1 − u0

g sin ψ1 −
τ∗
ρH

,

u1 =

√
u2

0 + 2
(

g sin ψ1 −
τ∗
ρH

)
l1 .

(60)

For the second (horizontal) part, we have

u = u1 −
τ∗
ρH

t, S− S1 = u1t− τ∗
2ρH

t2, (61)

and at S− S1 = S2 − S1 = l2, where u = 0, we obtain

t = t2 =
ρHu1

τ∗
=

ρH
τ∗

√
u2

0 + 2
(

g sin ψ1 −
τ∗
ρH

)
l1 , (62)

l2 = u1t2 −
τ∗

2ρH
t2
2 =

ρH
2τ∗

(
u2

0 + 2gl1 sin ψ1

)
− l1. (63)

The full distance L = l1 + l2 is given by the formula ([1], Notes 16 and 19)

L =
ρH
2τ∗

(
u2

0 + 2gl1 sin ψ1

)
. (64)
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An important feature of the relations obtained in this case is their pronounced dependence on the
avalanche size H. The dependence of the runout distance L on H is particularly interesting: The bigger
(deeper) the avalanche is, the longer is its runout. In this respect, big avalanches governed by the
limited-stress friction law with τ = τ∗ = const. differ significantly from small avalanches governed by
the classic Coulomb law.

This conclusion is, of course, valid not only for the simplest model considered here but also for
the “exact” ones as it is a direct consequence of the physical difference between these two friction laws.
The restriction of the bed shear stress to the limiting value τ∗ leads to extremely high mobility of the
snow flow on the mountain slope and the horizontal plane, with a dramatic rise of runout distance
with increasing avalanche size.

It is also interesting to see how these results are modified when hydraulic resistance, represented
by the term −ku2/H, is included in Equation (44). In this case, integration over the initial path
segment gives

u2 = u2
∗ +

(
u2

0 − u2
∗

)
exp

[
−2k

H
(S− S0)

]
, u2

∗ ≡
H
k

(
g sin ψ1 −

τ∗
ρH

)
, (65)

u2
1 = u2

∗ +
(

u2
0 − u2

∗

)
exp

(
−2k

H
l1

)
, (66)

and in the second segment, one obtains ([1], Note 20)

u2 =
(

u2
∗∗ + u2

1

)
exp

[
−2k

H
(S− S1)

]
− u2

∗∗, u2
∗∗ ≡

τ∗
ρk

. (67)

For the runout distance S2 − S1 = l2, (67) and u(S2) = 0 lead to

l2 =
H
2k

ln

(
u2

1
u2∗∗

+ 1

)

=
H
2k

ln
{

1 +
ρH
τ∗

(
g sin ψ1 −

τ∗
ρH

)
+

ρk
τ∗

[
u2

0 −
H
k

(
g sin ψ1 −

τ∗
ρH

)]
exp

(
−2k

H
l1

)}
.

(68)

Taking the limit k→ 0 in (68), one retrieves (63).
The strong dependence of l2 on avalanche size H given by (68) is obvious, and all the conclusions

relating to the properties of big avalanches made above in the simplest case with k = 0 remain
valid. However, the hydraulic resistance term significantly modifies the relationships (63) and (64)
between runout distance and avalanche size H: They are no longer linear since Equation (68) contains
logarithmic and exponential terms. As a result, the runout l2 rises much more slowly with H than is
predicted by the linear relations (63) and (64).

Consider a numerical example with the following parameter values ([1], Note 8): k = 0.02;
τ∗ = 10 kPa; ρ = 500 kg m−3; µ = 0.5; sin ψ = 0.5; g = 10,m/s2; l1 = 1000 m; H = 5 m; u0 = 0.
The Coulomb friction law (53) gives l2/l1 = 0.137, l2 = 137 m. In the case of the limited-stress friction
law, the relation (63) gives l2/l1 = 0.25, l2 = 250 m. In this case, the lower limit on the flow depth
for the shear stress to be limited by τ∗ is H∗ = τ∗/(µρg) = 4.62 m. Thus, the value H = 5 m used in
the calculations is only slightly above H∗. This is why l2 for this friction law is only about twice the
value obtained with the Coulomb law. A value τ∗ = 5 kPa seems more adequate, in which case we get
H∗ = 2.3 m and l2/l1 = 1.5 with H = 5 m. One can see that, in this case, the runout l2 is one order of
magnitude longer than for the Coulomb law.

Consider now influence of hydraulic resistance on these numbers. Using the relation (56) for the
Coulomb law, we have ([1], Note 21)

l2/l1 ≈ −
H

2kl1
ln
(

1− sin ψ

µ
− cos ψ

)
≈ − ln[1− (1− 0.866)]

8
≈ 0.144

8
.
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From (68), we obtain (for τ∗ = 10 kPa)

l2/l1 ≈ −
H

2kl1
ln
[

1 +
ρgH

τ∗

(
sin ψ− τ∗

ρgH

)]
=

ln[1 + 0.25]
8

≈ 0.22
8

.

Reducing τ∗ to 5 kPa results in l2/l1 ≈ 0.92/8. These numbers show that the influence of the
quadratic resistance term is strong enough to reduce the runout distance significantly. In both cases,
the reduction of the runout distance due to the quadratic resistance seems to be highly overestimated
with k = 0.02 ([1], Note 22). The problem of how to adequately estimate the hydraulic part of the flow
resistance remains open and needs additional research.

7. Influence of Snow Entrainment on Avalanche Dynamics

We now return to numerical examination of the full model to see how entrainment of new snow
at the front of a propagating avalanche influences its dynamics. We have carried out a series of
computations with the full model for a simplified setting with a new-snow cover of constant thickness
of 1 m (measured perpendicular to the surface) on an inclined plane. Starting from the basic parameter
set µ = 0.25, k = 0.1, τ∗ = 4 kPa, p∗ = 4 kPa, C = 1, σ = 1, ρ = 300 kg m−3, and ρ0 = 300 kg m−3,
we systematically varied the parameters one by one, as shown in Table 3. Except for simulation
number 18 (Figure S2.14) with a parabolic, 40 m long and up to 4 m high head followed by a 0.2 m thin
tail, the avalanches started as 100 m long and 1 m deep slabs. Five selected simulations are presented
in Figure 8 and 9 in terms of the distributions of h and u at the instance when the front reaches the
point S = 500 m. Corresponding plots for the other simulations can be found in the Supplementary
Materials Document 2, Figures S2.10–S2.14.

Figure 8. Examples of simulations with the full model, showing the distributions of new-snow depth
and flow depth (full lines), and velocity (dashed lines) when the avalanche front reaches S f = 500 m.
Here, and in Figures 9 and S2.10–S2.14, the scale of the abscissa (S) is the same as for h and δ in the 10
m right behind the avalanche front, but strongly compressed for 0 m < S < 490 m. (a) Simulation with
basic parameter set (no. 1 in Table 3). (b) Same as (a), except for the flow density increased from 300 to
500 kg m−3 (case 2 in Table 3).

Depending on the combination of the values of the governing parameters, the avalanche behaves
according to one of two quite different regimes: One is characterized by intense new-snow entrainment
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in the frontal zone and the formation of a huge avalanche head. In the other regime, the avalanche
is unable to maintain new-snow erosion even if erosion had occurred in the starting zone, resulting
in a “weak” avalanche with a spreading body and decreasing velocity. It is very important to note
that the governing parameters (µ, k, etc.) determine in a non-monotonic fashion which of these two
flow regimes will be realized. As an example, Figure 9 illustrates how, for 0.4 ≤ µ ≤ 0.55, the end
values of the range lead to avalanche dynamics of the second, “weak” type, while the intermediate
value µ = 0.42 is associated with dynamics of the first, “strong” type! ([1], Note 23) This seemingly
strange dependence of the mathematical solution of the avalanche dynamics problem is, of course,
a consequence of the strong non-linearity of the modified friction law of Grigorian [4]. If the avalanche
flow depth is sufficiently small, so that τ < τ∗ everywhere and snow accumulation in the avalanche
body due to entrainment is weak, then the condition τ > τ∗ will never be fulfilled and the avalanche
dynamics remains “weak” at all times. If, in contrast, such mass accumulation does occur in some zone
(e.g., due to sharp changes in the cross-sectional area of the channel, locally large values of new-snow
depth, etc.) and the condition τ > τ∗ is met, the avalanche behavior changes in accordance with the
friction law, the avalanche “ignites” and becomes highly mobile. As a result, the output parameters
characterizing the avalanche motion (mean velocity, thickness, runout distance, etc.) depend on
the initial parameters in a stochastic and unpredictable way. From a mathematical point of view,
this feature of avalanche dynamics is the most interesting, and it is very important for our general
understanding of the avalanche problem.

Table 3. Parameter values of numerical simulations with the full model for investigating the influence
of entrainment on avalanche dynamics ([1], Notes 8 and 24). Figure numbers preceded by ‘S2’ refer to
the Supplementary Materials Document 2.

No. µ k τ∗ p∗ C σ ρ ρ0 Figure
— — kPa kPa — — kg m−3 kg m−3

1 0.25 0.1 4.0 4.0 1 1 300 300 Figure 8a
2 0.25 0.1 4.0 4.0 1 1 500 300 Figure 8b
3 0.25 0.1 4.0 4.0 0.7 1 300 300 Figure S2.10.a
4 0.25 0.1 4.0 4.0 0.1 1 300 300 Figure S2.10.b
5 0.25 0.1 1.5 4.0 1 1 300 300 Figure S2.10.c
6 0.25 0.1 0.5 4.0 1 1 300 300 Figure S2.10.d
7 0.25 0.1 4.0 6.5 1 1 300 300 Figure S2.11.a
8 0.25 0.1 4.0 4.5 1 1 300 300 Figure S2.11.b
9 0.25 0.1 4.0 0.5 1 1 300 300 Figure S2.11.c

10 0.25 0.1 4.0 4.0 1 1.3 300 300 Figure S2.12.a
11 0.30 0.1 4.0 4.0 1 1 300 300 Figure S2.12.b
12 0.10 0.1 4.0 4.0 1 1 300 300 Figure S2.12.c
13 0.55 0.1 4.0 4.0 1 1 300 300 Figure 9a
14 0.42 0.1 4.0 4.0 1 1 300 300 Figure 9b
15 0.40 0.1 4.0 4.0 1 1 300 300 Figure 9c
16 0.25 0.06 4.0 4.0 1 1 300 300 Figure S2.13.a
17 0.25 0.01 4.0 4.0 1 1 300 300 Figure S2.13.b
18 0.30 0.1 4.0 4.0 1 1 300 300 Figure S2.14
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Figure 9. Further examples of simulations with the full model (case 13–15 in Table 3), showing the
distributions of new-snow depth and flow depth (full lines), and velocity (dashed lines) when the
avalanche front reaches S f = 500 m. Note the change of horizontal scale at S = 490 m. (a) Slowly
moving, non-eroding avalanche with dry-friction coefficient µ = 0.55. (b) “Ignited” avalanche with
µ = 0.42. (c) With µ = 0.40, the avalanche behaves similarly as in the case µ = 0.55 (panel (a)).

8. Conclusions

On the one hand, the analytical and computational investigations presented here show that the
mathematical problem of quantitative description of snow avalanche dynamics is highly nonlinear and
that simple explicit solutions are difficult to obtain. On the other hand, there is a need for simple explicit
relations in practical applications. Unfortunately, this need cannot be satisfied to the desired degree
for only rough estimations are possible on the basis of very "finite" simplifications made with more
or less exact full models. The corresponding procedures are presented and illustrated by numerical
calculations in this paper.

One of the most important parameters for practical applications is the maximum runout
distance of avalanches at given geographical and climatic conditions. The maximum runout distance
corresponds to the most powerful and massive avalanches, in which case one can expect the details
of the full model not to be significant. A sufficiently accurate result can in this case presumably be
obtained from the simplified model or even from the simplest model described above.

A more difficult problem is quantitative description of the evolving and subsiding avalanche
motion, which depends on uncertain information relating to natural data (ψ(S), µ, ρ, τ∗, etc.),
and mathematical modeling of the process of snow entrainment into the avalanche body in the frontal
zone. The computational simulation of the avalanche dynamics made with the full model shows
that avalanche behavior is stochastic in some sense. Namely, depending on slight differences in the
initial data, the bed geometry, etc., mass velocities, depth distribution and other parameters of motion
exhibit finite differences and pulsating behavior as the avalanche propagates down the mountain slope.
This phenomenon is associated with the dual nature of the assumed bed resistance law: the transitions
between the Coulomb law and the τ∗-law are connected to changes in the flow-depth distribution H(S),
which in turn depends non-linearly on the resistance law. This stochasticity of avalanche dynamics
prevents a deterministic description of the full problem; instead, only the statistical characteristics of
the main avalanche parameters, as calculated by the (seemingly deterministic) full model, should be
evaluated and used in practice.
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Nevertheless, there is a program for improving the “exact” full model. It comprises tests of
various schemes of snow entrainment at the avalanche front and more adequate modeling of the
hydraulic or viscous parts of the resistance, as well as development of a complete software package
that integrates all the components of numerical flow simulation and parameter variation that are
needed to solve real-world problems. This work remains yet to be done.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3263/10/1/35/s1.
The original manuscript submitted by the authors in 1996, including an appendix with figures, is contained in
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