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The problem of mathematical modeling of snow avalanche movement is basic for estimations 

and predictions of possible hazard parameters for given climatic and geographical 

conditions. There are three main problems in the general problem of quantitative description 

of snow avalanche phenomenon:  

1) the problem of physics and mechanics of snow cover on the mountain slope and its 

evolution in time terminating by snow avalanche generation;  

2) the problem of snow masses motion over mountain slope;  

3) the problem of moving snow impact on obstacles and structures. 

The mathematical modeling of these processes requires application of different 

approaches and methods based on suitable schematizations of these complicated phenomena. 

A comprehensive survey of essential progress in this field with the analysis of the essence of 

necessary future investigations has been done years ago in Grigorian, 1974. Since that time 

many new results and publications appeared, but needs in more efficient and practically 

applicable efforts in this field yet are actual. 

The subject of this work concerns with the analysis of modern state of this problem and 

with the presentation of several mathematical models for evaluation of main parameters of 

snow avalanche motion at different degree of simplification in mathematical and physical 

schematizations. Such a ranging of models is necessary and useful due to the needs in an 

instrument for quick, but sometimes rough estimations, in conditions where we have not 

necessary massive (a set) of initial information about the subject of investigation (the slope 

and the snow cover parameters etc.), in one case, and for more detailed quantitative 

description in a case when such a full information is available. In any case, in the course of 

the mathematical model constructing we do significant simplifications in mathematical 

characterization of moving snow masses introducing some averaged parameters and effective 



 

values of physical-mechanical constants for flowing snow and for underlying bed. Of course, 

the adequacy of predictions by such a modeling should be established by comparison of 

obtained results with the observed data collected in natural conditions for given real 

geographical situation with possible subsequent corrections of model supporting by such 

data.  

The problems of snow cover evolution and of snow flow impact are not touched here. 

In the next parts of this work, the results of mathematical modeling of snow avalanches 

which has been done in the Department of Mechanics of Natural Processes at the Institute of 

Mechanics of the Moscow State University are presented and discussed. The work was 

fulfilled in the frame of contract with the Swiss Federal Institute for Snow and Avalanche 

Research, Davos.  
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Die Aufgabe der mathematischen Modellierung  fuer die Bewegung der Schneelawinen dient 

als Grundlage fuer die Bewertung und Weissagung der moeglichen Parameterwerte von der 

Lawinengefahr fuer gegebene klimatischen und geographischen Verhaeltnisse. Man 

unterscheidet drei Hauptaufgabn im Gesamtproblem der quantitativen Beschreibung des 

Lawinenschneesturzes: 

1)die Aufgabe der Physik und Mechanik fuer die Schneedecke auf den Berghaengen und 

ihre Evolution in der Zeit, die mit der Entstehung der Schneelavine beendet wird; 

2) die Aufgabe ueber die Bewegung der Schneemasse durch die Berghang; 

3) die Aufgabe ueber den Schlag des bewegenden Schnees an den Stoerungen und 

Anlagen. 

Die mathematische Modellierung dieser Prozesse fordert die Anwendung von 

verschiedenen Herangehen und Methoden, die auf der passenden Schematisierung dieser 

komplizierten Erscheinungen gegruendet werden. Der ausfuehrliche Bericht des bedeutenden 

Progresses auf diesem Gebiet wurde mit der Analyse des Wesens der notwendigen 

zukuenftigen Forschungen vor viele Jahren in der Arbeit von Grigorian, 1974 ausgefuehrt. 

Seitdem wurde eine Menge von den neuen Ergebnissen und Veroeffentlichungen erschiehen, 



 

aber das Beduerfnis nach den effektiven und praktisch verwendeten Ergebnissen wird auf 

diesem Gebiet wie vorher erhalten.  

Als Gegenstand der vorliegenden Arbeit dient diese Analyse des modernen Zustandes 

dieses Problems und die Vorstellung von einigen mathematischen Modellen fuer die 

Bewertung der Hauptparameter von der Schneelawinenbewegung mit verschiedener Stufe der 

Vereinfachung in der mathematischen und physischen Schematisierung. Solche 

Verschiedenartigkeit der Modelle ist notwendig und vorteilhaft fuer den Bedarf an dem 

Instrument fuer schnelle, aber manchmal grobe Bewertungen im Falle, wenn wir einerseits 

keine notwendige Anfangsinformation ueber den Forschungsobjekt (Parameter des 

Berghanges und der Schneedecke usw) haben und andererseits, wenn solche volle 

Information fuer die detaillierte quatitative Beschrebung zur Verfuegung gestellt wird. Auf 

jeden Fall, im Laufe der Ausarbeitung der mathematischen Modelle machen wir bedeutende 

Vereinfachungen in der mathematischen Beschreibung der bewegenden Schneemassen und 

fuehren einige Durchschnittsparameter und effektive Werte der physisch-mechanischen 

Konstante fuer den laufenden Schnee und die Unterbettungsflaeche ein. Selbstverstaendlich 

muss die Aehnlichkeit der Weissagungen solcher Modellierung durch die Vergleichungen der 

erhaltenen Ergebnisse mit den Beobachtungsdaten bewertet werden, die unter den 

Naturbedingungen fuer diese reale geographische Situation mit den moeglichen folgenden 

Vervollkommnungen der Modelle von gezeigten Daten gesammelt werden. 

Die Entwicklungsprobleme der Schneedecke und des Schlages der Schneelawine wird 

hier nicht beruehrt. 

In den nachfolgenden Teilen dieser Arbeit werden die Ergebnisse der mathematischen 

Modellierung fuer die Schneelawinen vorgestellt, die in der Abteilung fuer Mechanik der 

Naturprozesse des Institutes fuer Mechanik bei der Moskaueren Staatsuniversitaet erhalten 

wurden. Die Arbeit wurde in Rahmen des Kontraktes mit dem Schweizerischen Bundesinstitut 

fuer die Schnee- und Schneelawinenforschungen in Davos ausgefuehrt. 

 

Keywords: Schneelawine, mathematische Modelle, Prozess der Schneeergreifung, 

Reibungsgesetz, Distanz des Auswurfes.  

 

 

 



 

1. The full model 

 

The problem of quantitative mathematical modeling of initiation and movement of snow 

masses on a mountain slope is rather complicated and bad posed due to the uncertainties in 

character of breaking and gradual fragmenting of snow in the course of starting and 

developing of snow fall process, and corresponding uncertainties in possibility of deriving of 

relations governing the mechanical interactions between the snow fragments and particles and 

the underlying soil or rock bed. In the first approximation, which is ordinarily sufficient for 

practical needs, we can consider a rough model introducing an averaging procedure — 

averaging the main characteristics of snow flow over space coordinate along the path of 

avalanche with a scale of averaging much more than the geometrical characteristics of the bed 

roughnesses and averaging over full local cross-section of the flowing snow mass. 

Such a procedure leads to a so-called hydraulic model widely used in engineering 

hydraulics and giving sufficiently adequate results for practical purposes. So it is reasonable 

to hope that the hydraulic approach is also efficient in the case of mathematical modeling of 

snow avalanche dynamics.  

According to above mentioned scheme, we shall use the following "full" mathematical 

model [Grigorian, Ostroumov, 1977]. The differential equations 
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Deriving the system of equations (1.1), (1.2) we have accepted a geometry of the surface 

underlying the moving snow masses as a channel with rectangular local cross-section varying 

with the longitudinal coordinate along the channel axis (the same structure of (1.1) we have 

also in the case when the geometry of channel cross-section is different but prescribed as a 

function of longitudinal coordinate). Here t, S are the time and space coordinate along 

avalanche route on the bed (see Fig. 1.1); u(S,t), F(S,t) are unknown values of S-component of 

snow velocity averaged over full cross-section of flow and the area of this cross-section; L(S), 



 

ψ(S) are the local width of the cross-section and local inclination of the channel axis to the 

horizon; g is the gravity acceleration, a(S,u) is the projection of the full acceleration 

(gravitational plus centrifugal) of the snow "particle" (remember the averaging u over cross-

section and along S-coordinate with averaging scale much more than the depth of the flow) on 

the normal to the bed surface direction; k is hydraulic resistance coefficient; R = FL/(L2 +2F) 

is so called hydraulic radius, r — curvature radius of channel axis. The values of f1 , f2, q are 

specified as follows. According to [Grigorian, 1979; Grigorian, Ostroumov 1975], for the 

friction force f1 on the bed surface we have an expression 
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where µ is the Colomb friction law coefficient, ρ is the density of flowing snow, h is the local 

flow depth, τ∗ is the upper limit of friction force appearing in modification of friction law of 

Grigorian, 1979 expressed as  
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where pn  is the normal pressure on sliding surface.  

The values f2 , q relate to the process of capturing on the frontal surface of moving snow 

mass of the "fresh" snow being at rest on the slope. This process is difficult to model 

mathematically and our approach is as follows. We suppose that intensity of snow capturing 

representing by parameter q depends on the load p generating by moving snow on "fresh" 

snow. The scheme of the capturing process is shown on the Fig. 1.2. where h0 is the thickness 

of the "fresh" snow, δ — the thickness in the zone where that snow is gradually involving in 

motion, ω is the velocity of propagation of the front of "fresh" snow breaking and coming in 

moving snow mass. Using the momentum and mass conservation laws we can write 
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where ρ0 , ρ1 are the densities of "fresh" and broken snow; ω, v are normal velocities of 

breaking front propagation and broken snow particles, p∗ is the strength to breaking 

parameter, p is the full pressure (hydrostatic plus dynamic) on the bed ("fresh" snow) surface.  



 

Relations (1.4) lead to  
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with parameter σ characterizing the compacting of the snow during breaking process. The 

pressure p is represented by relation 
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where h and δ(S,t) are the local depth of moving snow and the local thickness of breaking 

snow cover, C is an empirical constant. Using (1.5) we get for mass source parameter q an 

expression 
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where average density ρ is proposed to be generally different from ρ1 . Above considerations 

lead also to the expression for force parameter f2   as follows 
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where condition δ = 0 means that "fresh" snow sheet is completely destroyed and involved in 

motion at certain location behind the avalanche front. 

Another expression for q can be derived by alternative consideration connecting the 

intensity of "fresh" snow cover erosion with shear forces giving the empirical relation of type  

                   ( )[ ] const -  , ,           , 22
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ξρξ                               (1.7a)  

but here we'll not discuss in details this alternative, which, of course, can be easily 

"implanted" in mathematical model. 

Finally we have the set of relations (1.1), (1.2), (1.3), (1.6), (1.7), (1.8), giving the 

closed mathematical formulation of the model. For completion of this formulation for certain 

problem, which is to be solved in figures, it remains to formulate the initial and boundary 

conditions for the model. 

The initial conditions are 

                             u(S,0) = u0 (S),    F(S,0) = F0 (S)                                       (1.9) 

where the functions u0 (S), F0 (S) are to be specified for concrete case under consideration. 



 

The boundary conditions relate to the frontal and the "tail" parts of the snow flow. 

Regardless to the "fact" that the moving snow mass has not only a frontal sharp boundary 

moving along the slope but also the rear front also moving down the mountain surface, we 

suppose that this last front is not so sharp and important for the dynamics of main snow mass 

and accept more simple scheme of being at rest the rear "front" of avalanche. In other words,  

we will use the "tail" boundary conditions as follows 

               u(S0 ,0) = 0,   F(S0 ,0) = 0                                           (1.10) 

where S0 is the coordinate (unchanged) of the back "front" of the avalanche.  

The boundary conditions at the avalanche front are evident: 
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where Sf (t) is the coordinate of the front — a function of t to be determined in the course of 

the problem solution. 

By this we complete the full mathematical formulation of the full initial-boundary value 

problem for snow avalanche dynamics mathematical modeling.  

Now we start to consider a special case of the problem corresponding to the infinitely 

wide channel (L ⇒ ∞) giving a two-dimensional picture of motion, and for a situation when 

the slope is free of "fresh" snow. Such a simplification of the problem allows to get results in 

clear and easy for analysis and parametric comparisons form and gives a means for 

orientation in more complicated cases.  

In such a specified case we have the differential equations 
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the initial conditions 

                      u(S ,0) = u0(S),     h(S ,0) = h0(S),    (S∈[S0  , Sf (0)])                        (1.14) 

and the boundary conditions 

                u(S0 ,t) = 0,    h(S0 ,t) = 0,                                          (1.15) 

u(Sf (t),t) = w(t),     h(Sf (t),t) = 0.                                    (1.16) 

Here t, S again are the time and the space coordinate along the avalanche route on the bed (see 

Fig.1.3), Sf (t) is the coordinate of the avalanche front and so on; h(S,t) is the local depth of 



 

the avalanche; u0(S), h0(S) are initial distributions of u(S,t) and h(S,t) respectively; f is the 

friction force parameter determined by the relation 

f
a ah

h
=

= <

≥







∗

∗
∗

µ τ µρ τ
τ
ρ

τ τ

,

,

        if     

                   if      1

1

                                            (1.17) 

where again µ is the Colomb's friction coefficient, ρ is the density of flowing snow, τ∗ is the 

upper limit for friction stress τ on the bed surface appeared in the modified friction law 

proposed in Grigorian, 1979. In the mathematical formulation of the problem (1.12)-(1.17), 

the set of values ψ(S), u0(S), h0(S), µ, k, ρ, τ∗,  is proposed known. The function ψ(S) 

describes the geometry of the slope and, in principle, is known if the topography of the slope 

is available. The other values in this set are to be specified by the reasonable estimations of 

the mechanical properties of snow mass, depending on climatic and geographical factors and, 

for u0(S) and     h0(S) — on the probable and "possible" initial distributions of u and h values. 

The problem formulated in terms of full model allows to get the solution, generally 

speaking, only by numerical methods using the computer modeling. This is recommended for 

"precise" calculations when detailed information about necessary data (ψ(S), k, etc.) is 

available and mathematical predictions are to be calculated as "exact" as possible. The 

formulation (1.12)-(1.17) gives necessary tool for such a work.  

However in many real cases there are no definite information related to ψ(S), µ and 

other necessary data. On the other hand, one often needs a more simple mathematical 

instrument for estimations by an explicit formula or by simple computations without "heavy" 

computer modeling. For such purposes, we can construct different kind of simplified models 

which derivation is the content of the following parts of this work.  

 

 

2. The simplified version of the full model 

 

The possible procedure of simplification considered initially in Grigorian, Ostroumov, 

Stacheiko, 1979 is as follows. In the right hand side of (1.1) we neglect the two last terms and 

rewrite the resulting equation in Lagrangian coordinate system to have 
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where ξ is Lagrangian coordinate. As a result instead of (1.1) one has 
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The second step of the simplification procedure consists of introduction of integrated 

form of the mass conservation law instead of differential form (1.13). An integration of h(S,t) 

over coordinate S  leads to the relation 
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where F0 = F(0), H = maxS(h(S,t)),  l = Sf (t) − S0 and κ is a parameter characterizing the 

"fullness" of the graph of  h(S,t). Now we accept an important and "responsible" hypotheses 

of constancy of the κ parameter. Of course, κ changes in time, but as it will be demonstrated 

by comparison of numerical results obtained on the basis of the full and simplified models, 

the deviations of κ from a constant value are not dramatic and therefore this hypothesis looks 

acceptable for estimations.  

To evaluate the model (2.1)-(2.3) by simple calculating means one can divide the 

avalanche path on several intervals introducing dividing points S0 , S1 , S2 ,...,SN with 

negligible change in ψ(S) within an interval Si  ≤ S ≤ Si+1 . This allows to integrate (2.2) over 

[Si ,Si+1] and to get the relation 
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(we consider only the case u>0, sign(u)=1). To calculate velocity u by (2.4), we need an 

information about h to calculate ( ) if  by (2.5). As it is demonstrated by the results of full 

model calculations, the main important unknown parameters of avalanche — velocity, depth 

and runout distance are mainly determined by the parameters in the flow zone near the 

coordinate with the maximal value of h. The full model calculations show that this region is 

closely attached to the avalanche front and the Lagrangian coordinate of the phase with h = 

max(h) is slightly changing with time. By this reason we can suppose for further 

simplification of calculations that this coordinate remains unchanged in time and coincides 



 

with the Lagrangian coordinate of the avalanche front. All this considerations allow us to use 

the value H = max(h) instead of h when calculating ( ) if , and calculate l by the relation 

                                         l = S − S0                                                           (2.6) 

substituting S instead of Sf  because S-coordinates in the significant for all dynamics zone near 

the cross-section with  H ≅ max(h) are close to Sf.. In Grigorian, Ostroumov, Stacheiko, 1979 

the value κ ≅ 0.3÷0.4 is recommended for parameter κ in the case when geometry of slope is 

changed smoothly with  S.  

Of course to have an impression relating to the accuracy and approximating ability of 

simplified model presented here one needs to make parallel calculations for the same problem 

using full and simplified models and compare the results. Such a work has been done and the 

results obtained are presented in the next part.  

 

 

3. Comparison of the computations by the full and simplified models 

 

The calculations for the full model were performed for simple geometry with ψ = const. At 

the initial interval of the slope S0 = 0, Sf(0) = 100 m different distributions h0(S), u0(S) were 

prescribed, as well as different combinations of the values of parameters µ, k, ρ, τ∗, ψ also 

were tested. The basic variant was with  ψ = 300 , µ = 0.5, k = 0.02, ρ = 50 kg⋅s2 /m4 , τ∗ = 

1000 kg/m2 . The h0 (S) was taken in triangular and parabolic forms with variable value of H0; 

for  u0 (0) a uniform distribution was used (see Fig. 3.1). On the Fig. 3.2a the calculated by 

full model distribution of h/H over S at subsequent instants of motion are presented. On the 

Fig. 3.2b the distributions over Sf  (corresponding to different time t) of  κ, H, w, S∗ /Sf , where 

S∗ is the S-coordinate of the point where h = max(h) = H, are presented. All these data relate 

to the basic variant. Fig. 3.3-3.11 illustrate analogous results for other variants calculated. 

 

 

 

Tab. 3.1: The set of numerical values of the problem parameters for tested variants. 
 

Variant 
N 

 
µ 

 
k τ 

kg/m2 
ρ 

kg·s2 
ψ 

grad 
Uo 
m/s 

Ho 
m Profile ho(s) 



 

m4 
1 0.5 0.02 1000 50 30 10 1 parabola 
2 0.5 0.02 1000 50 30 1 10 parabola 
3 0.5 0.02 1000 50 30 10 10 triangle 
4 0.5 0.02 1000 50 30 10 1 triangle 
5 0.5 0.02 1000 50 30 10 1 parabola 
6 0.5 0.02 1000 50 30 10 60 triangle 
7 0.5 0.02 1000 50 46 1 10 parabola 
8 0.25 0.02 1000 50 30 1 10 parabola 
9 0.5 0.06 1000 50 30 1 10 parabola 
10 0.5 0.02 250 50 30 1 10 parabola 

 

 

Tab 3.2: The results of calculations by full and simplified theories are presented in terms of w 

and H as functions of Sf. 

                                                          ( κ = 0.36 )                              

                   w                H 
         Variant 
             N 

           Sf 
 

   full 
 model 

formula          
    (2.4) 

   full 
  model 

 formula 
   (2.3) 

               
 
               1 
 
 

          100 
          200 
          600 
         1000 
         1400  

     1.00 
     5.23 
     3.37 
     2.60 
     2.22 

      1.00 
    11.49 
    25.61 
    34.35 
    41.27 

    1.000 
    0.722 
    0.323 
    0.200 
    0.146 

 
   0.929 
   0.309 
   0.185 
   0.132 

 
 
               2 
 
 

           100 
           200 
           400 
           600 
         1000 
         1400 

     1.00 
   18.48 
   13.50 
     8.46 
     7.60 
     6.64 

      1.00 
    25.64 
    36.39 
    39.83 
    45.95 
    51.35 

    10.00 
    4.733 
    2.900 
    1.973 
    1.607 
    1.272 

    
   9.290 
   3.620 
   3.090 
   1.850 
   1.320 

 
 
 
               7 
 
 

           100 
           200 
           400 
           600 
         1000 
         1400 
         2000 
          2500 

       1.0 
     28.0 
     28.5 
     25.5 
     21.2 
     16.0 
     14.0 
     12.0 

      1.00 
    32.00 
    51.00 
    64.00 
    84.14 
    100.0 
    120.0 
    134.0 

    10.00 
      6.25 
      4.00 
      3.00 
      2.20 
      1.50 
      1.00 
      0.75 

   18.52 
     9.29 
     4.63 
     3.09 
     1.85 
     1.32 
     0.93 
     0.74 

 
 
 

           100 
           200 
           400 

    1.00 
    21.5 
    23.5 

      1.00 
    25.64 
    42.10 

    10.00 
        4.8 
        3.5 

   18.52 
     9.29 
     4.63 



 

                 8 
 
 

           600 
         1000 
         1400 

    21.6 
    17.0 
    14.7 

    53.67 
    71.63 
    78.83 

        2.9 
        2.0 
        1.7 

     3.09 
     1.85 
     1.54 

 
 
                  9 
 
 
 

           100 
           200 
           400 
           600 
         1000 
         2000 

    1.00 
    13.5 
      5.9 
      5.3 
      4.8 
      4.2 

      1.00 
    25.64 
    36.39 
    39.83 
    45.95 
    48.70 

     10.00 
       4.90 
       2.70 
       2.25 
       1.65 
       1.50 

   18.52 
     9.29 
     4.63 
     3.09 
     1.85 
     1.54 

 
 

The Table 3.1 indicates the correspondence between the variant's number and values of 

parameters. The general feature of the solution for all the variants consists in fast 

transformation of the solution into asymptotic form independent of initial distribution. 

Asymptotic distribution of h approximately can be described by the relation h/H = 

(S/Sf)2 and the values of H, w, S*/Sf  become smooth and slowly varying functions of t with 

S*/Sf ⇒1, κ⇒0.36 for all the variants calculated.  

Note that asymptotic behavior of the solution appears after "spreading" of avalanche 

body with H<h* =τ*/(ρaµ), or, in other words, when Colomb friction law governs all the 

avalanche parts. Before this stage significant changes in κ, S*/Sf are visible and character of 

these changes depends essentially on initial data.  

As a conclusion we can mention that the flow asymptotical simplification with κ=const, 

S*/Sf =const≅ 1 will appear in cases with slowly changing slope geometry and for this very 

case the simplified model is acceptable for simple estimations. In the table 3.2 the results of 

calculations by full and simplified theories are presented in terms of w and H as functions of 

Sf. One can see that the simplified theory gives acceptable accuracy for H and overestimates 

the  

values of velocity w. This last effect is mainly due to the neglecting of resistance term 

−ku2 /h in the momentum equation in simplified model and indicates on necessity of 

improvement of simplified theory. Such an improvement is presented in the next part.  

 

 

4. Improvement of simplified model 

 



 

Including in the momentum equation the inertial term −ku2/h and using all other simplifying 

considerations of previous part we get the relations 
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we can rewrite (4.1) in the form 

                                           ∂
∂
u
S

A Bu S DS
2

2= − −                                                         (4.6) 

The solution of (4.6) on the intervals S∈[Si ,Si +1] with initial condition 

                                                   u (Si ) = u0i                                                         (4.7) 

is given by the relation 
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where  in  calculations  of A, B, D one should use the average of ψ over the interval     [Si ,Si +1 

].  

Denoting by definition 

                                     ( ) ( ) ( )Z x xξ ξ
ξ

≡ − ∫exp exp d2 2

0

2 2                                       (4.9) 

with ξ = S B  we get 
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The graph of Z(ξ) is shown on Fig. 4.1. 

Consider now the qualitative features of solutions of (4.6). Using a new variable y: 



 

                                                       y = u2 + D/B                                                      (4.11) 

we have instead of (4.6) the equation 

                                                y' = A − BSy                                                      (4.12) 

and as u2 = y − D/B ≥ 0 we will be interested only in solutions of (4.12) satisfying the 

conditions y ≥ D/B ≥ 0. 

On the y,S plane the hyperbolas yS = γ = const are the isoclines of (4.12) where y' = 

const. On the hyperbolas γS = A/B we have y’ = 0 so all the solutions have there extremes 

(maxima, for if γ <A/B then y' > 0 and at γ >A/B  y' < 0). As a result we can imagine a picture 

of equation (4.12) integral curves distribution, shown on Fig. 4.2. Depending on initial data 

an integral curve tends (when S → ∞) to hyperbola 

     y = A/BS                                                        (4.13) 

monotonically or after some initial rise to maximum of y with subsequent tending to (4.13) as  

S → ∞. It can be easily shown that at the curve 

                                                            y AS
BS

=
−2 1

                                                    (4.14) 

we have y"= 0 and at any given point of (4.14) with coordinate S = S∗ a solution of (4.12) 

touches some hyperbola yS = γ∗ depending on initial data and for S > S∗ the solution becomes 

"captured" between the curve (4.14) and hyperbola  yS = γ∗. This leads to simple estimations 

for large values of S as follows 

                                               A
BS

AS
BS

y
S

<
−

< <2 1
γ *                                              (4.15) 

On the basis of this improved model a series of calculations have been performed with 

the same numerical examples as for non-improved model and the results are shown in Table 

4.1, illustrating the work (the performance) of improved model when compared with "exact" 

results of the full model. One can conclude that correspondence between these sets of results 

is very good in a wide range of main parameters of the problem. At large values of S, even 

simplest relation (4.13) delivers high accuracy of estimations. Note that all these calculations 

were performed for value of κ = 0.36. So this figure can be recommended for practical needs 

over wide range of parameters. 

 

 



 

Tab. 4.1 (κ = 0.36) 

 

Variant 
    N 

Sf w 
                

  
 

   full 
 model 

formula          
    (4.10) 

   full 
(4.14) 

 formula 
   (4.13) 

               
 

 1 
 
 

     100 
     200 
     600 
   1000 
   1400  

     1.00 
     5.23 
     3.37 
     2.60 
     2.22 

      1.00 
      5.98 
      3.21 
      2.60 
      2.09 

  (10.64) 
   5.862 
   3.203 
   2.469 
   2.080 

  (7.8) 
   5.51 
   3.18 
   2.47 
   2.08 

 
 

 2 
 
 

     100 
     200 
     400 
     600 
   1000 
   1400 

     1.00 
   18.48 
   13.50 
     8.46 
     7.60 
     6.64 

      1.00 
    23.45 
    21.13 
    10.96 
       8.01 
      6.68 

- 
- 

    14.62 
    10.78 
      7.78 
       6.67 

  (24.65) 
   17.43 
   12.32 
   10.07 
   7.80 
   6.59 

 
 
 
7 
 

     100 
     200 
     400 
     600 
   1000 
   1400 
   2000 
   2500 

       1.0 
     28.0 
     28.5 
     25.5 
     21.2 
     16.0 
     14.0 
     12.0 

      1.00 
    30.12 
    30.52 
    25.82 
    18.88 
    15.74 
    13.09 
    11.75 

- 
- 

      34.49 
      25.45 
      18.84 
      15.73 
      13.08 
      11.68 

     (58.17) 
     41.13 
     29.10 
     23.75 
     18.38 
     15.52 
     13.01 
     11.63 

 
 
8 
 
 
 

     100 
     200 
     400 
     600 
   1000 
   1400 

    1.00 
    21.5 
    23.5 
    21.6 
    17.0 
    14.7 

      1.00 
    21.60 
    26.60 
    22.51 
    16.47 
    14.89 

  - 
 - 

  30.07 
  22.18 
  16.42 
   14.88 

     (50.72) 
     35.86 
     25.36 
     20.69 
     16.03 
     14.63 

 
 
9 
 
 
 

     100 
     200 
     400 
     600 
   1000 
   2000 

    1.00 
    13.5 
      5.9 
      5.3 
      4.8 
      4.2 

      1.00 
    18.41 
    7.92 
    5.95 
    4.54 
    4.14 

   - 
       12.84 
       7.49 
       5.94 
       4.54 
       4.14 

    (14.23) 
     10.06 
     7.11 
     5.81 
     4.50 
     4.11 

 

 

5. The simplest model for rough estimations 

 

In the literature one can find many articles where very simple scheme for snow avalanche 

dynamics is used. In this scheme, the avalanche is considered as a material point neglecting 



 

spatial dimensions of flowing snow mass and changes in time of these dimensions. Here we 

will consider the problem in this case and establish what kind of hypotheses we should accept 

to derive such a model from "exact" one. The main differential equations of material point 

model are as follows 

                                            dS
dt

u= ,  m
du
dt mg r= ⋅ −sinψ                                        (5.1) 

where m is the "point's" mass proposed to be constant, r is resistance force — force of 

interaction between moving body and underlying base surface, other denotations are as 

before. We can write a relation 

                                                              m Hlb= ρ                                                          (5.2) 

where ρ is the snow density, supposed (assumed) constant, H, l, b are the height, length and 

width of the avalanche body respectively. For the resistance r we have 

                                                                 r lb= τ                                                                      (5.3) 

where τ is average specific frictional stress on the bed surface. So we reduce (5.1)-(5.3) to 

                       dS
dt

u= ,                 du
dt

g H= ⋅ −sinψ τ ρ                                    (5.4) 

and it is obvious that to derive equation (5.4) from corresponding momentum equation of the 

full model (1.1) we must neglect the term representing the gradient of normal force acting at 

the cross-section of the avalanche body, the term (ρg/2F)·∂F/∂S, and include (or not) the 

hydrodynamic resistance term — the term −kρu2 /R, in an expression for τ. Till now there is 

no difference between simplified model of part 2 and that under consideration here. Such a 

difference appears when we look at the next simplification in this simplest "point-mass" 

model supposing constancy of the parameter H. As it is visible from the results of calculations 

by the full or simplified models, the parameter H varies significantly in the course of the 

avalanche propagation along the mountain slope. Nevertheless one can hope that for rough 

estimations, it is possible to apply the simplest "effective" value for H = const.  

Consider now the evaluation of simplest model for several hypothesis about resistance 

force τ.  

5.1. Often in the point-mass model calculations the Colomb friction law is used leading 

to the expression for τ as follows 

                                            τ µ= pn ,         p gHn = ⋅ρ ψcos                                                (5.5) 



 

and the hydrodynamic (quadratic in u) term neglected. In this case, the problem allows the 

solution in quadratures 

( ) ( )[ ]u u g d
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S
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                                    (5.7) 

where S0 , u0 are the initial position and velocity of the avalanche body. 

For given geometry of slope the right hand sides of (5.6), (5.7) are known functions of S 

(as ψ(S) is known). So the numerical evaluation of these expressions are reduced to rather 

simple calculations. Note that if the slope is steep enough, i.e. sinψ −µ·cosψ > 0, the 

avalanche motion will accelerate in time. In opposite case the motion decelerates and even 

stops on the slope if the length of the path on the inclined part of the trajectory is long 

enough. 

To have explicit formula and be able to make clear analysis of the avalanche behavior 

in qualitative and quantitative manner, we suppose that the avalanche path consists of two 

parts: the first inclined to the horizon with ψ = const and the second horizontal one. Using 

(5.6) we have 

                      ( )( )( )u u g S S u= ⋅ + ⋅ − ⋅ −0 0 0
21 2 sin cos ( )ψ ξ µ ψ ξ                          (5.8) 

and denoting l1 = S1 −S0 , where S1 is the coordinate of the end of the first part of the slope, 

we get for initial velocity for the second part an expression 

                                     ( )( )u u g l u1 0 1 0
21 2= ⋅ + ⋅ − ⋅ ⋅sin сos ( )ψ ξ µ ψ ξ                          (5.9) 

Using (5.6) for that part with (5.9) instead of u0  and substituting ψ = 0 we have 

                                       ( )u u g S S= − ⋅ −1 12 µ                                              (5.10) 

At the second part of the path the motion is decelerating and at some distance S2 it decays 

completely. So for this distance we have (putting u = 0, S = S2 into (5.10)) 

                                       l S S
u
g2 2 1
1
2

2
= − =

µ
                                              (5.11) 

Note that this runout distance l2 does not depend at all on avalanche size. 



 

Using (5.9), (5.11) and the definition of l1 we have for full runout distance L = S2 −S0 an 

expression 

                           ( )[ ]L S S
u
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l= − = + + − ⋅2
0
2

12
1o µ

ψ µ ψsin cos                           (5.12) 

If (sinψ −µ·cosψ) < 0 the avalanche stops on the slope, otherwise a definite runout distance 

on horizontal part will occur. 

We can now easily take into account the influence of quadratic in velocity resistance 

term in this simplest model to have: 

for initial part of the path  
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instead of (5.8), (5.9); 

for horizontal part of the path 
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so if we put u = 0 here we get for l2  = S2 − S1 

( )[ ] ( )
l S S

H
k

ku
gH

kl H2 2 1
0
2

1

1

2
1 2 1= − = ⋅ − + − − ⋅

−








−

ln exp
sin cos

µ
ψ µ ψ

µ
 

instead of (5.11). 

Finally we have for full runout distance        
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Of course when k→0 the (5.13)-(5.16) transforms into (5.8)-(5.12). Note again that in this 

case the runout distance does not depend on avalanche mass (or size), which feature is 

characteristic for the Colomb resistance law application to avalanche dynamics calculation. 

This case may be reasonable for situations with rather small avalanches (of small 

thicknesses). 



 

5.2. Consider now the case of very big avalanches (with big snow depth H) when 

almost everywhere in the avalanche body the thickness H is large enough — bigger than H∗ = 

τ∗/µρ·cosψ  when the friction law τ = τ∗ = const is applicable instead of the Colomb law. In 

this case we have (after integrating (5.3)) the following relations for initial part of the 

avalanche path 
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At the mountain foot, S −S0 = S1 −S0 = l1 , we have t = t1 
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                                                                                                                                        (5.19) 
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For the second (horizontal) part we have 
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and at S −S1 = S2 −S1 = l2  where u = 0 we have 
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The full distance L = l1 + l2 is given by the relation 

                                       ( )L
H

u gl l= ⋅ + −
∗

ρ
τ

ψ
2

20
2

1 1sin                                          (5.23) 

Note now that important feature of obtained relations in this case is their significant 

dependence of the avalanche size H. Particularly interesting is the dependence of runout 



 

distance L on H: the bigger (dipper) is the avalanche the longer is its runout. In this respect 

big avalanche governing by the limiting friction force law with τ = τ∗ = const differs 

significantly from a small avalanche governed by classic Colomb law. 

This conclusion is, of course, valid not only for the simplest model considered here but 

also for exact ones representing the physical difference between the two friction laws 

examined. The restriction in shear forces acting on the avalanche bed by the limiting value τ∗ 

leads to extremely high movability of the snow flow on the mountain slope and foot with 

dramatical rise of runout distances in the range of big avalanches.  

It is interesting also to see how looks the result when taking into account the hydraulic 

resistance representing by the term −ku2/H in equation (5.3). In this case integration for initial 

part of the path gives 
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and for second part 
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For the runout distance S2 −S1 = l2 we have from (5.26) and u(S2) = 0 
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(5.27) 

Considering (5.27) with k→0 one can see that (5.27) naturally turns into (5.22). 

The strong dependence of l2 on avalanche size H given by (5.27) is obvious and all the 

conclusions relating to the properties of big avalanches made above in the most simple case 

with k = 0 remain unchanged. However the influence of hydraulic resistance term is also 

significant for linear relationships (5.22), (5.23) between runout distance and avalanche size 

H changes in more complicated one, (5.27), containing logarithmic and exponential functions. 

As a result runout l2 rises with increase in H much more slowly than it is predicted by linear 

relations (5.22), (5.23). 



 

Consider a numerical example corresponding to the following data: k = 0.02; τ∗ = 1000 

kg/m2; ρ = 50 kg·s/m4; µ = 0.5; sinψ = 0.5; g = 10 m/s2; l1 = 1000m; H = 5m; u0 = 0. 

Calculation by (5.12) (Colomb friction law) gives l2/l1 = 0.125, l2 = 125 m. By the relation 

(5.22) in a case of limited friction force we have l2/l1 = 0.25, l2 = 250 m. In this case, the 

lower value of H = H∗ restricting the range of avalanche depth for applicability of limited 

shear law is equal to H∗ = τ∗/µρg = 4.57 m. So the value H = 5 m used in the calculations is 

only slightly above H∗. Value of l2 for this law is only twice higher than that in the case of 

Colomb law. More adequate seems the value of τ∗ = 500 kg/m2, in which case we have H∗= 

2.3 m and l2/l1 = 1.5 when H = 5 m. One can see that in this case runout l2 is one order of 

magnitude more than that for Colomb law. 

Consider now influence of hydraulic resistance on these figures. Using the relation 

(5.15) for the Colomb law we have 

( )[ ] ( )[ ]l l H k l2 1 11 2 1 1 0 785 8 0125 8≈ − ⋅ − − ≈ − − − ≈ln sin cos ln . / . / .ψ µ ψ  

 By the relation (5.27) we obtain  

( )[ ] [ ]l l H gH gH k l2 1 11 2 1 0 25 8 0 25 8≈ − ⋅ + − ≈ + ≈∗ ∗ln sin ln . . / .ρ ψ τ ρ τ  

The last figures show that the influence of quadratic resistance is strong enough and reduces 

the runout distance significantly. But in this case the runout distance based on the Colomb 

law remains much less than that in the case of limited friction force law. Note also that in both 

cases the reduction of the runout distance by the quadratic resistance seems to be highly 

overestimated. In this respect the problem of adequate estimation of hydraulic part of 

resistance remains actual and needs additional researches.  

 

 

6. Influence of snow capturing on avalanche dynamics 

 

Now we return to numerical examination of full model to see how the "fresh" snow capturing 

at the front of propagating avalanche influences on avalanche dynamics. We have fulfilled a 

series of full model computations for simple situation with constant thickness of "fresh" snow 

cover on a plane slope and with varying parameters of problem (µ, k, etc.). The results are 

presented on figures 6.1 - 6.7 (on these figures the scale for abscissa for 10 m adjacent to the 



 

front of avalanche is the same as for h, h0 parameters, whereas for the rest part of S-axis the 

scale is highly stretched). 

One can see that depending on specific combination of values of governing parameters 

of the problem the avalanche behavior can be related to two quite different types, one of 

which is characterized by intensive "fresh" snow capturing in frontal zone and huge avalanche 

"head" formation in that zone, and another one which is unable to maintain the "fresh" snow 

erosion even when in the starting zone such capturing had appeared, resulting the "weak" 

avalanche formation with flattening of the avalanche body and decaying the whole process. It 

is very important to note, that which alternative of this two will take place depends on values 

of governing parameters (µ, k, etc.) nonmonotonically. As an example, on the fig.6.5 we can 

see that in the range of µ values 0.4 ≤ µ ≤ 0.55 the avalanche dynamics corresponding to the 

side values relates to the second ("weak") type, but for middle value of µ = 0.42 that is of the 

first type! Of course, the reason for such a "strange" dependence of mathematical solution of 

the avalanche dynamics problem is due to the strong nonlinearity of that. Physical nature of 

this nonmonotonic behavior is associated with features of modified friction law of Grigorian, 

1979. Indeed, when everywhere the avalanche thickness is sufficiently small, so everywhere 

τ<τ∗, and there is no influences on the process leading to the accumulation of snow in the 

avalanche body resulting the appearance of condition τ >τ∗ there, the avalanche dynamics 

remains "weak" all time of the motion. If, in contrast, there is a reason for mentioned 

accumulation process (e.g. due to sharp changes in cross-section area of channel, local big 

values of "fresh" snow thickness etc.), the avalanche behavior changes in that zone in 

accordance with the friction law (τ >τ∗), avalanche becomes selfexciting ("self-supporting") 

and highly movable. As a result the "output" parameters of avalanche (characteristic 

velocities, thickness, runout distance etc.) become dependent on initial parameters 

stochastically and nonpredictable. This feature of avalanche dynamics is the most interesting 

in mathematical sense and very important for general understanding of avalanche problem. 

 

 

7.  Conclusions 

 

The results of analytical and computational investigations presented here show that the 

mathematical problem of quantitative description of snow avalanche dynamics is highly 



 

nonlinear and difficult for receiving (obtaining) a simple explicit solutions. On the other hand, 

there is the necessity to have such a simple explicit relations for practical estimations. 

Unfortunately this need cannot be satisfied in desired form for only rough estimations are 

possible on the basis of very "finite" simplifications made with more or less exact full models. 

Corresponding procedures are presented and illustrated by numerical calculations in this 

paper. 

One of the most important parameters for practical applications is the maximal runout 

distance of avalanches at given geographical and climatic conditions. The maximal runout 

distance corresponds to the most powerful and massive avalanches in which case one can 

expect the details of "exact" full model to be not significant. The correct approximate result 

presumably can be obtained in this case by simplified model or even by simplest model 

described above.  

More difficult is the problem of quantitative description of avalanche motion evolution 

and decay depending on uncertain information relating to natural data (ψ(S), µ, ρ, τ∗ etc.) and 

mathematical modeling of the process of recruitment of "fresh" snow in the avalanche body in 

the frontal zone. The computational simulation of the avalanche dynamics made on the basis 

of the full model show that avalanche behavior is in some sense stochastic. Namely, 

depending on slight differences in initial data, bed geometry etc., mass velocities, depth 

distribution and other parameters of motion demonstrate finite differences and pulsatile 

behavior in the course of avalanche propagation over the mountain slope. This phenomenon is 

associated with dual nature of bed resistance law: the transitions between the Colomb's law 

and the τ∗-law appears with the changes in depth distribution H(S) which itself is dependent 

nonlinearly on the resistance law. This stochasticity of avalanche dynamics makes the full 

problem not describable in deterministic way and only statistic characteristics of the main 

avalanche parameters calculated by the full model which itself is deterministic are to be 

evaluated and used for practical needs.  

Nevertheless there is a program for improvement of "exact" full model consisting in 

testing of various schemes of snow capturing at the avalanche front and in more adequate 

modelling of hydraulic or viscous part of resistance as well as in making complete software 

involving all the components of mathematical construction and parameter variations in the 

problem. This work remains yet to be done. 
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