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Abstract: Data on the disastrous snow avalanche that occurred on 18 January 2017 at the spa
hotel Rigopiano, municipality of Farindola in the Abruzzo region of central Italy, are analyzed in
different ways. The main results are the following. (i) The 2017 Rigopiano avalanche went beyond
the run-out point predicted by the topographic-statistical a-f model with standard Norwegian
calibration, while avalanches in neighboring paths appear to have run no farther than the p-point
of their respective paths during the same period. (ii) The curvature and super-elevation of the
trimline between 1500 and 1300 m a.s.l. indicate that the velocity of the front was around 40 ms~!.
In contrast, the tail velocity of the avalanche can hardly have exceeded 25 ms~! in the same segment.
(iii) The deposits observed along all of the lower track and in the run-out zone suggest that the
avalanche eroded essentially the entire snow cover, but fully entrained only a moderate amount of
snow (and debris). The entrainment appears to have had a considerable decelerating effect on the flow
front. (iv) Estimates of the degree to which different parts of the building were damaged is combined
with information about the location of the persons in the building and their fates. This allows to refine
a preliminary vulnerability curve for persons in buildings obtained from the 2015 Longyearbyen
avalanche, Svalbard.
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1. Introduction

In the evening of 18 January 2017, a large snow avalanche released at about 1900 m a.s.l. on the
east flank of Monte Siella in the Abruzzo region of central Italy (Figure 1). Through the Grava dei
Bruciati gully, it descended to the flat area called Rigopiano at 1100 m a.s.1. It completely destroyed
the Hotel Rigopiano and killed 29 of the 40 persons waiting there for evacuation, making this one of
the single most disastrous avalanche events in Europe in a century. The avalanche also destroyed or
heavily damaged more than 5 ha of partly mature and partly young beech forest.

In early June 2017, the author surveyed the release area and track of this avalanche path,
particularly with regard to the forest damage, and summarized the findings together with information
retrieved from the Internet in a report [1]. The survey revealed also that at least two further avalanches
with long run-out occurred in the same period in the two adjacent paths to the north of the Grava dei
Bruciati. Aerial photos of the area [2] and a letter to the authorities in Farindola [3], published on the
Internet after the disaster, show that an avalanche of similar or even larger size completely destroyed
the forest in or around 1936 and a smaller one—Dbenefiting from the absence of mature forest in the
path—almost reached the location of the hotel in 1959.

Since the event, several publications have summarized the synoptic situation leading to the
avalanche and the forensic investigations [4], the snow and emergency management before and after
the disaster, see, e.g., in [5,6], and a reconstruction of the avalanche flow with a numerical model [7].
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The inferences made in [1] are largely in agreement with those in [4], while the present paper is
complementary to the study in [7].
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Figure 1. Topographic map of the Monte Siella area with the largest known avalanche events in
each path (lower track and run-out areas shown as yellow and green polygons, potential release and
upper-track areas as red dashed polygons). From North to South: Grava di Valle Savina (2017, based
on information by D. Borgheggiani), Grava di Valle Cupa and Grava di Costa Mercante (both 2017,
data from author’s survey and Google Maps orthophotos), Grava dei Bruciati (2017, from Google Maps
orthophoto, author’s survey, and [8]), and Monte San Vito (1963, run-out beyond map to approximately
700m a.s.l., and 2014, communicated by D. Borgheggiani). Author’s survey itinerary on 3 June 2017 in
blue dotted line. The purple rectangle indicates the area shown in Figure 5. Equidistance of isolines
25m. Basemap downloaded from http://opendata.regione.abruzzo.it/content/dbtr-regione-abruzzo-
scala-125000-edizione-2007 on 5 November 2020 under Creative Commons license CC BY-NC.
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Here, the principal aim is to use the observations from the survey together with other available
information to elucidate the dynamics of this event, particularly with regard to bounds on the flow
velocity (Section 3) and pressure (Section 5), the mass balance (Section 4), and the effect of the dense
forest on the flow. Additionally, in Section 2, we analyze historical information on several avalanche
events in the Grava dei Bruciati and three nearby paths in terms of the topographic-statistical a-8
model [9]. Moreover, the large number of persons involved in this catastrophe and sufficient information
on the degree of building damage at their respective locations allows an update of the vulnerability
curve derived from the avalanche at Longyearbyen, Svalbard, on 19 December 2015 [10], see Section 6.

2. Comparison with a Topographic-Statistical Run-Out Model

As detailed in [1], some information on the run-out distances of frequent as well as rare avalanches
in the Grava dei Bruciati path and four other paths nearby can be inferred from historical sources, aerial
photos, and our survey observations. The reach of avalanches with return periods of approximately
ten years is discernible as the boundary of dense forest consisting of shrubs and very young, flexible
trees [1]. These estimates are collected in Table 1.

At the time of the field survey, the run-out area around the destroyed Hotel Rigopiano was
closed off by the authorities. This prevented the author from investigating the remaining avalanche
traces in the distal area and determining the run-out distance directly. However, debris visible in
Figure 2 indicates that the horizontally measured run-out distance from the probable fracture line is
around 2200 m, in agreement with survey notes of an Austrian rescue team [8]. It is unclear, however,
whether the debris visible in the photo was deposited by the dense/fluidized part of the avalanche or
carried there by the powder-snow cloud.

In the topographic-statistical a- model [9], B characterizes the steepness of the track; it is the
mean angle between the fracture crown and the  point, where the slope angle falls below 10°. « is the
run-out angle, measured from the fracture crown to the distal end of the deposit. The a-8 model is a
linear correlation

x=pp+q @

between the run-out anglex and the path steepness . The coefficients p and g depend on the regional
winter climate and the typical terrain roughness at scales that are not smoothed out by blowing snow.
To the best of the author’s knowledge, no a-f correlation has been elaborated for the Abruzzo region
yet. We will therefore use the best-fit coefficients p = 0.96 and g = —1.4° (with a standard deviation of
2.3°) from Norway for comparison purposes.

Table 1. Estimated return period, path steepness 8, observed run-out angle &, and expected run-out
angle for an extreme avalanche event according to the a-f model for Norway. Angles are rounded to
nearest degree. Values for the 1959 avalanche in Grava dei Bruciati are rough estimates. The values
for avalanches with return period of approximately 10 years are estimated from the extent of stands of
bushes and very young trees near the centerline of the path. The date 1936 for the first known avalanche
in the Grava dei Bruciati is not certain, and the run-out data are estimates based on the extent of damage.

Dr Run- Return Path - -Angle (° -Angle (°

Avalanche Path Date (n:))P Le:gt}?(lrl;) Peri:(;u(year) lfltesss /tSef"l; aObsegr:e(d) aPred%cfe(d)
Grava di Valle Savina 2017 675 1200 10-50 29 29 27
Grava di Valle Cupa  (often) 500 890 ~10 26 29 23
2017 590 1125 10-30 26 28 23
Grava di Costa (often) 380 580 ~10 28 33 26
Mercante 2017 550 1000 20-50 28 30 26
Grava dei Bruciati (often) 425 700 ~10 22 31 20
1936 ~770 ~2200 50-100 22 19 20
1959 735 1900 20-50 22 21 20
2017 770 2190 50-100 22 19 20
Monte San Vito 1963 1165 2470 30-100 26 25 24

2014 560 1120 10-50 26 26 24
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Figure 2. View of the lower part of the Grava dei Bruciati gully and the run-out zone of the avalanche
from a point south of the release area at approximately 1700 m a.s.l.

Significant events in the Grava dei Bruciati (Rigopiano) path have been recorded for close to a
century since the construction of the Rifugio Rigopiano (Figure 3). Avalanches in the other four paths
do not affect any buildings, and the roads they may reach under special circumstances are usually
closed in winter time. The first record for the Monte San Vito path dates almost 60 years back, but there
might be later events similar to the one in 2014 that have not been recorded. The observation period
for the remaining paths is perhaps 10-20 years. Based on this, we estimate that the events of January
2017 in the Grava di Valle Cupa and Grava di Costa Mercante paths correspond to return periods
of, respectively, 10-30 years and 20-50 years. In the Grava dei Bruciati, an event of similar or larger
magnitude as the one of 1959 has likely a return period between 25 and 50 years; events like those of
1936 and 2017 or larger may correspond to a return period of 50-100 years.

Figure 3. View of the original cabin Rifugio Rigopiano in the 1950s, with the Grava dei Bruciati and
snow-covered Monte Siella in the background. Unknown photographer, image in public domain
downloaded from [11] (originally uploaded from http://www.gelsumino.it/immagini/rigopiano.
html).
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Of the seven recorded avalanche events in five paths, about half stopped at or above the  point;
given the relatively short return periods estimated for those events, this is similar to the behavior
that would be expected in western Norway. The exceptionally long 1963 avalanche from Monte San
Vito and the 1936, 1959, and 2017 Rigopiano avalanches exceeded their respective  points. Moreover,
the 1936 and 2017 Rigopiano events are the only known ones that have gone beyond the & point
expected from the Norwegian correlation (see the last three columns of Table 1); with two events in an
observation period of about one century, their most likely frequency is in the range 0.01 to 0.02 year !
so that they may be considered rare events in this path. Given the tenuous statistical base, the observed
run-out distances thus appear compatible with the correlation for avalanches in western Norway.
The data may hint at relatively higher mobility of avalanches in the Grava dei Bruciati compared to
the neighboring paths. Possible explanations for this could be sought in the larger size of the potential
release area, thanks to which avalanches would be less affected by the braking effect of the forest,
the somewhat higher altitude of the starting zone and perhaps its easterly aspect as opposed to the
northeasterly aspect of the other release areas.

It may look surprising at first that the observed run-out angles a seem to be broadly compatible
with the correlation from Norway, given the southerly location of the area, the relatively narrow gullies,
and the dense beech forest in all paths. However, the Gran Sasso area is exposed to cold northeasterly
Bora winds across the Adriatic Sea. They are forced to climb almost 2000 m, which causes intense
snow storms at low temperatures. Thus, meteorological conditions conducive to avalanches with long
run-out may be just as frequent in the Gran Sasso area as near the Norwegian coast, whose climate is
comparatively mild due to the Gulf Stream.

3. Velocity Estimates

Four observations can be used to obtain rough estimates of the velocity of the head and the tail
of the 2017 avalanche in the middle to lower track: (i) Parts of the avalanche overflowed the terrain
shoulder at 1500 m a.s.l. with little deflection (Figures 4 and 5). (ii) In the left bend at 1300 m a.s.L,
the trimline is 20-30 m above the gully floor and has a (horizontally projected) radius close to 400 m
(Figure 5). (iii) In the same bend, debris was deposited along the thalweg while trees only 5-10m
away were left unscathed. The minimum curvature radius of the flow was about 200 m. (iv) Similarly,
the shoulder mentioned above deflected the tail of the avalanche, which subsequently circled around
its foot at 1450-1410 m a.s.l. with a curvature radius of about 120 m (Figure 5).

Avalanche flow in gullies with bends is a three-dimensional problem that needs to be drastically
simplified in order to extract velocity estimates from flow marks in bends without detailed numerical
simulations. The correct treatment of super-elevation still is a field of active research [12] and debate.
In Appendices A and B, we discuss different approaches to the problem in some detail and derive
the formulas used in this section. These formulas do not apply to the powder-snow cloud that most
likely accompanied the (fluidized) head and (dense) body of the avalanche; we will disregard the
powder-snow cloud here, assuming that it did not separate from the denser parts before the run-out
zone below 1200m a.s.l.

The simplest situation to analyze is the trajectory across the shoulder in Figures 4 and 5 along the
southern trim line. We can get a lower bound on the velocity by noting that the avalanche front crossed
the shoulder and retained enough speed to cut down any tree that was not flexible (this includes
more or less all the trees on the eastern slope). From the isolines derived from the digital terrain
model (DTM, Figure 5) [13], one would infer that the avalanche did not have to climb a counter-slope.
However, the survey and the photo in Figure 4 showed clearly that the avalanche had to ascend a
counter-slope and that the altitude difference AH was 15 m or more, depending on the exact location.
The downslope (approach) angle § and the counter-slope angle ¢ are in the ranges 20° to 25° and
25° to 35°, respectively. If one assumes that only the fluidized part of the avalanche, with a density
in the range 50-150 kgm~3, crossed the shoulder and that a stagnation pressure of at least 20 kPa
(augmented by a hydrostatic contribution of no more than 5kPa) is needed to break or uproot all the
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(young) trees on the downstream side of the shoulder (see Section 5.1), the velocity of the front had to
be 17 > (16-28) ms~! at the ridge.

Figure 4. The shoulder at 1500m a.s.l, seen from the northern side of the gully. Note the strong
curvature of the trajectory across the ridge and the complete destruction of the forest on the
downward slope.

Google Earth

Figure 5. Orthophoto of 25 June 2017 (©2020 Google), showing the pronounced shoulder at 1500 m a.s.l.
and the bend at 1300 m a.s.1. The trimline is at the transition from light foliage to dark shadows. Contour
lines (equidistance 10 m) computed from a DTM with 10 m resolution [13]. Red dotted lines are ellipses
used for estimating curvature radii in bends, with major axes in yellow.
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As a first approximation, we may use the observed run-out angle of this avalanche (Section 2) to
obtain the average effective friction coefficient as pegr ~ tan19° = 0.34. With a climb height AH ~ 15m,
we can then solve the inequality (A1) for a lower bound on the approach velocity uy:

ug > \/u% + gAH (1 + pegr cot ) e2teii (¥ +9) ~ (39-65) ms 1. (2)

The higher end of this range may appear large but is close to the estimate umax ~ 0.7,/¢H from a
compilation of experimental measurements [14], which gives 62ms~! for a drop height H = 800 m.

The ridge is rather sharp, with an estimated curvature radius r ~ 20m. An avalanche reaching
the top with a speed u; > \/rgcos ¢ ~ 13 ms~! will therefore lift off, jump some horizontal distance
Xjump Over the ridge, and land on the downstream side of the shoulder, which has a mean inclination
Xx ~ 37°. If we neglect air resistance and the finite width of the curved ridge, assume a lift-off speed
u1 > (16-28)ms~! and use ¢ = 25°-35°, we get (see Appendix A for the derivation)

2
Xjump = 2% cos® P(tan ¢ + tan ) =~ (80-160) m. (3)

The simplifications in the derivation lead to an overestimate of Xjymp, but the assumed 1, is only
a lower limit on the front speed. According to Equation (A4), the jumping snow masses would hit the
ground at a velocity of 30-50 ms~! or more and under a blunt angle. In open terrain with a relatively
soft sediment cover, such an impact may create a crater-like feature in the terrain, see, e.g., in [15].
During the survey, we did not notice such an impact feature. However, both the deep snow cover and
the dense forest in the potential impact zone would dissipate most of the impact energy. Nevertheless,
the speed estimate (2) suggests that the avalanche front jumped a considerable distance and that much
of the forest on the downslope side of the shoulder was destroyed only after the passage of the front,
when the approach velocity was 20-30ms~! and the density exceeded 100 kg m .

In analyzing the information contained in the trim lines, one first needs to account for the general
inclination of the path, which is 6§ ~ 20° in this area. In Figure 5, circles tilted by 6, i.e., ellipses with
axes in the ratio cos? 20° =~ 0.88, are fitted visually to the trimlines or the assumed trajectory of the tail
of the avalanche; the major axis then corresponds to the curvature radius. For the outer trimline along
the bend at 1300 m a.s.l., we obtain R, ~ 400 m. The largest altitude difference between the gully floor
and the southern trim line is approximately 35 m near the downstream end of the bend. We estimate
the flow width W at 60 m on average and the super-elevation A#, i.e., the altitude difference between
corresponding flow marks on either side of the gully, at about 30 m. Using Equations (A19) and (A12)
with Al/W = 0.5, the speeds in the bend, 11, and before the bend, 1, are estimated from the formulas

uy ~ [R A—th tan? ¢ — tan2 6 v o~ —— 4)
1~ g* W (P s ONl_WZ/RZ

as uy ~ 40-58 ms~! and 1 ~ 41-60m s~ 1. The upper values result if we assume ¢ = 30°; more likely,
however, ¢ < 6 due to full fluidization so that one should neglect the square root in the equation for
11 and obtains the lower bounds. While this estimate is compatible with the lower bound (2) on the
approach velocity to the terrain shoulder at 1500 m a.s.1,, it suggests that the upper bound in (2) may
be too high.

A similar analysis can be attempted for the slow tail of the avalanche flowing around the shoulder,
but the uncertainty is much larger because one cannot infer the width of the flow unambiguously
from vestiges of the avalanche event; moreover, the DTM is rather coarse for this purpose. A better
constrained estimate can perhaps be obtained combining a high-resolution DTM with footage from
drone flights shortly after the catastrophe. Here, we estimate a width W = 15-20 m based on tree debris
observations (see Figure 6) and a mean curvature radius at the center line R ~ 120 m (after correction
for the mean slope angle). The super-elevation is even more uncertain, but likely at most 5m, perhaps
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as low as 1-2m. If the super-elevation angle is small, the velocity estimate becomes very sensitive to
the value of ¢. This part of the flow carried along much debris and entire trees, so ¢ may have been
above the local slope angle of about 21°; we tentatively set ¢ ~ 30°. Evaluating Equation (A19) with
these values will give an upper bound on the velocity. If one considers that the shear rate 0,1 — u/r
in vertical planes parallel with the flow direction was large, one expects that little or no additional
shear strength could be mobilized against shear on bed-parallel planes, d,v; accordingly, the term

\/tan? ¢ — tan? 6 should be dropped, which provides a lower bound on u. For Ak = {1,3,5} m and

W = 17m, we obtain the ranges u ~ {8-23, 14-26, 19-29) ms 1. We believe that a more definite
estimate can only be obtained with a dynamical model that correctly predicts the flow regime and
accounts for all terms of the shear stress tensor.

Figure 6. Amassed tree debris in the center of the path. Photo taken at approximately 1350 m a.s.l.
The Rigopiano area is visible in the background.

We proceed analogously for the bend at 1300m a.s.l, estimating W ~ 25m, R ~ 200m,
Ah = 3-8m, 6 = 18° (Figure 5). With this, we find u ~ 15-33ms~! for Ah = 3m and u ~ 24-39ms~!
for Ah = 8m. If one assumes ¢ < 6, these results are compatible—within their very large
uncertainties—with earlier findings from field investigations that indicated the body/tail velocity of
dry-snow avalanches to be roughly half of the front velocity [16].

4. Estimate of the Mass Balance

With the limited data available on the extent and, most importantly, the depth of the deposits,
a plausible mass balance for this event can only be established by piecing together qualitative
information from photos in the media, experience from investigations of other large avalanches,
and by trial and error. In Table 2, we collect our best estimates for the mass balance in the different
segments of the path; the reader should keep in mind, however, that each of these mass estimates has
a large uncertainty. The main constraints are the limits on the size of the release area (from the lateral
limits of forest damage in the upper track, see Figure 1), the amount of erodible snow in the gully
(from the meteorological data), and the deposit volume.

With an average (vertical) slab height of 1.3-2.6 m, we estimate the release volume in the range
100,000 to 200,000 m3, corresponding to a mass in the range 15 to 50 kt if the slab density is assumed in
the range 150-250 kg m 3. The horizontal distance from the end of the Grava dei Bruciati at 1200 m
a.s.l. to the distal end of the deposit is about 600 m. Figure 2 suggests that the deposit beyond the gully
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had approximately oval or thomboidal shape, with a maximum width of about 100 m. This amounts
to an area of 40,000-55,000 m2. Near the hotel on the main axis, the deposit depth exceeded 5m as
the debris of the four-story hotel was mostly covered by snow, but the average over the entire area
is more likely in the range 2 to 4m. The difficulties of digging the victims out indicates that the
snow was very hard, with a density of some 500 kg m~3, to judge from experience with other large
avalanches [17]. From this, we estimate a deposit mass in the range 40 to 110kt in the run-out area.
In the following, we shall use central values of 30 kt for the release mass and 75 kt for the deposit mass
in the run-out zone.

Table 2. Estimated snow mass balance of the 2017 Rigopiano avalanche. Length and area of the
different sections are measured in horizontal projection.  and d are the spatial erosion and deposition
rates, respectively, integrated over the path width. Integrating  and d over the segment length gives
the changes of entrained and deposited mass, AE and AD. M(x;) is the estimate for the snow mass
that flowed through the cross section at the lower end of the respective path segment. Numbers in
parentheses for € and AE in the release area are used for calculating M(x;), but do not count for e(x)
and E(x) in Figure 7.

Path Segment Altitude  Length Width  Area é d AE AD M(xp)

& (m a.s.l) (m) (m) m?  @m D) tm ) &) (k) (kb
Release area 18701700 250 300 75000  (120) 0 G0) 0 30
Upper track ~ 1700-1550 300 150 45,000 60 0 18 0 48
Middle track 15501300 650 100 65,000 40 30 25 20 53
Lower track  1300-1200 400 60 25,000 25 40 10 16 47
Run-out zone  1200-1090 600 80 50,000 40 120 25 75 0
Entire path 1870-1090 2200 120 260,000 108 111

We expect that the avalanche deposited only an insignificant amount of snow in the upper
track between 1700 and 1550 m a.s.l. In contrast, in the middle and lower track from 1550 m a.s.l. to
1200 m a.s.l.,, over a distance of more than 1 km and with an average width of some 20 m, voluminous
tree debris was deposited on the gully bottom (Figure 6). On photos and videos from the rescue
operation, the tree debris was not visible for some time after the event (this was helped by the snowfall
continuing after the avalanche descent). We may therefore assume that the deposit depth was at least
2m at the bottom of the gully, with a density in the range 300 to 500 kg m 2. Snow of similar density
may also have been deposited along the gully sides by the fluidized part of the avalanche over a width
of 30-120 m, but likely with a depth of 0.5 m or less. This gives a lower bound of 15-30 kt of deposited
snow, but the actual value could exceed 50 kt as the deposit may have been significantly deeper.

Our best estimate of the total deposited snow mass is 110-120 kt, in the middle of the range 55 to
160 kt. This implies that the avalanche eroded about 80 kt of snow (with a plausible range 40 to 110 kt)
or about twice the release mass. However, maybe only a fraction of this mass was fully entrained into
the avalanche, i.e., accelerated to avalanche speed. At an average density of 200 kg m 2, this amounts to
400,000 mS3. If all of this extra mass were eroded in the track between 1700 and 1200 m a.s.l., which has
an area of roughly 135,000 m?2, about 3m of snow (or a snow water equivalent of 600 mm) would have
to be eroded on average. This amounts to all of the snow precipitation of the winter 2016/2017 until
then or more; also, such deep erosion over a large area has not been observed in full-scale experiments
to the author’s knowledge. A more plausible closure of the mass balance is achieved if one assumes
that the avalanche continued to erode a substantial part of the snow cover well into the run-out zone,
without entraining much of it. By tweaking the numbers in Table 2 slightly, one could easily balance
the sums of eroded and deposited mass, AE and AD, but we leave the slight discrepancy as a reminder
of the very large uncertainty of these estimates.
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Table 2 is graphically summarized in Figure 7 in a form that can be compared to the plots
from the measurements at the Monte Pizzac test site [18]. Developing such scenarios is useful for
understanding the limitations that the characteristics of the avalanche path impose on the mass
balance. The erosion and deposition rates shown in the figure do not include the mass of tree debris,
which would contribute substantially.

(a) 2000 200 (b) 2000 150
- 150 100
1800 5 1800
4100 o /
[
3 45 § 3 7%
3 1600 — = @ 1600 [~ =
7] « s
3 o & E o g
L
2 1400 1s 2 2 1400
< o < -
5 50
—--100 8 Path profile
1200 - Path profile U‘S;. 1200 - Eroded mass E(x) 4 100
—— Spatial erosion rate e(x) -1 -150 Deposited mass D(x)
——— Spatial deposition rate d(x) Running mass M(x)
1000 . . . . -200 1000 : : : : -150
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
Horizontal distance (m) Horizontal distance (m)

Figure 7. Qualitative evolution of erosion, deposition and mass balance. (a) Width-integrated erosion
rate e(x) and deposition rate d(x). (b) Evolution of running mass M(x) (mass passing the cross
section at x), the cumulated erosion, E(x) = | xtw e(x")dx’, and the cumulated deposition, D(x) =
f;:w d(x")dx’. xew is the location of the stauchwall. Note that M(xsw) + E(x) + D(x) = M(x) for
X > Xsw. For x < Xsw, a linearly decreasing width of the release area is assumed in M(x).

An interesting and relevant question is to which degree these snow masses were not just eroded,
but properly entrained into the avalanche flow, and how far the eroded snow traveled on average.
Sovilla et al. [18] dug a large number of transverse snow pits along the Monte Pizzac avalanche
path and so were able to determine the total mass that flowed across the cross-section at x, M(x),
the erosion per unit distance, e(x), and the deposition per unit distance, 4(x). Such information is
invaluable for testing advanced erosion/deposition models and is not available from Light Detection
and Ranging (LiDaR) scans or photogrammetry before and after the avalanche event, which only
provide an estimate of the net erosion volume per unit length, e(x)/p. — d(x)/p4, with p, and p,; the
mean densities of the eroded and deposited snow, respectively. A detailed reconstruction of M(x),
e(x) and d(x) is obviously not possible for this event, but the observations summarized above imply
the following,

¢  Along most of the track and probably also in the run-out zone, most of the snow cover was
eroded, including the old snow.

®  There is no observational information about erosion and deposition in the upper track above
1550m a.s.l., but based on experience from other avalanche paths (Monte Pizzac, Vallée de la
Sionne, Ryggfonn), it is likely that D(x) < E(x) while the net entrainment rate probably was
almost equal to the erosion rate so that M(x) increased rapidly in that path segment.

*  Inthe middle and lower track, deposition appears to have equaled or exceeded erosion. The likely
causes are the diminishing slope angle and increased dissipation due to still intact or already
uprooted trees.

¢  The deposited mass in the run-out area below 1200 m a.s.l. is much larger than the mass of the
snow cover before the avalanche. It is likely that the mass increase in the run-out zone also
exceeds the release mass. This would mean that e¢(x) > d(x) and that the running mass, M(x),
of the avalanche increased, at least in the steeper parts of the path down to perhaps 1400 or
1300m a.s.l.

®  Detailed measurements at Vallée de la Sionne as well as dynamical considerations [19] indicate
that deposition occurs only in the tail of an avalanche, except right before it stops. This suggests



Geosciences 2020, 10, 466 11 of 34

that much of the fully entrained snow—possibly stemming from the upper layers of the snow
cover—traveled over a large distance, whereas older snow from near the ground was dragged
along a relatively short distance and subsequently deposited when the tail of the avalanche
passed over it.

*  On the one hand, substantial masses of tree debris were deposited near the distal end of the
avalanche, where there had been no forest. This implies that some trees were dragged at least
200-300 m by the avalanche. On the other hand, uprooted or broken trees were found a short
distance below the point where the avalanche entered the forest. This suggests that the tree
destruction rate (the mass of trees per unit area that were broken and/or uprooted) in a dense
forest exceeds the debris deposition rate at least in the steeper reaches of the path and that it also
exceeds the debris entrainment rate along the forested part of the path.

To estimate the degree of actual entrainment of snow and debris, consider the mass and momentum
balances of the entire avalanche and of the fluidized front (index h) separately, with (M, v) and (M}, v;,)
the respective masses and mean velocities. We may set K = v /2 and change the independent variable
from the time t to s, the center-of-mass coordinate along the path, using d/dt = vd/ds to obtain

AM _OF Oty e(s) —
PRl e d =~ we(s) — pd(s), (5)
dMo  dK | ,dM o
s — ME +v 4 Mg (sin@ — py, cos0) — dv. (6)

0 is the slope angle averaged over the instantaneous extent of the avalanche. In the mass balance,
we account for the different velocities of the front (vy), the tail (v;), and the center-of-mass (v); & > 1
and < 1. The last term in Equation (6) accounts for eroded snow that is not mixed into the avalanche
but merely dragged along and eventually left behind while it still has some velocity v; < vy; if this is
the case, mass loss is also accompanied by momentum loss. From Equations (5) and (6) one arrives at

dK we — yd
K 7
M ! @)

= ¢(sin — pycosf) —2

where we estimate ¥ = 8 — (v;/v)? ~ 0.5.

As emphasized in [20,21], when an avalanche runs over a natural snow pack with a buried layer
that is weaker than the snow above it, fracture may occur first in that weaker layer, leading to a jump
in the erosion depth and gradual acceleration of the eroded mass. yj is the effective friction coefficient
in this weak layer and directly related to its residual shear strength, which will typically be in the range
0.5 to 5kPa. The normal stress from the avalanche and slab is 3-10 kPa, therefore p;, = 0.1-0.5. If the
path characteristics vary slowly with s, the entraining avalanche tends toward a dynamic equilibrium
characterized by dK/ds =~ 0. Figure 7a suggests that d ~ ¢ over a large part of the track so that we
may set ae — yd = e. With M(t) ~ 5x10” kg, sinf — py cos§ ~ 0.1 and v(t) ~ 30ms~!, one finds an
upper limit for entrainment,

e s %(Siné — ppcosf) ~5x10%kgm ™, ®

which just covers the observational estimate (3-5) x 10* kgm ™. If one considers only the fluidized
head of the avalanche, M;, = (0.1-0.3)M and v;, ~ 1.5 v so that the entrainment limit for the head alone
is about an order of magnitude smaller. This suggests that the head destroyed the forest and deeply
eroded the snow cover, but fully entrained only a small part of it. It appears likely that the body of the
avalanche entrained some more snow and debris, but it also deposited large amounts.
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5. Observational Limits on Impact Pressure

5.1. Limits Inferred From Forest Destruction

Information from trimlines: The forest was completely destroyed wherever the avalanche reached.
The only exceptions are small islands in the upper track that are sheltered to some degree by
topographical features, and the lateral edges of the path where the flow stopped a few meters inside
the surviving forest without producing much damage. This is best exemplified in [1] (Figure 25),
but can also be observed by enlarging Figures 12, 16, 18, and 21 of [1]. Such a damage pattern can be
explained if (i) the impact pressure of the avalanche along the trimline was close to the minimum value,
Pinr, for breaking or uprooting the trees; (ii) the pressure rapidly diminished near the edges of the flow;
and (iii) there were no pronounced variations of py,, along the flow direction of the avalanche.

If the three suppositions above are correct, knowing py, will only give information on the
maximum impact pressure along two lines in the flow domain. In particular, the question remains
unanswered whether the pressure is much larger close to the centerline of the flow. Nevertheless,
an estimate of the pressure needed to break or uproot an average tree will be useful in understanding
how much kinetic energy of the avalanche is dissipated as the forest is being destroyed.

Breakage vs. uprooting: While some trees were broken or both uprooted and broken, the majority
were only uprooted. This observation can be explained consistently if (i) the root systems of the
majority of beech trees could sustain a lesser bending moment than the tree trunks; (ii) the shear
strength of the root system in the ground varied strongly, so that the maximum sustainable bending
moment of the root system exceeded that of the trunk in some cases; and (iii) the root systems failed so
quickly in most cases that the bending moment was reduced significantly as the trees toppled, so that
the trunks were not broken. Requirement (i) appears plausible given the very shallow topsoil and the
strongly fractured, karstic bedrock, which was pulled out in large quantities together with the root
system (Figure 8). We will attempt to make this requirement more quantitative below. There is no
data or pertinent observation regarding requirement (ii), but one expects local variations in topsoil
depth, in the degree of weathering and in the growth conditions for the root systems of trees to be
considerable in a rugged area like the Grava dei Bruciati. Requirement (iii) is also difficult to verify.
One may argue, however, that the bending moment due to the avalanche increased gradually over
several seconds. This makes it plausible that toppling began when the root system failed and before
the modulus of rupture (MoR) of the trunk was reached.

Minimum avalanche pressure for breaking trees: See Appendix C for the derivation of approximate
formulas for calculating the bending moment exerted on a tree by an avalanche and for estimates of
the maximum bending moment before a tree trunk breaks. Comparing Equations (A25) and (A28),
we find the following criterion for the stagnation pressure % 0 fﬁjzc that will break beech trees,

2
Pstag > (1.5-6) MPa Z—;. )
f

If we assume a flow depth iy ~ 2m, young trees with diameter d; = 0.2m will break at stagnation
pressures of 15-60 kPa, while 60-240 kPa is needed for mature trees with d; = 0.4 m. The majority
of trees in the avalanche path likely had trunk diameters of 0.3 m or less, so stagnation pressures of
35-135 kPa would have been able to break their trunks. The velocity estimates of Section 3 lead to
stagnation pressures in the range of 50 to 150 kPa. One may therefore expect that some of the oldest
trees in favorable locations could have withstood the avalanche if their root system provided sufficient
anchoring and if they were not felled by the impact of uprooted trees swept along by the avalanche.
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Figure 8. Root system of an uprooted tree, showing how the roots permeate the soil and karstic subsoil.

Minimum avalanche pressure for uprooting trees: A bending moment applied to the tree trunk is
transmitted to the root system as long as the trunk does not break. According to the field observations,
the failure surface of the root system can be approximated quite well by a hemisphere with a diameter
in the range of 1.5 to 3m. The soil layer is very shallow in the Grava dei Bruciati, but the karstic
limestone is heavily weathered so that the beech roots penetrated into it and significant masses of
rocks were pulled out together with the roots (Figure 8). The resistance against the bending moment
can therefore be attributed to the shear strength of both the roots, soil, and weathered bedrock.

Assuming for simplicity that the shear strength of the root—soil system has a constant value T root
along the hemispherical failure surface with diameter d,, the moment at failure is

2

Mr,max = R Ts,rootd:r%' (10)

Comparing this with Equation (A25), we find that a tree is uprooted rather than broken if

Ts root < LMoR (é)a (11)
’ 27 dy
According to the observations described in [1], most trees were uprooted and 4, < 10d;.
Mattheck et al. [22] (Figure 14) indicate d, = (5-7) d; for trees in dense stands. With the latter values,
we obtain an upper limit 75 root < 30-80kPa for the shear strength of the soil-root system. This appears
plausible for this type of soil. Unfortunately, we do not have other, independent ways of estimating
the soil shear strength in this location, such as pulling tests on trees.

An experimental study on tree resistance in the central Amazon basin [23] found critical bending
moments in the range of 50 to 400 kN m for different tree species with BHD from 0.2 to 0.4 m, but on
average M) . seemed to increase about linearly with BHD, rather than with the third power as
predicted by the simple mechanical analysis. Moreover, they found comparable numbers of failure
due to snapping and uprooting, with some variations between species and type of terrain.

Energetics of forest destruction and avalanche braking: It is instructive to compare the energy
dissipation caused by the forest to the rate at which the avalanche converts potential energy to
kinetic energy. A tree standing in an avalanche flow dissipates flow energy at the rate P; = Fi,
where F; is the force acting on the tree. Most of this energy is dissipated by internal friction in the flow
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around the obstacle, only a small fraction is transmitted to the tree and stored as elastic deformation
energy, kinetic energy (after breaking or uprooting), and/or dissipated in plastic deformation including
disintegration. Once a tree has fallen, it depends on the circumstances whether it continues to dissipate
flow energy or not. We will disregard this question in the following.

The time until breaking or uprooting (index bu in the following) cannot be straightforwardly
calculated from the modulus of rupture of the tree or from the failure moment of the root system
because the load history and maximum deformation from impact to extraction of the tree are not
known. From videos of (mostly powder-snow) avalanche descents, we estimate that the shrubs and
flexible young trees within the reach of frequent avalanches above 1450 m a.s.l. can be bent down in
Aty ~ 0.5s. In contrast, the root system of the more mature trees below 1400 m a.s.l. has a residual
shear strength after failure that slows down the overturning of the tree. Due to their considerable
moment of inertia, mature trees take about 5s or more to fall under the action of gravity during timber
harvest; under the pressure from an avalanche, this may shorten to Aty,, ~ 2-3s. For the Rigopiano
avalanche, we thus estimate the length of the destruction zone, where trees are standing or falling,
as Ly ~ 20m above 1450 m, increasing to Ly ~ 100 m between 1400 and 1200m a.s.1.

The energy dissipation due to the forest can be expressed as

1
Prorest = PeNt =~ EpfﬂghfdtWLdTl cos 6. (12)

The number of trees generating energy dissipation, N; is the product of the stand density corrected
for the obliquity of the terrain, ncos6, the width of the avalanche, W, and L;. We estimate
pr ~ 100-150kg m~3, h f=2b5m,and i = 30-40ms~! in the fluidized avalanche front. The forest
parameters differ strongly between the mostly young forest above 1450 m a.s.l. (down to 1400 m a.s.l.
on the eastern flank of the shoulder) and the mature forest below:

. Between 1550 and 1450m a.s.l., we assume hf =3m, i = 40ms !, W=80m, L; = 20m,
d; = 0.05-0.1m, and n = 2-4 m 2. This leads to Piest ~ 2-4 GW.

. Between 1400 and 1200m a.s.l., we set W = 30-100m, L; = 100m, d; = 0.3m, n = 0.05m 2,
hf ~3mand i ~ 35 ms~ L. From this, Piest ~ 0.5-1GW.

In comparison, the avalanche flow converts potential energy to kinetic energy at a rate
Py = Mgiisin §, which amounts to 3-9 GW for the entire avalanche, and to about 0.2-2 GW for the flow
in the forest destruction zone. Dense forest thus has a significant braking effect on the fluidized head.

Surprisingly, the large number of young trees and shrubs above 1450 m a.s.l. seem to provide a
stronger braking effect than the mature forest farther down. This should be regarded with caution,
however, because the trees and shrubs may well already have been bent down by the large snow load
before the avalanche struck so that Pyyes; above 1450 m a.s.l. may be much smaller than estimated.

5.2. Limits from Damage to Hotel Rigopiano

Inferences from destruction of buildings: The complete destruction of Hotel Rigopiano may provide
more substantial lower bounds on the pressure, albeit only at one location in the path. However, we do
not have enough information about the structural strength of the different parts of the hotel complex
to make more than an educated guess about the avalanche pressure: From period photos, it seems the
original Rifugio Rigopiano was built in masonry, presumably without steel reinforcement (Figure 3).
If that is the case, the analysis detailed in Appendix D suggests that a depth-averaged impact pressure
in the range 50-75 kPa combined with a flow depth of 2m would be needed to shear a free-standing
wall from its foundation. The wall would, however, already topple due to the moment of an impact of
about 10 kPa if the avalanche flows on a snow cover of 2m. Side walls, interior dividing walls, and the
ceilings will likely raise the minimum impact pressure to 30-50 kPa or more, depending on the number
and size of windows. Due to the support from the ceiling, a wall would presumably cave in rather
than topple.



Geosciences 2020, 10, 466 15 of 34

From Appendix D, it can be inferred that the trunks of mature trees, transported at roughly the
same speed as the avalanche, are likely to be able to penetrate the masonry wall of the old Rifugio
Rigopiano if they hit axially and perpendicular to the wall. Under these conditions, the tree is stopped
in the course of some tens of milliseconds, creating a localized force of 500 kN or more; this is likely to
induce shear fracture in the mortar between the stones, which typically has a shear strength of the
order of several hundred kPa. The same holds for the new parts of Hotel Rigopiano (except the spa
area) if they were not constructed with reinforced concrete. However, oblique or non-axial tree impacts
are much more likely. It remains an open question whether such impacts would be able to penetrate a
masonry wall already strained close to its limit by the impacting snow masses.

Inferences from displacement of the hotel: The photos give evidence that virtually all of the western,
main wing was displaced by tens of meters in the flow direction of the avalanche (Figure 9). We do
not have sufficient information about the failure mode of the ground floor and what degree of shear
resistance the joint between the foundation and the hotel walls had. However, a lower bound on the
pressure can be obtained by estimating fir, the necessary pressure to overcome the friction during the
displacement. Let Ajynp be the effective impact area of the avalanche, M), the mass of the building,
and yy, the effective friction coefficient of the house debris on its foundation. Our assumptions with
regard to the mass of the building are summarized in Table 3; note that these estimates were obtained
purely on the basis of photos and have a large degree of uncertainty. The dense or fluidized part of
the avalanche probably had a flow depth of 2-3m, giving an impact area of 25-40 m?. The friction
coefficient of the debris is unknown, but in view of all iron bars and the roughness of fracture surfaces,
it certainly was at least 0.5, and perhaps even larger than 1. With this, one obtains a mean avalanche
pressure in the range

Pay A —VZth = 120-400 kPa. (13)
imp

Figure 9. Position of the destroyed Hotel Rigopiano (yellow lines) before (right panel) and after the

avalanche (left panel) relative to the structurally stable edge of the spa area (red lines). Still image
downloaded from [11] and reproduced under Creative Commons license CC-BY 3.0, extracted from
Youtube video uploaded by TvSEI (https:/ /www.youtube.com/watch?v=6La91fbpbbg).
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Table 3. Assumptions used for estimating the minimum avalanche impact pressure at the location of
the hotel from the friction force of the rubble against the foundation.

Length Width Height Density Mass

Object Count ()7 @)  m  kgm)  ©
Exterior walls long 2 25 0.3 3 2000 90
Exterior walls short 2 12 0.3 3 2000 40
Interior walls long 7 20 0.2 2.5 1200 80
Interior walls short 20 10 0.2 2.5 1200 120
Floors 4 25 12 0.25 1500 450
Roof 1 25 12 0.2 1000 60
Snow on roof 1 25 12 2 250 150
Furniture, etc. 60
Total mass 1050

This pressure range appears plausible for an avalanche of this size: One expects the velocity
to be in the range i = 30-40ms~! for an avalanche of this size in the upper run-out zone and
after mowing down the forest over a distance of 1km. At NGI's avalanche test site Ryggfonn in
Western Norway, pressure and velocity are simultaneously recorded by load plates and Doppler radar,
respectively. The measurements on dry-snow avalanches indicate that Cpp mostly is in the range
(80-200) kg m 3 [24]. The drag coefficient of the load plates is presumably somewhat smaller than
that of a large wall such as the backside of the hotel. With Cpp =~ 100-250kgm~3, we obtain an
impact pressure

Paval = Cppil> = 90-400 kPa, (14)

in reassuringly good agreement with the estimate (13)—albeit with very large uncertainties.
These bounds are also well above the minimum pressure for caving in masonry walls inferred earlier.

6. On the Vulnerability of Buildings and Persons Hit by Snow Avalanches

In quantitative risk assessment, the risk, Rg, associated with an event scenario S is commonly
treated as the product of three factors, namely, (i) the hazard or the probability Ps of the potentially
disadvantageous scenario S occurring at a given point; (ii) the exposure Eg as the expected number of
persons or the value of objects being present when such an event happens; and (iii) the vulnerability
Vs of persons or objects, expressed as the conditional probability of, e.g., death or critical injury to a
person or the probable degree of damage of an object given the scenario S:

R = ;RS = );PSESVS. (15)

For snow avalanches, a scenario can be defined as an avalanche reaching some given point x with
some given pressure p. The summation over S is then replaced by an integral over x and p, and the
hazard is expressed as the differential probability per unit time, P(x, p) d*x dp.

As discussed in [10], the vulnerability function Vs or V(x, p) is still poorly known, not least
because it strongly depends on the type of building that is affected by the avalanche. In order to enable
use of data on avalanches hitting different types of building, the work in [10] adopts the working
hypothesis that the vulnerability of persons in buildings is governed by the degree of damage, D, i.e.,
how much of the building’s protective function against avalanches is lost; in other words, the function
V(D) is assumed independent of the type of building. The construction type b determines the degree
of damage as a function of impact pressure and flow depth, D(p, h; b). It is advantageous to categorize
buildings into a number of classes, ranging from simple wood-frame houses over wooden block and
non-reinforced brick houses to reinforced concrete buildings. The degree of damage is a number
between 0 and 1; Table 4 describes the damage classes proposed in [10]. Furthermore, different classes
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of vulnerability may be considered, e.g., the probability of grave injury or death, or the probability of
moderate injury.

Table 4. Categorization of the degree of damage as proposed in [10].

Degree of Damage D Damage Description
Category 1:  0.0-0.1 All spaces intact to slightly skewed. Big voids and structure are stable.
Category 2: 0.1-0.4 Impact side partly pushed in or skewed, limited voids at impact side, big

voids at lee side, partly skewed/damaged internal walls. Snow /avalanche
debris in 10-20% of the building.

Category 3: 0.4-0.7 Impact side pushed in/collapsed, big voids approx. 50%, small voids due to
snow avalanche debris approx. 20%. Snow/avalanche debris in at least 50%
of the building.

Category 4: 0.7-0.9 Impact side pushed in/collapsed, internal walls collapsed, no big voids,

small voids due to snow avalanche debris approx. 20%. Snow /avalanche
debris in at least 90% of the building.

Category 5: 0.9-1.0 All spaces destroyed, (almost) no voids remain, large part of building
scattered, most walls destroyed.

With regard to the damage function D(p,h;b), the Rigopiano avalanche can give us the
following information.

e  The main building can probably be classified as a large multi-story masonry building, whereas
the newer spa complex was a one- or two-story reinforced-concrete construction. Neither of
them was specifically dimensioned for avalanche impact. Note that these classifications need to
be confirmed.

¢ The impact pressure of the avalanche can only be inferred from numerical simulations, which are
fraught with large uncertainties because the initial conditions are poorly known and most models
do not explicitly consider fluidization or the formation of a powder snow cloud.

*  The damage to the main building was in Category 5, D ~ 1.

e Images in the media suggest that the spa complex collapsed only partially. Snow entered the
building in large quantities and blocked the way for the children in the gaming room, but left
them with enough space and air for surviving over an extended period. This points to damage in
Category 3 and D ~ 0.5.

Generally, the degree of damage corresponds to the expectations, given the type of building and
the probable range of impact pressure. More detailed information on the constructional details of the
main building and the surface of the spa complex that was exposed to the avalanche impact would
be helpful. Furthermore, for the assessment of the vulnerability function for persons, the location of,
and damage to, the gaming room should be known in more detail.

To the author’s knowledge, detailed information about where uninjured, moderately injured and
deceased persons were found is not released yet. Aggregating information from media reports on
the rescue actions and images of the destroyed hotel (Figure 10), the following is assumed for the
time being:

*  There were a total of 38 persons inside the hotel complex, while two persons were in the parking
lot outside the devastated area and were unharmed.

e  Several children were playing in a room near the spa area, which was less exposed to the
avalanche. The degree of damage was presumably in Category 3, i.e., between 0.4 and 0.7, as it
took up to four days to rescue some of the children.

e  Five of the adults were found alive. In at least two cases, the degree of damage seems to be in
Category 4, yet the persons were only lightly injured.
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®  The death toll was 29 adults who were gathered in the hotel lobby at the time the avalanche
struck. As the entire four-story main building was displaced some 10 m and completely collapsed,
one can assume the degree of damage to be in Category 5.
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Figure 10. Plan view of the hotel/spa complex and location of the survivors (green dots) and victims
(red dots). Approximate flow direction and area of strongest impact indicated by large arrow. Based on
original work by Wikimedia user Fringio published under Creative Commons license CC BY-SA 4.0,
retrieved on 1st November 2020 from https://commons.wikimedia.org/w/index.php?curid=57784522.

In Figure 11, these data are combined with those from the avalanche at Longyearbyen (Svalbard)
on 19 December 2015. In the case of Longyearbyen, each house hit by that avalanche gives rise to
two separate data points, one for each story. For Rigopiano, the adult victims apparently were all
gathered in the lobby and most of the children in a game room, which were damaged to different
degrees. Therefore, the Rigopiano data appear as two separate data points. For each data point
from Longyearbyen as well as for the one from the game room at Rigopiano, the “sample size”,
i.e., the number of persons exposed to the avalanche, was very small (1-5), so that the statistical
uncertainty is very large; for this reason, it is not plotted in the figure. The statistical uncertainty of the
data points from the Rigopiano lobby, however, is about +0.17. The reader should be aware that the
lines in the plot are only meant to guide the eye—they are not the result of a rigorous statistical analysis,
which does not seem to be warranted yet. The trends from this limited data set can be summarized
as follows:

e  The data for damage in Categories 4 and 5 appear consistent between the Longyearbyen and
Rigopiano events. Somewhat surprisingly, six persons out of 35 survived building damage of
degree 5 in Rigopiano, despite the long time it took to find and free them.

*  Within the statistical uncertainty, the data from the Rigopiano game room is also consistent with
the findings from Longyearbyen, even though the three children in Rigopiano may have survived
essentially unscathed in a quite severely damaged room. The degree of damage should, however,
be reassessed once more detailed information is released.
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Figure 11. Vulnerability data from two avalanche events. The data points with D = 0.6 and D = 0.95
are from the game room and lobby of Hotel Rigopiano, respectively, the other 11 sets of two points
with equal D are from each of the houses hit by the 19 December 2015 Longyearbyen avalanche [10].
Where data points would overlap, they were slightly shifted. The full curves were fitted visually with
incomplete Beta functions and are only meant to guide the eye.

7. Conclusions

The observations on the 2017 Rigopiano avalanche described in [1] were limited by the short

duration of the survey and the inaccessibility of the surroundings of the hotel ruins. Nevertheless,

many interesting aspects of the dynamics of this event could be analyzed on the basis of this data,
using simple yet physics-based descriptions. We summarize the main findings:

Among the four avalanches that occurred in the vicinity of Rigopiano on or around 18 January
2017, the avalanche that destroyed the hotel had a much longer run-out than the others relative
to the prediction of the -8 model. The reasons for this remain uncertain.

The estimated front speeds in the range of 35 to 60ms~! have a wide margin of uncertainty,
but the most likely values in the range of 40 to 45m s~ 1 are of the same order as observations,
measurements and numerical simulations of avalanches of similar size. The slow-moving, dense
parts of the avalanche appear to have moved at about half the speed of the front. This agrees with
observations and analyses in small-to-medium size avalanche paths in the Swiss Alps [16].
Estimates of the mass balance are also fraught with large uncertainties, but a consistent picture
emerges. It is probable that a large part of the snow cover was eroded, but much of this mass
was only dragged along for some distance without becoming properly entrained into the flow.
Tree debris contributed much to the mass growth of the avalanche.

The observed damage patterns are consistent with the pressures derived from the velocity
estimates, both with respect to the destroyed forest and the obliterated and displaced hotel.
Breaking or uprooting of the forest was not a dominant factor in the energy balance of the entire
avalanche, but must have had a significant braking effect on the fluidized flow in the forest
destruction zone.

When expressed as a function of the degree of building damage, the lethality curve resulting
from the Rigopiano event is consistent with the one found in the 2015 Longyearbyen avalanche
within the large uncertainties due to the small statistical base. This supports the usefulness of the
degree of damage as the proper variable for obtaining a universal relation that does not depend
on the building type.

The analyses presented here also provide a few pointers for future research. The first is that

simple mechanical considerations often allow one to deduce a considerable amount of semiquantitative
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information from limited observational information. Each inference has a large margin of uncertainty,
but if they all are consistent with each other, the probability of them being far off will be small.
Thus, analysis of a large number of such observations can provide valuable insight on issues of
avalanche dynamics, e.g., their scaling behavior or the conditions and frequency of specific flow
regimes occurring.

The data collected in [4] and here can be used for detailed tests of dynamical avalanche models,
as already attempted, e.g., in [7]. The assumed release area in those simulations, based on the work
in [4], is about half of our estimate in Table 2, leading to an initial mass of 20 kt compared to our
estimate of 30 kt. The authors reduced the estimated erodible snow mass of about 500 kg m~2 in open
terrain according to the crown coverage in the forested gully. The simulations with an extended variant
of RAMMS [25] indicated a peak velocity of 4 ms~! at an altitude of 1450 m a.s.l., which is similar
to our estimate of the minimum approach velocity to the shoulder at 1500 m a.s.l. We have no direct
observations to compare to the simulated avalanche speed of 30ms~! at Hotel Rigopiano. However,
the simulated peak impact pressure of about 400 kPa at that location is at the upper end of our estimate
for the minimum pressure for displacing the ruin, see Equation (13), and is thus compatible with it.
The entrained mass in the model simulations was 100,000 m3 or 20-25 kt, which is far below our estimate
of 110kt of eroded mass, but there is no contradiction between these results: In our reconstructed mass
balance (Figure 7b), the running mass M(x) peaks slightly above 50 kt, which means a net entrainment
of 20kt. According to the simulations, the maximum deposit depth near the hotel was less than 2m;
this appears at odds with photos and video clips showing a many meters deep deposit. This point
deserves closer scrutiny when relevant data from the judicial investigation is made accessible. In the
future, detailed analysis of tree debris distribution from drone surveys may also allow testing of
comprehensive models of the braking effect and destruction of forests.

Some locals of Rigopiano have considerable knowledge about the avalanche history of the area,
including release frequency and run-out distance in many avalanche paths on the eastern flank of
this mountain chain. If these observations could be collected; critically analyzed; compared with a
detailed dendrochronological study as presented by, e.g., the authors of [26,27]; and supplemented by
numerical simulations, high-quality avalanche hazard maps could be elaborated for this little studied,
rather southerly area. Such a map could contribute towards a solid and safe basis for the future
touristic development of the surroundings of Farindola, which has suffered an enormous setback from
this tragic event.
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Appendix A. Derivation of Flow Velocity from Run-Up

To analyze the run-up of an avalanche on a counter-slope of inclination ¥, one should account for
a number of effects: (1) conversion of kinetic energy to potential energy due to gravity, (2) bed friction
along the counter-slope, (3) the tail of the avalanche “pushing” the front, and (4) energy dissipation
due to internal shearing and increased bed friction in the bend at the foot of the counter-slope. For fast
dry-snow avalanches, the flow velocity decreases along the avalanche body so that it seems justified
to neglect the longitudinal pressure gradient. If the slope angle in the approach is 8, the avalanche is
deflected by an angle 6 + ¢ at the foot of the counter-slope; this causes an extra frictional shear stress
per unit mass of yeffuz /R, with R the curvature radius at the foot of the slope. Throughout the hollow,
the centrifugal acceleration is usually much larger than the gravitational one, u?/R > g, so that the
equation of motion is du/dt = %du2 /ds ~ —pegu? /R, with s ranging from 0 to R(0 + ). With initial
velocity ug, this gives the velocity ug exp[—2peg (0 + )] at the beginning of the ascent after the hollow.
Then, one readily obtains the approximate energy balance

1 1
Emuz +mgAH(1 + pegrcot ) S Emu% e et (Y+0) (A1)

for the velocity u after the avalanche has climbed the height AH. Dissipation due to internal shearing
is responsible for the inequality. Note that centrifugal friction can dissipate a large part of the kinetic
energy as Mg ~ 0.3-0.4 and ¢ + 0 often is in the range of 0.5 to 1. Formula (A1) applies to the dense
and fluidized parts of an avalanche only; for an approximate treatment of run-up of powder-snow
clouds, see [28].

To estimate the jump length of an avalanche flowing over a sharp ridge, we assume that (i) the
ascent and descent sides of the ridge are inclined at constant angles ¢ and yx, respectively; (ii) the
ridge itself is a circular arc with curvature radius r; (iii) we may disregard air resistance in a first
approximation; and (iv) the width of the crest is negligible compared to the jump length. Lift-off occurs
if the centrifugal pseudo-force exceeds the slope-normal component of gravity at the beginning of the
curved crest segment, i.e., u/r > g cos ; the lift-off angle is ¢. We ascribe coordinates (x,z) = (0,0)
to the lift-off point. The avalanche front moves on a parabola given by x(t) = ujtcosy, z,(t) =
uitsing — ¢t?/2. Eliminate the time ¢ to obtain the curve

Zg(x) = xtany — xz%{%g#%b' (A2)

The touch-down distance Xjump is determined by the intersection of this parabola with the ground,
Za(Xjump) = Zs(Xjump) & —Xjump tan x. This evaluates to

2
Xjump = 2% cos? P(tan i + tan y). (A3)

An upper bound for the impact velocity is readily obtained from energy conservation:

Uimp < \/u% + 28Xjump tan x = 1y \/1 + 4 cos? P tan x (tan i + tan ). (A4)

Appendix B. Derivation of Flow Velocity from Super-Elevation

It is intuitively apparent that super-elevation—the height difference of flow marks on the outer
and inner bank of a channel bend—contains information of high practical importance to the velocity of
a past flow event. The motion of an avalanche or debris flow through a sinuous channel is, however,
a complex flow-mechanical problem for which—in the author’s opinion—only numerical methods
will provide a satisfactory solution. However, such an approach not only is labor-intensive but also
requires specification of suitable initial conditions, which usually are not known. For this reason,
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several analyses with different degrees of simplification have been proposed in the literature, see,
e.g., in [12,29-32]. To assess the reliability of these methods, it may be helpful to explicitly list the
simplifications made in different proposals with regard to criteria that span the breadth of the physical
problem at hand.

Appendix B.1. Characterization of the Topography

As convincingly demonstrated in [31], natural channels do not consist of straight-line and circle
segments, but the curvature varies strongly along the curved segments. Except for the work in [12],
approximate relations between super-elevation, curvature and avalanche velocity use a single value of
curvature, and it is not always specified at which scale the latter was determined.

Furthermore, note that a gully bend that looks like a circular segment with horizontal radius Ry,
and curvature x;, = 1/R;, on a map in reality is part of a screwline, provided that the inclination 6 of
the thalweg is constant, 6(s) = 6. The curvature of the screwline is then x = «, cos? §, where cos? §
typically ranges from 0.5 to 1. In the literature, it is not always clear whether this geometric effect is
taken into account or not. Moreover, in many estimates of flow velocity from super-elevation only
the radius of the centerline of the gully is considered; this is sufficient if the curvature radius R is
much larger than the channel width W; however, in many avalanche gullies where super-elevation is
observed, W/R is in the range of 0.1 to 0.5, making this approximation questionable.

Appendix B.2. Time Dependence

In mixed dry-snow avalanches such as the Rigopiano avalanche of 2017, the flow velocity
decreases significantly (by roughly a factor of at least 2 [16] to as much as 10 [33]) from the fluidized
front to the main avalanche body and to the decelerating and possibly stopping tail. It follows
that super-elevation is a strongly time-dependent quantity. Yet, all approximate super-elevation
formulas known to the author assume stationary flow to simplify the equations. This amounts to
modeling the avalanche similarly to a river flow with constant discharge. For practical purposes,
the maximum avalanche velocity, i.e., the front velocity, is usually of foremost interest. Therefore, if the
super-elevation corresponding to the avalanche front can be determined, neglect of the time-dependent
terms from the mass and momentum balances is acceptable from a practical point of view.

Field work after an event can estimate the super-elevation only from the altitude difference of the
top flow marks on opposite points on the two channel flanks. It is generally assumed that the top flow
marks were created by the fastest part of the avalanche, i.e., the front. However, this is not obvious
for the top flow mark on the inner bend because the larger centrifugal force drives the fast front more
strongly away from the inner bank than the slower parts following later. If this is the case, maximum
super-elevation may be underestimated considerably. The assumption may nevertheless be correct if
the front is strongly fluidized and has a much larger flow depth than the denser body. This may well
have been true in the Rigopiano avalanche of 2017, and we will proceed with this assumption.

Appendix B.3. Can Inertial Effects Be Neglected?

A far-reaching simplification is obtained by neglecting spatial variations in the flow direction,
which reduces the problem to a quasi-static balance between the forces acting in the cross-sectional
plane. Furthermore, depth-averaging is generally applied so that the resulting equation is
one-dimensional in the direction transverse to the flow (denoted r in the following).

One may try to justify this assumption by invoking the tendency of gravity mass flows to reach a
(nearly) steady state on a slope of constant inclination. However, when an avalanche enters a bend
and begins to climb up on the outer bank, the frictional dissipation can no longer be covered by
gravitational work alone so that the kinetic energy is reduced. In this phase, the flow is not in a
quasi-steady state and the velocity gradient in the flow direction s, d;u < 0, does not vanish. Likewise,
as the flow exits the bend, it descends more steeply than 6 and picks up speed, i.e., dsu > 0. If the bend
is long enough, the avalanche might attain a (short-lived) new quasi-steady state with super-elevation
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in which, moreover, the transverse velocity v = 0 so that the mass balance equation is trivially satisfied
if there is no entrainment. In contrast, if the bend is too short for a new quasi-steady state to be reached,
the inertial terms cannot be neglected: When the avalanche reaches the apex of its excursion from
the thalweg, the super-elevation is less than what would be observed for an avalanche with the same
initial conditions in a long bend.

To proceed, we assume that the avalanche indeed reaches a superelevated quasi-steady state in
the bend so that we can ignore the inertial term in the momentum balance. That state is determined by
a quasi-static force balance in the transverse direction through a one-dimensional ordinary differential
equation; we term the force balance quasi-static because the radial pressure gradient depends crucially
on the centrifugal force, which in turn depends on the (depth-averaged) azimuthal velocity u(r).
For this reason, further assumptions on u(r) are needed; we examine the most popular ones below.

If there are no other quasi-static forces than gravity and the centrifugal force (i.e., no friction
or surface tension), the shape of the surface, h(r), is determined by the requirement that it be
perpendicular to the resulting force on a volume element at the surface,

an ()
dr — gur

, (A5)

with g, = gcosf.

The free (or irrotational) vortex assumption is based on the conservation of vorticity in inviscid fluid
flow: If the flow approaching the bend has zero vorticity, the vorticity has to remain zero in the bend,
i.e.,, V x u = 0. In cylindrical coordinates (r, «,z) and with u; = u, = 0, this reduces to 9, (ru,) = 0,
i.e., uy(r) = L/r, where L is constant across the cross section. Applying this in Equation (A5) leads to
h(r) = heo — % %2, i.e., the surface forms an upward convex hyperboloid. The two constants £ and
heo can be determined by requiring that the volume discharge Qy = |, rt” h(r)uy(r)dr and the linear
momentum discharge Q; = |, rC” h(r)u2(r)dr of the flow be conserved. We will not pursue this further
because the free vortex assumption can hardly be justified for highly frictional flows like avalanches.

In contrast, the forced vortex assumption emphasizes that shear stresses inside a granular mass
flow will tend to minimize the shear as it passes through the bend. In the limit, this leads to a
quasi-rigid-body flow where the angular velocity is equal everywhere across a cross section. If frictional
forces are neglected, Equation (A5) with u,(r) = wr leads to

2

hr) = h(R;) + &

2 2
2 (r" —R7), (A6)

i.e., the flow surface would be an upward concave paraboloid. The pressure per unit mass inside the
flow is
po(r,z) = g«[ho—z], Ri<r<R,, 0<z<h (A7)

in the approach part of the channel and
p1(r,z) = g«[h(r) —z], Ri<r<Rp,, 0<z<hy (A8)

during the quasi-stationary phase of the flow through the bend. By direct integration of the body forces
inside the wedge 6V = [R;, 1] x [a, & + da] X [z,z 4 dz] and the pressure on its boundary, one may
verify that p(r,z)rdadz exactly balances the centrifugal force from all the mass in the wedge if the
surface satisfies Equation (A6).

The flow depth at the inner bank, &(R;), and the angular velocity, w, have to be chosen so as
to fulfill additional constraints. The main candidates are the fundamental conservation laws, in this
case expressed in terms of discharge of mass, linear and angular momentum, and energy. Under our
idealized conditions, the flow is stationary so that the mass discharge must remain constant along the
channel, providing the first constraint. Due to the normal and shear stresses exerted on the flow by the
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channel, none of the other three quantities is conserved for the flow itself so that the corresponding
discharges are not strictly constant. If the bed and wall shear stresses are small or if they are mostly
balanced by the downhill gravitational force, the discharge of both linear momentum and angular
momentum about a given axis remain approximately constant. With a leap of faith, this can be used as
a second constraint.

The relatively simple case of a frictionless fluid is useful for exploring the effect of different channel
geometries. Consider first a rectangular channel with constant width W (Figure Ala,b). With an
approach velocity u(y) = ug = cst. and initial flow depth h(y) = hy = cst., one finds the volume
discharge, Qv o = Whyuy, and the discharge of angular momentum about the center axis of the bend,
Omo = Whou%(Ro +R;)/2= Whou%R before the bend. In the bend, the volume discharge is

3
Qv1 = wRh(R)W + Zw—RZWZ, (A9)

*

with R = (R; + R,) /2. From Equation (A9) one deduces

2
w* -
h(R;) = RQCL‘)/I?\/ - 2g*RW, (A10)

provided this is positive (negative values of 1(R;) indicate that the flow no longer touches the inner
bank and these expressions need to be modified). In the limit R — oo one has w — 0, Rw — 19 and
h(R;) = Qm,o/ (Wug) = ho.

Proceeding in the same way, one may express the angular momentum discharge as

_ _ w2 Rw)* W37 1

In the limit R — oo, Qp11 reduces to Q100. The general solution to this quartic equation is not very
illuminating, but if one sets Rw = il, one immediately finds an approximate solution for very gently

curved channels,
WZ
1 =~ Uy (1 — _) , (A12)

which allows one to relate the super-elevation not only to u1, the velocity in the bend, but also to the
approach velocity uy. Furthermore, if one evaluates Equation (A6) at ¥ = R,, one can express the
super-elevation as

Ah 1-2—=

R2
The first part of Equation (A13) is equivalent to Equation (8.27a) in [29], (p. 308).

(A13)

—_—~ =

W g W w2
S8R g R ’
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Figure Al. Simple channel geometries used in the text: (a) Normal view and (b) cross section of a

rectangular channel of constant width with a circular bend. (c) Prismatic channel. Note that the bank
slope angle 1 is measured in the cross-sectional plane, which in general is inclined relative to the
horizontal. The flow depth hy in a straight segment is drawn such that the cross-sectional area is
somewhat smaller than in the superelevated state to indicate that the mean flow velocity in the bend
may be lower than in the straight segments due to increased dissipation.

Prismatic channel cross section: A more relevant geometry for snow avalanches is a gully with
prismatic cross section, as shown in Figure Alc. The physical principle of the transverse pressure
gradient balancing the centrifugal force remains the same, and so the formulas for the surface
shape (A6) and the pressure distribution (A8) are unchanged except for modifications to the domain
according to Figure Alc. With this, the surface still is a paraboloid under the forced-vortex assumption.
Equation (A13) carries over to this geometry if one sets R = (R; + R,) /2 and replaces W by R, — R;.
R; varies according to R; = R, — h; cot ¢ and R, is determined by the intersection of the flow surface
with the outer bank: h(R,) = h; + % (R2 — R?) = (R, — R,) tan ¢, where one is to take the smaller of
the two roots of this quadratic equation. For w larger than a critical value, there is no solution and,
hence, no quasi-static configuration; however, substantial input of energy would be needed to reach
this state. One may now proceed to calculate the mass and angular-momentum discharges Q; and M;
and to approximately determine /; and w, but explicitly doing so is beyond the present scope.

In reality, flow in a channel or gully bend will not be irrotational due to viscous stresses or friction
inside the flow, nor will it be like rigid-body motion because these stresses are not strong enough to
prevent considerable shear in the a-z plane. It is doubtful whether the assumption of a quasi-steady
super-elevation state is a reasonable approximation at all since the flow is three-dimensional and
non-stationary. Even if one admits this approximation, the shape of the surface will be between an
upward convex hyperboloid and an upward concave paraboloid in the absence of friction. One may
argue that the free-vortex approximations will be closer to reality if the flowing material has low
internal viscosity or friction and if the bend is short and sharp, i.e., the channel width W is of the same
order of magnitude as the mean radius R and its length Rapenq is short compared to the characteristic
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distance Leq over which the flow adapts its velocity to new conditions. If W < R and Raypeng ~ Leq,
the forced-vortex assumption will be closer to reality.

Appendix B.4. McClung’s Model for Super-Elevation in Granular Avalanches

Some researchers have adapted Equation (A13) with an empirical factor to account for the specific
properties of granular mass flows. Not surprisingly, the values of the coefficient range over an order of
magnitude because important physics is missing. McClung gave the first analysis of super-elevation
based on a central property of granular materials, namely, friction [30]. The model distinguishes
between basal friction, characterized by an effective friction coefficient y = tand, and the internal
friction angle of the moving avalanche, ¢. The latter contributes to the balance of forces through
passive earth pressure across a longitudinal section at the foot of the outer bank slope. Basal friction
acts along the outer bank slope. As a quasi-stationary flow is considered, there is no actual sliding
along the bank slope transverse to the flow direction and it is not a priori clear in which direction this
friction force acts. This is left to separate assessment in each specific situation, but it is argued that fast
dry-snow avalanches will tend to move upslope (vs > 0) so that the friction force points downslope,
and conversely for slow wet-snow avalanches (vs < 0).

If one assumes a triangular channel cross section (W, = 0 in Figure Alc) and that W; = R, — Ry as
well as the flow depth k. ; at the center line of the channel are known, the following velocity estimate
is proposed in [30],

2
Ml o hC,l _ 2 Ah
R, ~ Wy 1— K, cos IPCOS(ZI[J)} + A + sgn(vs) . (A14)

Here, K, is the passive earth pressure coefficient; it depends on the internal friction angle and is
larger than 1. Usually, k.1 < Wj. v; is the transverse sliding velocity, or rather, sliding tendency,
which determines the sign of the transverse frictional force component. The latter is proportional to
the effective friction coefficient u. If one sets v; = 0 and sgn(0) = 0, Equation (8.27a) in [29], (p. 308) is
recovered. If v; > 0 and the terms specific to granular flows are accounted for, a frictional avalanche
needs higher velocity than a frictionless one to attain an observed super-elevation.

Closer scrutiny reveals a number of points to consider before applying this formula. First,
the geometry suggested in [30] (Figure 2) does not allow one to connect the super-elevation Ah to
flow marks on the inner channel bank because the author assumes that the lowest point of the flow
surface is in the center and that the flow surface rises towards the innermost point in some unspecified
way. This means that /1, and Ah have to be estimated from the condition /. + Ah = W tan 1, leading to
considerable ambiguity. If the flow cross section in the approach section, Ag ~ Wph, o, can be estimated
from flow marks, one may try to narrow the possible values down by setting the volume discharges
Qvo = Apupand Qy 1 = (%Wlhc,l + AA1)uq equal. However, the cross-sectional area on the inside of
the center line, AA; needs to be guessed and assumptions about the relation between 11 and 1y made.

A second point to note is that a uniform velocity u; across the cross section is tacitly assumed.
This differs fundamentally from the forced-vortex assumption and is hardly more realistic in a frictional
material because such motion would cause considerable shear and friction forces in planes normal
to the radial direction, tending to the rigid-body motion implied by the forced-vortex assumption.
Moreover, only the curvature radius at the center line, R is considered; this amounts to the condition
W < R, which often does not hold in real avalanche gullies.

Third, there are some subtleties associated with the basal friction term sgn(vs)u in Equation (A14):
The avalanche is moving in the azimuthal direction « in the assumed quasi-steady state. This means
that there is shear at the flow base, implying that the Coulomb failure criterion is met at the interface
between the flow and the bed and that the maximum shear stress is mobilized against the flow direction.
vs/u, ~ 0 must hold in the quasi-steady state so that the shear stress component along the bank slope
becomes approximately —p0,v;s/u, (with o, the corresponding normal stress), i.e., it goes to zero.
Accordingly this term should be dropped from Equation (A14).
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Appendix B.5. Alternative Treatment of Granular Effects

When attempting to remedy the shortcomings of the model in [30], one of the questions that
arise concerns the shape of the superelevated flow surface when friction is present. Assume that
the forced-vortex assumption is fulfilled in the limiting quasi-steady state so that the shear stress 7y,
vanishes or is relatively small. An infinitesimal control volume at the flow surface is subjected to a
body force per unit mass, db,

w?r/g.
db = tan 0 gxdV (A15)
-1

in the local cylindrical coordinate system (7, a, z), with a the azimuth angle in the flow direction and
dV = rdrdadz. It must be compensated by the forces from the shear stresses T,, and 74 and the
normal stresses ¢, and 0,,. These combine to

0,0, drdA, + 17,dA;, —o:h —c tan¢g
df = T dA; = —cy tan ¢ g« dV, (A16)
UZZ'h(r)—dz dA; 1

where dA; = rdadz, dA, = rdrda, and we assume hydrostatic normal stresses for simplicity.
The coefficients ¢, and ¢, indicate the degree to which the frictional shear strength is mobilized in the
respective direction; they must satisfy the condition cZ + cé < 1. From the quasi-steady-state condition
db + df = 0, one sees that two cases must be distinguished: (a) If 8 > ¢, c, = 1 and ¢, = 0. Then,
the radial component of the force balance leads to the same equations for /(r), Equation (A6), and the
super-elevation, Equation (A13), as in the case of a viscous fluid. (b) If 6 < ¢, thenc, = tan 8/ tan¢ < 1

and |c,| < \/ 1 — tan? 0/ tan? ¢. Now one obtains the differential equation

wZ
d:h = o —y/tan? ¢ — tan? 6, (A17)

2
h(r) = h; + %(;’2 — R?) — (r — R;)y/tan? ¢ — tan? 6. (A18)

Thus, if the gully floor is less steep than the internal friction angle, this simplistic granular model also
predicts a paraboloid surface shape, but the super-elevation is reduced:

2
_ U1 fian2 b — tan2
A=W (Rg tan“ ¢ — tan 9) . (A19)

*

which is solved by

This formula predicts the velocity of a granular flow in a gently inclined gully to be higher than
the estimate from Formula (A13) for a viscous fluid. The main problem in applying Formula (A19) is
the lack of measurements of the dynamic internal friction angle of avalanches, with estimates in the
literature differing from about 15° to 65° (see the discussion in [30] (Section 4)). However, if there is
reason to assume that the avalanche front was strongly fluidized, the dynamic internal friction angle
can be set to 0 and Equation (A13) applies.

Appendix B.6. Remarks on the Pudasaini—Jaboyedoff Super-Elevation Model

In [12], a substantially different approach to estimating flow velocity from super-elevation is
used. The starting point is the Pudasaini-Hutter model [34], an extension of the Savage-Hutter
model adapted to flows in arbitrarily curved avalanche gullies. It is formulated in a special “tubular”
coordinate system (s,B,7), the center line C of which (r = 0) parallels the talweg of the gully. s is
the arc length along the center line; for each value of s, all points in the plane normal to the center
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line can be described by the azimuthal angle 8, measured from the local normal vector N(s) of the
center line, and the distance r from C. (In [12,34], the azimuthal angle is 6; we will use j instead to
prevent confusion with the slope angle 6 used elsewhere in the present paper.) As a curve in 3D space,
C is characterized by its curvature «(s) and torsion 7(s), from which the curvature and torsion of
the coordinate lines (s, § = cst., 7 = cst.) can readily be calculated. This coordinate system is locally
orthogonal, but not terrain-following so that the gully surface is not usually tangential to the s and j
coordinate lines and normal to the r lines. This is relevant because it induces extra gravitational force
terms in the momentum balance equations (termed “topographical pressure gradient terms” in [12]).

Written in this complex coordinate system, the balance equations of mass and momentum
necessarily contain many terms that account for the curvature effects. An unusual feature is that
the torsion of C also enters in a prominent role. This is a direct consequence of the s-dependence of
the normal vector N(s) of C, from which the azimuthal coordinate § is measured. Statements like
“In fact, super-elevation is the result of the twist of the topography that corresponds to  # 1” [12]
(p. 1385), must therefore not be interpreted as saying that other approaches to super-elevation, using
substantially different coordinate systems, are wrong if they do not account for torsion. For example,
in the report [35] the depth-averaged balance equations for a gravity mass flow are derived for
terrain-following curvilinear coordinate systems; as no talweg or similar curve is singled out, there is
no notion of torsion, yet the equations are physically equivalent to the ones presented in [34] (up to
terms of higher order in an expansion in powers of small quantities).

The Pudasaini-Hutter model achieves significant simplification by a scale analysis and discarding
all but the leading and next-to-leading terms. However, in this author’s opinion, some of the
assumptions are poorly adapted to strongly channelized flows like the Chamoson debris flow featured
in [12]. In particular, it is assumed that the curvature radii of the gully are much larger than the flow
length, and it is not recognized that gullies often are more strongly curved in the cross-flow direction
than in the flow direction. The assumed ordering of terms retains extra friction due to the centrifugal
force associated with the main bend, —pux¢ u2, but drops similar contributions proportional to v% and
uv. While typically v?> < u?, this may be compensated by Kpp > Kss. For example, neglecting this term
will lead to significantly wrong predictions for the run-up height of an avalanche released from the
side of a gently inclined straight gully.

To focus on the decisive points of the super-elevation formulas developed in [12], we set the
earth-pressure coefficients to 1, assume a constant semicircular cross section of the gully (radius rg)
and use the variables x = s, y = r¢f and z = ry — r instead of s, f and . In this simplified setting,
the topographic gradient Vb (s, B) as well as derivatives in the z-direction vanish. We set V = (0, ay)T,
u=(y,v)Tand g = (gH,gZ)T. The quantity

S
1 = cos <y - / T(s’)ds’) (A20)
T’g s
plays an important role in this theory. The time derivatives and the inertial terms are dropped from

the momentum balance equations in [12] so that the latter reduce to

u

1 1
— u(gz + xnu?) = 8| — EV <2gzh2> . (A21)

[[ull

Squaring this vector equation leads to an expression that can be solved for the longitudinal velocity u
(equivalent to Equation (6) in [12] if the topographic pressure gradient vanishes):

1 1o (1 2
' = pro [g| - EV <28zh2>} — M8z (A22)

However, this formula has significant limitations: (i) At some points along the gully, x and/or 5
may be zero. This causes divergence of u unless there is exact equilibrium between the gravitational
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driving force and the hydrostatic pressure gradient on the one hand, and the frictional resistance on the
other hand. (ii) Where x# # 0, the frictional force without centrifugal effects must be smaller than the
driving forces for a real solution to exist. (iii) The factor 1/ (uxn) should be replaced by 1/ (p|x#|) to
ensure a real solution. (iv) To calculate u, the spatial distribution of the flow depth must be known so
that Vh can be evaluated. This information is not available except in laboratory experiments. One may
try to obtain a rough estimate from the super-elevation height Ay and the width W of the channel,
but the gradient of /1 will depend crucially on the shape of the surface. However, the discussion in
Section B.5 has shown how strongly this shape depends on the transverse profile of u.

The authors then proceed to extract the transverse velocity v through the formula

SN

V=t —, (A23)
\/1- 8%
where they define the so-called super-elevation number as
oyh
Sy = fgziyz. (A24)
p(gz + Kyu?)

This formula predicts v to be non-zero unless d,h = 0. Near the outer edge of the avalanche d,h < 0,
therefore v > 0, and conversely near the inner edge. Thus the Pudasaini-Jaboyedoff model predicts
that the avalanche will spread sideways while rounding the bend (this may or may not be the case
in reality) and that this spreading will continue (within the bend) until the avalanche becomes very
thin so that d,i ~ 0. This nonphysical result is a direct consequence of neglecting the inertial terms,
yet applying the truncated equations to a non-stationary situation.

Appendix C. Forces, Moments and Energetics of Tree Breaking and Uprooting

A tree trunk breaks when either the tensile stress near the outer periphery of the trunk or the
compressive stress near the inner periphery exceed the modulus of rupture (MoR). The MoR has been
measured by many authors, with somewhat differing results; in particular, it is about 50% higher
for dried wood than for green wood. According to the work in [36] (ch. 4), the MoR for (green)
beech is about 59 MPa. With some simplifying assumptions of homogeneity across the cross section,
the maximum bending moment can be obtained by integration across the cross section:

T

M, max = 55 MoR d3 ~ (5-6 MPa) d3, (A25)

where d; is the trunk diameter at the failing cross section. For simplicity, d; is often replaced by the
diameter at breast height (DBH). A beech with d; = 0.2m will thus break at a bending moment of
(40-50) kN m, whereas (600-750) kN m is required to break one with d; = 0.5m.
To estimate the bending moment due to an avalanche, we assume a local slope angle 6,
a snow depth h; and a flow depth iy (both measured normal to the ground), flow density py,
flow velocity profile u(z) (with z the coordinate normal to the ground), and a constant trunk diameter
d;. For simplicity, we neglect drag forces along the axis of the tree trunk due to the oblique impact
and apply a drag formula that is appropriate for flow of cohesionless granular materials around a
cylinder [37-39]:
Cp ~1+5Fr 2, (A26)

withFr =1/, /h 8 COS 0. Then, we obtain

1 5¢h ¢ cos 6 h
My =3 (1 + giz) Pfdf/0 "2+ hou(2)dz. (A27)
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The integral evaluates to

(Z—; + %) hj%ﬂz for a uniform profile u(z) =1,

2
(g’,j; + 28) K22 for a Newtonian profile u(z) = %ﬁ {1 - (1 — ﬁ) } ,

3/2
( ) h2a?  for a Bagnold profile u(z) = %g {1 - (1 — ﬁ) } )
( + 1) h2@?  for alinear profile u(z) = zgé,

Our lack of knowledge of the velocity profile leads to an uncertainty of about £30%, and the
effect of a non-uniform density profile has not been accounted for in this simple analysis. For plausible
values 1/3 < hs/hy < 1/2, the integral is in the range (0.8-1.7) hjzfﬁz. With typical Froude numbers in
the range 3-7, one has 1.6 > Cp > 1.1, so that we estimate

1
M, ~ (1-3) h}dt 5P faj%. (A28)

To calculate the maximum moment Moot max that the root system of a tree can sustain, one would
need detailed information about the shear strength of the root system as a function of distance from
the tree foot and of depth in the soil and about the cohesion and internal friction angle of the soil as a
function of depth. None of this is available for the Grava dei Bruciati, so only a summary estimate
can be made in terms of some mean shear strength T; root Of the root system and the soil/bedrock
combined. The observations and the literature provide an approximate value for the diameter of the
< 10d; from the

~

root system, d,, out to the failure surface relative to the tree diameter, namely, d,
observations and d, = (5-7) d; from the work in [22] (Figure 14).

With these simplifications, one can integrate the moment about the y-axis perpendicular to
the flow direction over the hemisphere. In a spherical coordinate system with azimuth angle ¢
about the y-axis and elevation angle ¢, the leverage arm is (d,/2) cos  and the surface area element

= (d?/4) cos ¢ d¢ dy, which leads to

/2 pm/2 ) 772 N
Mioot,max ~ Ts root / / cos” pdop dy = RTS,TOOth' (A29)

Appendix D. Estimate of the Strength of Hotel Rigopiano against Avalanche Impact

Analyzing the structural stability of a complex building under impact is far beyond the scope
of the present paper. Nevertheless, to get an indication of the order of magnitude, we consider two
simple load cases that should be relevant in the case of Hotel Rigopiano, namely, (i) failure of a wide
solid wall under an impact lasting longer than the period of the lowest eigenmode and (ii) impact
of a solid object (tree or stone) on a masonry wall. Windows and doors may reduce the structural
strength significantly, but the extra support from sidewalls and ceilings will most likely more than
compensate for this. The letters o and T will be used to denote stress and material strength, respectively,
with subscripts ¢, s and t indicating compression, shear and tension.

When an avalanche impacts a wide solid wall of thickness b without interior support walls,
the shear stress inside the wall at the level of the bottom of the flow, at z = hg., can be calculated as

hse+H
Tralhse) = /h p(z)dz, (A30)
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where p(z) is the vertical pressure profile along the wall and H is the splashing height at the wall,
limited by the building height. Similarly, the bending moment per unit width at the base of the wall is

hse+H
My = /SC p(z) zdz. (A31)

In the calculation of oy (hsc), splashing can be neglected and p ~ pﬁz used, giving oz (hsc) ~ %fﬁ.
In the calculation of M, splashing matters in that it reduces the pressure in the upper part of the
flow while reaching higher than the original flow depth, with a correspondingly larger leverage arm.
The analysis in [40] and the recommendations in [41] (Chapter 11) are relevant in this context, but in
view of the large uncertainties we take a short-cut and use My = (hsc + h¢/2)h¢p, with his the depth
of the flow. The area moment of inertia of the wall per unit width being 7 = b3 /12, the maximum
tension at the base becomes 07 max = %/\/l /T =6M;y/ b2.

The strength of non-reinforced masonry walls is essentially determined by the mortar, of which
there are many varieties with widely varying properties. Typical values found in the literature and
on various websites are about 75 ~ 0.3-0.5 MPa for the shear strength, 7; =~ 3-5MPa for the tensile
strength and 7. ~ 30-50 MPa for the compressive strength, but significantly lower or higher values are
also mentioned.

The impact of a tree onto a masonry wall is a complex process, both with regard to the physics
and the variability of the initial conditions. Some trees are rafted by the avalanche with the crown
ahead, others with the root system first. Especially the crown has a large area and is much softer
than the trunk, whereas the root systems of trees in the Rigopiano avalanche often contained large
quantities of limestone. If the tree trunk is not aligned with the flow direction, it will be rotated about
a approximately vertical axis upon impact. Due to this variability, it does not seem possible to assess
the effect of the tree debris on the damage to Hotel Rigopiano with simple means.

It may nevertheless be of some interest to consider the limiting case with the largest damage
potential: Assume a tree of (constant) diameter d;, length L;, density p;, and Young’s modulus E (along
the fibers) to hit the masonry wall in axial direction and perpendicularly with a velocity v. The stone
block that is hit is assumed to transmit the impact force to the mortar along its perimeter of length
¢ and depth b. The wall is considered to be damaged if the mean shear stress in the mortar exceeds
its shear strength, 7;. This gives a lower bound on the tree velocity required for damaging the wall;
under non-axial and/or oblique impact, the shear stresses are reduced and a higher impact velocity
is needed.

The impact force Fimp exerted by the tree is transmitted almost instantaneously through the stone
to the mortar, leading to a mean shear stress 0; = imp/ (bf) in the latter. From this, one obtains
the failure condition Finp = 05b¢ > Tbl. The value of ¢ depends on whether the tree hits one or
several stones, which we assume to have mean width w and height h: ¢ = 2(w + h) for a single stone,
¢ = 3w + 4h for two stones shifted by w/2, { = 4(w + h) in the case of three stones in two layers, etc.
This does not take into account that the shear stress is not uniform along the perimeter. For typical
masonry (limestone blocks for the old Rifugio Rigopiano, possibly bricks in the new part of the hotel),
one may assume ¢ to be about one order of magnitude larger than d;.

To obtain a bound on Fimp, consider that the momentum of the tree, | = %d%Ltptv, needs to be
transmitted during the time Tstop it takes to stop the tree, thus

J _Eptd%Ltv
Tstop 4 Tstop .

Fimp ~ (A32)
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During the impact, a compressive shock travels along the tree with a speed c so that Tstop = Lt/c.
This implies that Fy,p does not depend on the tree length while Top is proportional to it. The wall

will be penetrated by the tree if
%%3. (A33)
¢ PtC
The physics behind this approach is similar to the so-called water hammer effect, the main
difference being the appearance of plastic deformation in a solid. This makes the problem significantly
harder to treat for solids than for a Newtonian fluid, see, e.g., in [42] for a lucid account. The following
simple analysis is largely guided by that work.
In the linear elastic regime, characterized by Young’s modulus E, the propagation speed of
sound waves is given by c, = \/ doyy/dpr = \/ E/p: (we use the engineering convention here with
compressive stresses counted positive). With E ~ 10 GPa along the grain for most tree species and

pt ~ 600 kg m~3 for beech, ¢, ~ 4kms~!. At an impact speeds above 10ms~!, the compressive stress,
0. = pruc, exceeds the compressive strength of green beech wood along the grain (about 25 MPa
according to the work in [36]). It is likely, however, that a long tree trunk will fail already at lower
impact speed due to buckling. In addition, the wood begins to deform plastically well before the stress
equals its compressive strength. It appears reasonable to assume wood to be hardening in the plastic
regime, i.e., 0 < do/dp; < E/pt, which implies that the plastic shock propagates more slowly than the
elastic wave. If we further suppose that the plastic shock speed is still larger than the sound speed
in water, cp) ~ 2-3km s L. Using this value in Equation (A33) with b = 0.3m, { =2m, 7; = 0.5MPa,
di = 0.3m, and p; = 600kgm~3 leads to a minimum impact velocity of 2.5-4ms~!. However,
as pointed out above, the probability of a perpendicular and axial impact without dampening effect of
the crown or root system is very low.

Incidentally, the obtained minimum velocity looks plausible when comparing it to the impact
velocity of battering rams used in sieges of fortified cities in antiquity and the Middle Ages: The rams
were often suspended from chains so that they could be swung. To judge from images of medieval
siege machines [43], the fall height during the swing was probably about 1.5m or less, giving an impact
velocity of 5-10m s 1 against very massive walls with ¢ > 10 dam.
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