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Abstract: Enormous deglaciation in the polar and mountainous regions of the Earth is associated
not only with large-scale climatic changes but also with the global transfer of black carbon (BC)
microparticles, which accumulate on the surface of glaciers and lead to changes in albedo and the rate
of degradation of ice. BC is the product of an incomplete combustion of fossil fuels, volcanic eruptions,
and wildfires. The accumulation of organogenic microparticles leads to the formation of cryoconites,
which are dust made of a combination of small rock particles and the result of anthropogenic activities
(fossil fuel combustion) that play a special role in deglaciation. Here, we describe the content of trace
metals and nutrients in accumulation of the BC from glaciers of Fildes Peninsula, King George Island,
Western Antarctica. The analysis of trace metals concentrations showed that most of the studied
elements (Cr, Pb, Zn, Ni) have a volcanic origin; at the same time, Cd and Cu have been accumulated
as a result of anthropogenic activity. The content of nutrients in BC are most similar with Technosols,
which forms near the scientific station at King George Island. The particles of BC can be translocated
into organisms, which could pose a significant risk for living organisms and humans.
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1. Introduction

The Polar Regions affect the climatic balance of the entire globe. An increase in temperature,
greenhouse gas emissions, and amount of black carbon (BC) in the atmosphere leads to a reduction
in the ice cover of our planet [1–3]. To address this problem, special international groups have been
organized to monitor emissions and environmental pollution. The Arctic Monitoring and Assessment
Programme (AMAP) established an Expert Group on Short-Lived Climate Forcers (SLCFs) in 2009
with the goal of reviewing the state of science surrounding short-lived climate forcers in the Arctic and
recommending scientific tasks to be conducted or promoted by AMAP to increase relevant knowledge
and its application to policy-making [4,5]. Arctic warming is a manifestation of global warming;
reducing global-average warming will reduce Arctic warming and slow the rate of melting of snow
and ice [6,7]. Reduction in the emission of carbon dioxide is the backbone of any meaningful effort
to mitigate climate forcing [8–10], but it cannot be achieved quickly [5,11]. Therefore, shortening the
thawing season is an important intermediate goal, and research on short-lived agents of climate change
is necessary to achieve this [12,13]. Of special importance are those agents that impose a surface forcing
that is capable of triggering regional-scale climate feedbacks pertaining to the melting of sea ice and
snow [5,14].

BC is a short-lived climatic factor—a term referring to a climate-forcing substance that is present in
the atmosphere over small time scales (from several days to several years) [5,11]. It is the second-largest
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artificial contributor to global warming and accelerating glacier melting after carbon dioxide [15].
BC absorbs several hundred times more heat than carbon dioxide [16]. Therefore, globally, reducing
emissions of BC is one of the main tasks in solving the problem of climate change [17]. BC is formed
from an incomplete combustion of fossil fuels and biomass [18,19], mainly in the form of emissions from
diesel engines, industrial production processes, and oil and gas production, as well as the combustion
of wood and coal, incineration of agricultural waste, and wildfires. The main sources of BC in the
northern polar regions (Greenland, Russia, Canada and Svalbard) are wildfires, especially from Asian
regions [20]. The second largest source of BC is the combustion of fossil fuels in Eurasia. In addition
to these two sources is industrial pollution, the effects of which have been noted in the North Pole
region [21]. The main period of deposition on terrestrial surfaces of BC is late autumn and winter [20].

The Antarctic ice sheet is an integral part of the globe and plays an important role for humanity [22].
The Antarctic ice sheet is an important indicator of climate change and a driver of sea level rise. As their
depletion continues to accelerate, Antarctic ice streams contribute about 10% of the observed global sea
level rise [23,24]. According to various estimates, the Antarctic ice contains 80% to 90% of the fresh water
on the Earth’s surface [25,26]. The current state of the Antarctic ice sheet is unclear and controversial.
Volcanism is concentrated in western Antarctica and is associated with the Antarctic Peninsula.
The volcanoes form the Antarctic Volcanic Belt, which can be traced from Ross Island to the Antarctic
Peninsula along the coast of Mary Byrd Land and Edsworth Land. Currently, there are more than
800 active volcanoes on Earth, most of which are located in the northern hemisphere. Volcanic eruptions
are considered one of the main sources of BC particle emissions that are accelerating the melting of
glaciers [27]. After an eruption, the heavier ash particles quickly settle on the ground, while the lighter
ones are suspended in the atmosphere and can be carried over considerable distances [28]. Falling out
on territories covered with snow and ice, including Antarctica, volcanic ash increases the absorption
of solar radiation, which contributes to the intense melting of snow [29,30]. The primary sources
of BC in the southern hemisphere are biomass combustion in Australia, South America, and Africa.
The anthropogenic influence of the accumulation of BC in Antarctica has been noted near Palmer
Station (USA). BC concentrations in cryoconites reduced with the distance to Palmer station from
16.5 to 1.2 mg BC and were higher than in other BC studies on snow in natural ecosystems, such as
the McMurdo Dry Valleys. That the content of BC increased near the Antarctic station has also been
noted in other parts of Antarctica. It has been noted that in addition to the contribution of BC from
scientific bases, the combustion of biomass and fossil fuels as well as wildfires occurring in the southern
hemisphere could also affect the content of BC on the surface of glaciers and snow in Antarctica [31].

The Antarctic ecosystem is particularly sensitive to anthropogenic modifications [32]. Ice-free land
occupies <2% of the continent, but most of the human and terrestrial biological activities are concentrated
in these areas [33]. Heavy metals naturally occur in the Earth crust [34–36], and human activities
have introduced high loads of these elements into the surficial environment. BC that accumulates
in cryoconites can provide a temporally integrated indication of environmental condition and act
as a reservoir for metals [21,37–39]. The accumulation of radionuclides in the BC of cryoconites is
also noted. The main source of these radionuclides is the testing of nuclear weapons in the Pacific
Ocean. Due to its organic content, cryoconite effectively binds and accumulates impurities contained
in melt water, which have an affinity for organic substances, including trace elements, nutrients,
and radionuclides [21,40].

The Antarctic Peninsula and adjacent islands have the highest concentration of research stations
in Antarctica. In addition, the islands located near the peninsula are those most often visited by
tourist boats. The study of the BC that accumulates on the glaciers of Antarctica is poorly investigated.
The study of local sources of pollution is an important contribution to monitoring the vulnerable
environment of Antarctica. Thus, the aim of this research was to evaluate the content of trace elements
and key nutrients in cryoconites on the Fildes Peninsula on King George Island. To achieve this
aim, the following objectives were set: (1) to evaluate the gravimetrical concentrations of key trace
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elements and (2) to identify key nutrients concentration in the cryoconites sampled on the surface
Collins Ice Cap.

2. Materials and Methods

2.1. Study Area

King George Island is the largest of the South Shetland Archipelago, with an area of about
1338 km2. Nearly the entire island is covered with ice. The largest ice-free area is the Fildes Peninsula
in the south-west part of the island (Figure 1).
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Figure 1. The study area. Fildes Peninsula, King George Island, Antarctica.

The maximum height of the ice caps reaches 700 m. The peninsula consists of volcanic rocks,
mainly andesites, basalts, and various tuffs. The climate of Fildes Peninsula is marine. The number of
sunshine days is about 100. The average annual temperature is −2.8 ◦C. The annual precipitation is
729 mm. A characteristic feature of West Antarctica is precipitation in the liquid form of water [33,41].
Observations in Admiralty Bay indicate the retreat of the glacier and the reduction of the ice sheet over
the past decades. A total of 10 cryoconites samples were taken from the western part of Collins Ice Cap
of King George Island, Antarctica (Figure 2).
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Figure 2. Studied cryoconites from Collins Ice Cap, King George Island, Antarctica.

2.2. Methology

Samples were taken during the glaciological surveys in February 2020 from the ice and delivered
to the field laboratory. There are several ways to sample BC, depending on the source from which
they are taken (snow, ice, or water). We use a small drill to extract BC from ice; it is important to use
only mechanical or electrical devices in order to eliminate an additional source of exhaust gases that
could affect study results. After collection, samples are defrosted, the water is filtered, and the filter
residue is analyzed. Snow and water analysis are similar to ice analysis. To extract BC from snow, it is
necessary to melt the snow and separate the particles of BC from the resulting water by filter. For water
samples, it would be filtered to isolate the particles of BC. A standard BC isolation method is described
by Hegg et al. [15,42]. Dried samples were investigated at the Department of Applied Ecology of
St. Petersburg State University, St. Petersburg. The coordinates of studied cryoconites are presented in
Table 1. The origin of studied cryoconites has been investigated during the glaciological survey.

Table 1. Description of the studied cryoconites.

Sample ID Coordinates (S/W) Elevation (m) Origin

B1 62◦10′27.8” 58◦54′29.7 88 Volcano
B2 62◦10′27.3” 58◦54′19.8” 103 Volcano
B3 62◦10′27.7” 58◦54′13.6” 108 Volcano

B4 62◦10′26.2” 58◦54′10.6” 114 Volcano with biogenic
material of ornitogenic origin

B5 62◦9′18.4” 58◦54′20.6” 121 Volcano with biogenic
material of ornitogenic origin

B6 62◦9′15.8” 58◦54′9.3” 130 Volcano with biogenic
material of ornitogenic origin

B7 62◦9′9.5” 58◦54′23.1” 118 Volcano with biogenic
material of ornitogenic origin

B8 62◦9′5.6” 58◦54′30.4” 99 Volcano with biogenic
material of ornitogenic origin

B9 62◦9′6.9” 58◦54′34.5” 98 Volcano
B10 62◦9′21.8” 58◦54′48.1” 92 Volcano
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2.3. Chemical Analyses

The contents of carbon, nitrogen, heavy metals, and nutrients were determined. Carbon (C) and
nitrogen (N) content were determined using an element analyzer (EA3028-HT EuroVector, Pravia PV,
Italy). The content of heavy metals was determined following to the standard ISO 11047-1998
“Soil Quality-Determination of Cadmium (Cd), Cobalt (Co), Copper (Cu), Lead (Pb), Manganese
(Mg), Nickel (Ni) and Zinc (Zn) in Aqua Regia Extracts of Soil - Flame and Electrothermal Atomic
Absorption Spectrometric” method at Atomic absorption spectrophotometer Kvant 2M (Moscow,
Russia) [43]. The content of nitrate and ammonium nitrogen (N-NH4 and N-NO3) took place following
the method outlined in [44], using potassium chloride solution. The content of mobile potassium
(K2O) and phosphorus (P2O5) was determined by the Kirsanov method [45]. The method is based on
the extraction of mobile compounds of phosphorus and potassium from the soil with a solution of
0.2 M HCl.

2.4. Statistical Analysis

Statistical data processing and Spearmen’s correlation analysis were performed in the
Paleontological Statistics (PAST) program software. In our study, we used two statistical analyses to
reveal the relationship between the studied components: principal component analysis (PCA) analysis
and Spearman’s rank correlation. PCA analysis made it possible to conduct a search procedure for
variables (components) that explain the variance of multivariate data. Spearman’s rank correlation
coefficient is a quantitative assessment of the statistical study of the relationship between phenomena,
and it is used in nonparametric methods.

3. Results and Discussion

3.1. The Content of Trace Metals in Studied Cryoconites

The investigated BC samples were analyzed according to the ISO standard [43]. The resulting
trace metals content is presented in Table 2.

Table 2. The content of trace metals from the studied cryoconites (mg·kg−1).

Sample ID Cu Pb Zn Cd Ni Cr

B1 6.85 3.12 13.3 0.258 6.33 4.20
B2 9.55 3.27 16.6 0.295 6.90 4.75
B3 7.56 1.05 14.1 0.150 6.01 2.38
B4 15.8 5.53 23.0 0.357 8.06 5.91
B5 20.4 6.31 27.4 0.409 8.49 5.00
B6 22.8 8.08 30.9 0.499 9.64 7.52
B7 19.2 6.69 27.4 0.359 8.47 4.79
B8 21.4 4.48 28.6 0.319 7.57 3.45
B9 11.3 1.56 18.6 0.310 6.34 5.39
B10 6.81 0.102 10.9 0.207 5.36 1.98

Standard deviation 6.45 2.64 7.27 0.10 1.35 1.64
Coefficient of Variation, % 45.5 65.8 34.5 31.43 18.42 36.23

The data obtained indicate the accumulation of trace elements in cryoconites in the Collins Ice
Cap. Comparison of the obtained data with other sources of trace elements in Antarctica is presented
in Table 3. Through comparison of the obtained concentrations of trace elements with those of soils,
bay sediments, and volcanic rocks, it can be concluded that the lowest concentrations are observed
in cryoconites [46]. This is presumably associated with different mechanisms of accumulation of
trace elements. The origin of cryoconites is associated with atmospheric precipitation, as well as
anthropogenic activity in the area. Of the studied elements, Cd was the closest in concentration to
the soils and sediments of Fildes Bay [47]. It accumulates considerably in soils forming on Fildes
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Peninsula. Cryoconites from King George Island have a volcanic origin. From the comparison of
obtained concentrations with those of volcanic rocks, we note a decrease in the concentration of
Cu and Zn. At the same time, there is an accumulation of Cd and Cr, which apparently have an
anthropogenic origin. The largest amount of Cd is present in the areas where Antarctic scientific
stations are based [38,48,49].

Table 3. Average content of trace metals in studied cryoconites in comparison with results of other
studies (mg·kg−1).

Sampling Site Cu Pb Zn Cd Ni Cr

Cryoconites 1 14.16 4.01 21.08 0.32 7.32 4.54
Soil from Trinity House Ruins 2 107 102 148 <0.2 37.9 72

Soils from Robert Island 3 47.8 7.3 43.9 <0.2 40.4 52
Soil from Fildes Bay 4 31 23 15000 0.33 - -

Soil from O’Higgins Base 5 422 282 485 4.3 28 65
Sediments King George Island 6 92 10.5 89 - 10.1 31

Vulcanic rock King George Island 7 111 7.7 66 - 12.5 -
1 Mean value of studied BC; 2 Guerra et al. [48]; 3 de Lima Neto et al. [38]; 4 Amaro et al. [47]; 5 Celis et al. [49];
6 Santos et al. [37]; 7 Groeneweg and Beunk [46].

Principal component analysis (PCA) analysis (Figure 3) indicates an accumulation of Zn and Cu in
cryoconites at Collins Ice Cap. These elements accumulate mainly from the volcanic rocks of the island.
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Figure 3. Principal component analysis (PCA) of studied trace metals from Collins Ice Cap.

To identify a statistically significant relationship, Spearmen correlation analysis was performed
(Table 4). From the obtained correlation, connection was revealed for Zn and Cu (r = 0.99) as well as Ni
and Pb (r = 0.98). These four elements accumulate mainly during the erosion of volcanic rocks on the
island and are associated with atmospheric deposition on glaciers [46].
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Table 4. Spearmen’s correlation of the studied trace metals.

p = 0.95 Cu Pb Zn Cd Ni Cr

Cu 1 0.87 0.99 0.84 0.90 0.59
Pb 1 0.89 0.90 0.98 0.76
Zn 1 0.85 0.92 0.64
Cd 1 0.92 0.88
Ni 1 0.78
Cr 1

In Antarctica, the areas most affected by anthropogenic activities are those close to oil reservoirs,
power generators, or landfills, or those directly affected by fires [38,48,50]. The source of Cd and Cu
is mostly fuel spills and paintwork in the Antarctic station areas. In comparison with the northern
hemisphere, it should be noted that the mountain systems of Tibet are subject to a greater degree of
anthropogenic pollution and accumulation of trace elements in cryoconites [51]. As already noted,
during the transfer of trace metals, their concentration decreases from the source to the place of
deposition. The main periods of deposition of BC, as in the Arctic sector, are periods of high air
humidity, Arctic haze, and the monsoon period, at which time there is an active deposition of BC along
with precipitation [52]. Data from the Svalbard Archipelago reveal the anthropogenic origin of Cd
and Pb, as well as their high concentration relative to natural elements, which was noted in our study
of cryoconites from the Collins Ice Cap. Apparently, cryoconite granules have a peculiar ability to
concentrate metals, and they play a special role in the cycle of airborne metal pollutants in the Arctic
and Antarctic [21].

Most of the studies related to the pollution of soil and aquatic ecosystems in Antarctica [21,37,38]
have shown that pollution is mainly concentrated around scientific stations. Environmental monitoring
studies are extremely important for the conservation of the continent’s vulnerable plant and animal
species. The formation of cryoconites and the accumulation of trace metals in their composition is an
additional contribution to the pollution of the vulnerable ecosystem of Antarctica.

3.2. The Content of Key Nutrients from Studied Cryoconites

Table 5 shows the nutrient content of BC from the Collins Ice Cap. Accumulation occurs through
atmospheric precipitation and rarely via transportation by birds, which do not use the cryoconites
as nesting sites [41]. When compared to soils from King George Island, cryoconites were found to
accumulate the lower concentration of nutrients. The nutrient content of cryoconites is most similar to
that of Technic Cryosol, which is actively exposed to anthropogenic impact.

Table 5. The content of nutrients of black carbon (BC) from Collins Ice Cap.

Sample ID C, % N, % C/N P2O5 K2O N-NH4 N-NO3

B1 0.08 0.06 1 37 196 119 1
B2 0.78 0.12 7 40 224 128 1
B3 0 0.02 0 118 159 24 1
B4 3.92 0.53 7 11 375 280 1
B5 5.44 0.61 9 13 395 306 2
B6 5.23 0.74 7 18 399 332 2
B7 5.32 0.56 9 51 318 156 5
B8 3.94 0.46 8 13 379 170 2
B9 0.15 0.08 2 66 240 121 1
B10 0.04 0.05 1 43 171 108 1

Standard deviation 2.46 0.28 3.63 32.78 97.55 99.31 1.25
Coefficient of variation, % 99.07 86.94 71.26 79.95 34.15 56.94 73.62

Leptosols 1 7.12 0.58 12 2238 1849 461 155
Technic Cryosol1 4.64 0.41 11 435 465 36 9

1 Abakumov [41].
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Spearmen correlation was performed to identify statistically significant relationships between
nutrients (Table 6). A strong relation was found between N and N-NH4 (r = 0.96) and N-NH4 and K2O
(r = 0.97). A negative correlation with P2O5 was noted, which indicates that with a decrease in the
content of P2O5, the content of other nutrients increases. This may be related to the composition of the
microbial community that forms in cryoconites.

Table 6. Spearmen’s correlation of the studied nutrients.

p = 0.95 C N C/N P2O5 K2O N-NH4 N-NO3

C 1 0.95 0.95 −0.54 0.89 0.89 0.84
N 1 0.84 −0.59 0.93 0.96 0.75

C/N −0.50 0.78 0.78 0.81
P2O5 1 −0.69 −0.74 −0.24
K2O 1 0.97 0.70

N-NH4 1 0.63
N-NO3 1

The source of phosphorus and nitrogen compounds may be associated with avian activity, as birds
are the main source of nutrients in Antarctica. Increasing nutrient content in cryoconites can lead to
green vegetation, which absorbs less sunlight than black particles and reduces the rate of deglaciation.
According to earlier studies of ornithogenic soils, the content of mobile forms of nutrients is much
higher than in cryoconite holes, which is associated with the direct accumulation of nutrients and low
indicators of microbiological activity in Antarctic soils. The background nutrient content in the soils of
King George Island is higher than that of the cryoconite samples [41]. This distribution of nutrients is
associated with the atmospheric accumulation in cryoconites of organomineral substances from the
local soils. The nutrient content profile closest to that of cryoconite was found in the technogenic soils of
the same region [41]. Based on this, it can be concluded that the organo-mineral substances accumulated
in cryoconite are the least suitable for the development of plants and soil microbiota [53,54]. The low
content of nutrients in cryoconites is due to the fact that birds prefer to nest in rocky outcrops and
natural soils [41]. The accumulation of nutrients in cryoconites is an important factor in the functioning
of local biomes. Cryoconites constitute a unique habitat in the cryosphere, where microbes have
adapted to cold conditions. Research carried out in the Himalayas and Greenland confirms the fact that
various microbes and fungi can live in cryoconites and form ecosystems within them [54]. Research
carried out in Antarctica confirms the fact that bacteria that form on the continent (bacterial mats on
land, sea ice, and melted ice from local ice sheets) are the source of bacterial communities in cryoconite
holes [53]. Therefore, one of the sources of nitrogen compounds, in addition to birds, is the fixation of
atmospheric nitrogen by bacteria and the creation of a nutrient base inside cryoconites. Liu et al. [55]
provided the information about the mechanism of accumulation of BC and PM1 in living organisms of
marine ecosystems (using the example of sea anemones that feed on suspended solids in sea water)
in the Taiwan region. The author consider that BC and PM1 particles are able to freely overcome
biological barriers. The paper cited also provides the evidence that the BC found in sea anemone
organisms was obtained by biomass combustion as well as by weathering ancient rocks. The work also
confirms the theory that BC’s nutrients are absorbed by marine organisms and can be included in the
food chain, and these compounds can be passed on to their offspring [55]. So, due to the fact that BC
with nutrients is consumed by organisms, trace metals in BC could transit the biological barrier and
integrate into food chains by the same mechanism of transfer.

Thus, cryoconites are one of the few environments in Antarctica considered inhabitable by
multicellular animals. Each cryoconite is inherently unique and can support a discrete ecosystem.
In addition, the ability of BC to overcome biological barriers and enter to food chains can present
a serious threat to living organisms and human health in unique Antarctic environments.
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4. Conclusions

BC plays a key role in climate change, particularly in deglaciation. Thus, it is necessary to
comprehensively study it in the polar regions of the Earth. Together with BC, trace metals and nutrients
are sequestered in cryoconites but can subsequently be released to the waters and soils of polar systems
when snow and ice melt. In Antarctica, BC is sourced from research stations as well as from the
weathering of parent rock. Most of the trace metals are transported there by the weathering of volcanic
rocks. Cd and Cu are of anthropogenic origin, which apparently enter cryoconites during the transfer
of contaminated soil and ground particles by wind. The nutrient content of cryoconites is closest to
that of the contaminated soils of King George Island. It is currently impossible to create reliable models
for the accumulation of BC on ice and snow surfaces. Further study of the qualitative and quantitative
composition of BC in the atmosphere and on glaciers will contribute to the parametrization of the
global carbon cycle as well as prevent water and soil pollution in the polar regions. Improving our
knowledge of polar pollution is essential in this era of global change. Cryoconites found on the surface
of glaciers are a secondary source of trace metals. When the edge of the glacier melts, the contaminated
material is deposited in soil cover and marine sediments. Some trace metals tend to accumulate in
biota and then be transported along the food chain. Thus, the importance of studying the migration,
accumulation, and sources of trace metals in cryoconites is extremely important.
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