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Abstract: Maar volcanoes are monogenetic landforms whose craters cut below the pre-eruptive
surface and are surrounded by a tephra ring. Both the maar crater and the surrounding tephra
rim deposits are typically formed due to magma–water explosive interactions. Northern Chile is
located in the Central Volcanic Zone of the Andes where, in literature, 14 maars have been recognized
as parasite (6) and individual (8) volcanoes. Amongst these individual maars, 3 of them, namely
the Tilocálar Sur, Cerro Tujle, and Cerro Overo volcanoes, are not related to calderas and were
emplaced <1 Ma ago by magmatic explosive-effusive and phreatomagmatic eruptions. Based on
the evolution and control of the volcanic eruptive styles of these three maars, which have been
determined in previous research through fieldwork, stratigraphic, morphometric, textural (density
and vesicularity), petrographic, and geochemical analyses, a set of key features that favor a prediction
of the emplacement location of maar volcanoes in Central Andes, northern Chile are proposed.
The set of features that permit and favor the growth mechanisms for maar formations corresponds to
(i) a compressive tectonic setting (e.g., ridge structures), (ii) groundwater recharge (e.g., snowmelt
and seasonal rainfall), (iii) the lithological setting (e.g., layers of low permeability), (iv) the presence
of aquifer and/or endorheic basins (e.g., lakes or salars), and (v) a period of stress relaxation that
permits magma ascent to the surface in volcanically active areas. Considering these characteristics,
it is possible to identify places where phreatomagmatic eruption can occur. If the magma ascent
flux is lower than the groundwater flux, this can lead to a phreatomagmatic eruption because of
groundwater coming into contact with the magma. These eruptive features evidence internal—and
external—factors that play an essential role in the transition from explosive-effusive magmatic to
phreatomagmatic volcanic eruption styles during the same eruptive period that is one of the biggest
challenges in volcanic hazard evaluations. Although, in this contribution, a set of features that permit
and favor the growth mechanisms for a prediction of the emplacement location of maars in northern
Chile is proposed, these considerations could also be applied to identify potential locations in other
parts of the world where magma–water interaction eruption could occur. Therefore, this approach
could be useful in the prediction of hydromagmatic volcanic eruptions and, thus, in mitigating the
impact of volcanic hazard for the inhabitants of the surrounding areas.
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1. Introduction

Maar volcanoes are the second most abundant type of volcanoes on continents and islands after
scoria cones [1,2]. They can occur in any tectonic setting and are found isolated in monogenetic
volcanic fields or associated with polygenetic volcanoes [3]. They are small-volume volcanic edifices,
characterized by a hole-in-the-ground morphology where its floor is below the pre-eruptive surface
surround by a tephra ring deposit [4]. Maar volcanoes are characterized by small-volume, short eruptive
duration, typically associated with a simple magmatic plumbing system, ranging from simple to
complex eruptive morphology (number of explosions) and from basaltic to rhyolitic composition [4–18].
They are typically the result of externally-driven fragmentation when the melt interacts directly with
external water (e.g., seawater, water-saturated sediments, lakes, groundwater table, littoral cone,
or rootless cone). This direct interaction between magma and water is known as phreatomagmatic or
Taalian eruption which forms one of the most common subaerial volcanic crater types of explosive
volcanism such as maar-diatremes [1,11,15,18]. In addition, maar volcanoes can display a complex
architecture of the volcanic edifice that is determined by the number of eruptions and type of
eruption styles [11,19]. In this context, they typically transition from phreatomagmatic to magmatic
eruptions, evidenced by the final volcanic landforms as maar-diatremes associated with a lava dome
(e.g., [20]), lava flows (e.g., [21]), or scoria cones (e.g., [21]). There are few cases where monogenetic
volcanoes were formed by a magmatic eruption and then destroyed by a phreatomagmatic eruption
at a later stage, and evidence of an actual transition from magmatic to hydromagmatic eruptions
is found in cases such as Crater Elegante, Mexico [22,23], Halema’uma’u 1924, Hawaii [24–26],
Al Haruj al Abyad, Libya [27], Alumbrera scoria cone, Argentina [28], or Dotsero volcano, Colorado,
USA [29]. Confirmation of the presence or absence of phreatomagmatism and the role of the water in
the formation of maars has been proven in many studies e.g., [15,30,31]. The diagnostic criteria are
the typical features described for ultrabasic and basic maars studied worldwide and for the current
models on the phreatomagmatic emplacement of maar-diatreme volcanoes in subaerial continental
environments [6,8,9,32]. Nevertheless, for intermediate maars, the criteria to distinguish magmatic
versus phreatomagmatic tend to be ambiguous or have exceptions, concerning the typical features of
emplacement models of ultrabasic and basic maars.

In the Central Volcanic Zone of the Andes, a total of 14 volcanoes have been defined as maars in
northern Chile [33] as parasite (volcanic features forming vents, craters, cones, domes, and mounds
of varying diameter and height situated either beside the main cones or at the flanks and bases of
volcanoes; [34]) and individual centers (Figure 1). Parasite maar volcanoes correspond to Alitar [35],
Puntas Negras [36], El Laco Sur [37], Juan de la Vega [38], Baker [35], and La Espinilla [39]. Individual
maar volcanoes are Michacollo [40], Lliza [40], Churullo [41], Cerro Jarellón or Pampa Redonda [42–44],
Corral de Coquena [42–46], Cerro Overo [35,47–49], Cerro Tujle [47,48,50], and Tilocálar Sur [47,48,51].
Nevertheless, most of these centers have been defined as maar in the pure morphological sense
(e.g., a broad flat-floored crater that cuts into the syn-eruptive surface) regardless of whether these
were formed by a direct magma–water interaction (maar volcano; [4]), or by an indirect magma
water interaction vaporized by heat without direct contact with fresh magma (explosion crater or
hydrothermal explosion pit; [52]).
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Figure 1. Location maps. (a) Map showing the location of the Northern, Southern, Central, and Austral
Volcanic Zones (NVZ, CVZ, SVZ, and AVZ, respectively) of the Andes defined by Thorpe and Francis [55]
(Modified from [36]). (b) Location map of the CVZ (Modified from [36]) showing the main active
polygenetic volcanoes [56]. (c) Map of northern Chile showing the location of the maar volcanoes in
northern Chile and major morpho-volcano-tectonic units of the Central Andes (Modified from [57–59]).
(APVC) Altiplano-Puna Volcanic Complex; (APMB) Altiplano-Puna Magma Body; (1) Michacollo; (2) Lliza;
(3) Churullo; (4) Jorullo or Pampa Redonda; (5) Alitar; (6) Corral de Coquena; (7) Cerro Overo; (8) Puntas
Negras; (9) El Laco Sur; (10) Cerro Tujle; (11) Tilocálar Sur; (12) Juan de la Vega; (13) Baker; (14) La Espinilla.

The main objective of this study is to describe the potential features that favor the prediction
of the emplacement location of maar volcanoes in Central Andes, northern Chile, in order to
determine an emplacement model for intermediate maar volcanoes by magma–water interaction
(phreatomagmatism). Based on detailed field observations of the maar deposits such as lithologies
and features of erupted material, Ureta, et al. [50], Ureta, et al. [53], and Ureta, et al. [54] described the
eruptive evolution of the Cerro Tujle maar, Tilocálar Sur maar, and the Cerro Overo maar, respectively.
They highlighted the stratigraphy, morphometry, petrography, and geochemistry in order to reconstruct
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the evolution of these maar-craters within the context of their eruptive events. However, many aspects
of the sequential organization of the eruptive products and their causal relationship with the eruptive
mechanism remain obscure especially from a regional perspective. Such information would be
necessary, as this would limit probable settings that favor the occurrence of phreatomagmatic eruptions,
providing insight into the eruptive conditions that trigger magma–water interaction during magma
ascent to the surface. In this context, this contribution is a standalone critical statement based
on the descriptive works developed by Ureta, et al. [50] in Cerro Tujle maar, Ureta, et al. [53] in
Tilocálar Sur maar, and Ureta, et al. [54] in Cerro Overo maar. This contribution presents a set of
key features that allow and favor the recognition of the location of growth and fragmentation of the
phreatomagmatic eruptions that form the maar volcanoes in northern Chile. These conditions that
favor phreatomagmatism are based on a link between the transition from magmatic explosive-effusive
to hydromagmatic eruption-driven styles at maars which could be applied in other settings around the
world such as the Altiplano-Puna region. An additional goal of this study is to contribute to volcanic
hazard assessment associated with hydrovolcanic eruptions.

2. Geological and Volcanological Setting

The Andean Cordillera presents more than 200 Pleistocene and Holocene volcanoes forming
a >7500 km long morphologically continuous mountain chain along the westerns margin of South
America which is divided into four segments i.e., the Northern, Central, Southern, and Austral volcanic
zones [36,60,61]. Northern Chile is located in the Central Volcanic Zone (CVZ), extending from latitude
14◦ S to 28◦ S [36,55,62]. The origin of this volcanism in the CVZ is a consequence of the changes in
the subduction angle of the Nazca Plate (25–30◦) below the South American Plate at depths > 400 km
at a rate of 68–80 mm/yr [60,63,64]. In this sense, Andean magmatism is driven by the dehydration
of the subducted oceanic lithosphere, resulting in melting of the overlying mantle wedge [61,65].
Magmas generated at CVZ that derive from such mantle will be underplated at the crust base and
thus able to experience assimilation, fractional crystallization, mixing/mingling during subsequent
rise through the crust [55,65–67]. An exceptionally thick continental crust characterizes this volcanic
zone from >70 km (below western Cordillera) to ~55 km (south of Puna plateau) and resulted from
tectonic shorting [68–70] during the last 10 Ma. Most of the Pleistocene and Holocene volcanism in
the CVZ of northern Chile occurs on a high central plateau at an elevation of 3700 to 4500 m a.s.l.
with numerous stratovolcanoes of peaks reaching >6000 m elevation [68–70]. This segment is the most
apparent expression along the western boundary of two morphotectonic regions, Altiplano (15–23◦ S)
and Puna (23–28◦ S) [36]. Volcanism in the CVZ during crustal thickening represents one of the largest
ignimbrite provinces on the Earth [71], producing numerous polygenetic or stratovolcanoes, and more
rarely, isolated monogenetic centers [35,36].

3. Case Studies

Among the 14 maar volcanoes identified in northern Chile (3 Miocene; 4 Pliocene; 5 Pleistocene;
2 Holocene; [33]), 7 of them correspond to individual centers of which 3 of them are from Pleistocene,
not associated with caldera systems, and display similar magma composition of the Altiplano-Puna
Volcanic Complex [59]. These are the maars known as Tilocálar Sur, Cerro Tujle, and Cerro Overo
(Figure 2). The main field observation, stratigraphic, morphological, petrographic, and geochemical
features of these three maar volcanoes were taken from previous works such as Ureta, et al. [53] for
Tilocálar Sur maar, Ureta, et al. [50] for Cerro Tujle maar, and Ureta, et al. [54] for Cerro Overo maar
and are summarized in Tables 1–3.
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Figure 2. The location map of the Tilocálar Sur, Cerro Tujle, and Cerro Overo maars (red squares)
is based on a satellite image acquired from Google EarthTM. The light blue area corresponds to the
Monturaqui–Negrillar–Tilopozo (MNT) aquifer boundary, whereas the light green area indicates the
Tilopozo wetland, which is considered as the discharge point for the groundwater coming from the
MNT aquifer into the Salar de Atacama (modified from [72]). The structural features were taken from
Ramírez and Gardeweg [48], Kuhn [73], Aron [74], and González, et al. [75].

Table 1. General features of Tilocálar Sur, Cerro Tujle, and Cerro Overo maars.

Maar-Ejecta Ring Tilocálar Sur 1 Cerro Tujle 2 Cerro Overo 3

Whole-rock composition Andesite Andesite Basaltic andesite

Average envelope density 1.17 (gr/cm3) 2.45 (gr/cm3) 2.84 (gr/cm3)

Mineral assemblage Ol, Pl, Opx, Cpx, Sd, Qz Ol, Pl, Opx, Cpx Ol, Pl, Sp, Cpx, Qz

Water Source Groundwater
(Monturaqui-Negrillar-

Tilopozo aquifer)

Groundwater (Related
to Salar de Atacama)

Groundwater (Related
to Laguna Lejía)

Substrate type Low permeability ignimbrite
layers filled with recent
permeable volcanic and

sedimentary units

Low permeability ignimbrite
layers filled with recent
permeable volcanic and

sedimentary units

Low permeability ignimbrite
layers filled with recent

permeable volcanic-
derived sediments

Number of eruptive phases (1) phreato-Strombolian (1) magmatic effusive,
(1) phreatomagmatic

(1) magmatic explosive,
(1) magmatic effusive,
(1) phreatomagmatic

Type of eruptive styles phreato-Strombolian Strombolian and
phreatomagmatic

Strombolian and
phreatomagmatic

1 Ureta, et al. [53]; 2 Ureta, et al. [50]; 3 Ureta, et al. [54]. Olivine (Ol), Plagioclase (Pl), Orthopyroxene (Opx),
Clinopyroxene (Cpx), Sideromelane (Sd), Qz (Quartz), Spinel (Sp).
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Table 2. Morphometric characteristics of Tilocálar Sur, Cerro Tujle, and Cerro Overo maars.

Maar-Ejecta Ring Tilocálar Sur 1 Cerro Tujle 2 Cerro Overo 3

Bulk volume current crater cavity (m3) 1.32 × 106 1.46 × 106 6.52 × 106

Bulk volume of tephra deposit (m3) not calculated 3.91 × 105 21.20 × 105

DRE volume of tephra deposit (m3) not calculated 1.53 × 105 5.19 × 105

Area of tephra deposit (m2) not calculated 4.30 × 105 20.20 × 105

Maximum crater diameter (m) 380 333 580

Minimum crater diameter (m) 294 279 480

Current crater depth (m) 34 73 72

Maximum theoretical crater depth (m) a 299 141 89

The dip of the outer ring (◦) −5 6 18

The dip of the inner ring (◦) 59 70 60

The theoretical aperture of the cone b 62 40 60
1 Ureta, et al. [53]; 2 Ureta, et al. [50]; 3 Ureta, et al. [54]. a Maximum theoretical crater depth = Maximum ratio × SENO
(Dip inner ring)/SENO (Theoretical aperture of the cone/2). b Theoretical aperture of the cone = 2 × (90 −Dip inner ring).

Table 3. Deposit features of Tilocálar Sur, Cerro Tujle, and Cerro Overo maars.

Maar-Ejecta Ring Tilocálar Sur 1 Cerro Tujle 2 Cerro Overo 3

Color of deposit Brown reddish Brown reddish Black

Dominant stratification Plane parallel bedded Plane parallel bedded Plane parallel bedded,
cross-lamination

Dominant grain size Lapilli Lapilli Lapilli

The average thickness of deposit (m) not calculated 0.6 0.7

Mode of emplacement Fall out Surge and fall out Surge and fall out

Degree of sorting Poor Variable Moderate

Agglutination/welding No No No

Dominant lithic grain size Coarse lapilli to
bomb/block

Coarse lapilli to
bomb/block

Fine lapilli to bomb/block

Accretionary lapilli No No No

Ballistic impact No No Yes (ignimbrite and
black lava)

Ballistic fragments Yes (ignimbrite,
conglomerate, volcanic
rock, intrusive rocks)

Yes (ignimbrite, lava) Yes (ignimbrite, intrusive
rocks, black lava)

Type of recycled juvenile Yes (scoria and
agglutinated material)

Yes (grey lava) Yes (black lava)

Breccia with juvenile Yes (limited) Yes (limited) Yes (moderate)

Lithic content (vol.%) 10 38 71

Type of juvenile pyroclast fragment Scoria Scoria Scoria

Dominant juvenile pyroclast grain size Coarse lapilli Fine lapilli Ash to Coarse lapilli

Juvenile pyroclast content (vol.%) 77 44 14

Juvenile pyroclast vesicularity (%) 59 11 38

Size of vesicle Medium to small Small Small

Juvenile pyroclast morphology Cauliflower,
chilling border

Cauliflower,
chilling border

Cauliflower, chilling
border, bread-crust

Juvenile pyroclast shape Mainly scoria, the shape
is controlled by vesicles

Angular/blocky to
irregular

Angular/blocky to
irregular/amoeboid

1 Ureta, et al. [53]; 2 Ureta, et al. [50]; 3 Ureta, et al. [54].
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3.1. Tilocálar Sur Maar

According to Ureta, et al. [53], this maar displays a crater (Figure 3) of 380 × 294 m; the depth
reaches 34 m, and an erupted bulk volume of 0.0025 km3. The syn-eruptive landscape level of this
crater corresponds to the Tucúcaro Ignimbrite which is covered by a pyroclastic fall deposit of basaltic
andesite to andesite composition (55–62 SiO2 wt.%) from the Tilocálar Sur volcano. Individual rock
fragments are present around the crater rim corresponding to scoriaceous material (ash and lapilli) with
cauliflower texture, cooling cracks, chilled margins, and fragments from the Tilocálar Sur pyroclastic
fall deposit, Tucúcaro Ignimbrite, volcanic, sedimentary, and granitic rocks (basement).
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Figure 3. Tilocálar Sur maar. (a) Satellite image taken from Google EarthTM, showing the location of the
Salar de Atacama basin and the morphology of the surface. (b) Aerial view of the Tilocálar Sur maar.

3.2. Cerro Tujle Maar

A similar kind of deposit is observed near the rim of Cerro Tujle maar (Figure 4). According to
Ureta, et al. [50], the deposit has an andesitic composition (56–58 SiO2 wt.%) which consists of a lower
andesitic lava flow that is emplaced over the Tucúcaro Ignimbrite and an upper pyroclastic deposit
characterized mainly by lapilli and block/bomb fragments with dacitic to rhyolitic xenoliths. Breccia
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fragments with lithic and juvenile clasts are also to be found. Cerro Tujle has an elliptical crater of
333 × 279 m, with a depth reaching to 73 m. The crater’s cavity presents a volume of 0.002 km3 with
an estimated erupted bulk volume of 0.024 km3.
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Salar de Atacama basin, Laguna Miscanti, and the morphology of the surface. (b) Aerial view of the
Cerro Tujle maar where it is possible to see the andesitic lava unit under the tephra ring.

3.3. Cerro Overo Maar

Cerro Overo (Figure 5) is the least silicic maar yet analyzed from this area [76]. Clasts range in
composition from 52 to 56 SiO2 wt.% [54] where rocks from Cerro Overo are characterized by the
presence of olivine and clinopyroxene crystals [47,49,54]. According to Ureta, et al. [54], its crater is
480 × 580 m; its depth reaches 72 m and it has an estimated eruptive volume of 0.0093 km3, represented
by two volcano-stratigraphic units. The first one lies over the Tuyajto and Cajón Ignimbrites and
corresponds to pyroclastic and lava deposits with fluid textures and breccia’s fragments. In contrast,
the second one is a surge deposit that covers the lava unit, characterized by the presence of scoriaceous
fragments (ash and lapilli) that present a wide range of vesicularity, cooling cracks, cauliflower textures,
chilled margins, and breccia fragments with juvenile material and lithic clasts.
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4. Discussion

4.1. Origin of the Phreatomagmatism

Recently, some studies (e.g., [77–79]) argue that maar volcanoes can be produced by the effects of
magmatic gases that excavate a vent, followed by continued upward streaming of gas (violent release
of CO2 probably of mantle origin) through vent-filling debris and may not necessarily be a result of
magma–water interaction (dry-maar).

The case studies in this work are characterized by their location at a thick crust environment
(~70 km; [70]), degree of magma composition that is related to low volatile contents (calc-alkaline
basaltic andesite to andesite magma), low number and amount of minerals that can contain water to
support crystal growth in a volatile-rich environment (lack of phlogopite and range of Mg#), and low
volume of magma batch (<1 km3).

Although decompression and adiabatic cooling can generate explosive conditions in the initial
phase during the eruptive activity of the studied maar volcanoes, the idea of a magma that initially
carried large amount of volatiles which were largely released or exsolved during ascent as a result of
decompression and adiabatic cooling subsequently generating an explosive condition with sufficient
energy to produce a crater at least 500 m in diameter and ~80 m depth is quite unreasonable (e.g., [80,81]).

4.2. The Role of the Eruption Location on Water Availability

Tilocálar Sur, Cerro Tujle, and Cerro Overo maars are located in three different local settings.
(i) Tilocálar Sur maar (at 3060 m a.s.l.) is located at a 67 km-thick crust [70], shallow basement corresponds
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to volcano-sedimentary units such as the Paciencia and Purilactis Group and Tucúcaro Ignimbrite
(moderately welded) where the Monturaqui-Negrillar-Tilopozo aquifer is present (Figures 2 and 3).
(ii) Cerro Tujle maar (at 3554 m a.s.l.) lies at a 67 km-thick crust [70], shallow basement corresponds to
Tucúcaro and Patao Ignimbrites (moderately welded), this location is on the route of the groundwater
levels that feed the Salar de Atacama basin (Figures 2 and 4). (iii) Cerro Overo maar (at 4556 m a.s.l.) is
situated at a 59 km-thick crust [70] where the shallow level is dominated by Cajón Ignimbrite (weakly
welded) and close to the Laguna Lejía (Figures 2 and 5). Nevertheless, these three maars are positioned
at the same location on the same type of tectonic structure, which is the hinge top zone of Tilomonte-,
Cerro Tujle- or Toloncha-, and Altos del Toro Blanco- ridges, respectively (Figures 3–5, respectively).

Northern Chile, specifically, the Atacama Desert, is one of the major hyper arid deserts of the
world. Despite this, the presence of salt flats or water bodies such as Tilomonte wetland, Salar de
Atacama, Laguna Miscanti, Laguna Tuyajto, or Laguna Lejía (Figure 2), among others, is clear and
robust evidence of active water feeding recharge and discharge systems controlled by hydrological
and hydrogeological aspects in the arid Chilean Altiplano environment (e.g., [82,83]). The sub-surface
country-rock has low permeability [48,84–86]. It is defined by the ignimbrite layers consisting of recent
permeable pyroclastics where gaps with hydraulic connection are developed [85–88]. This favors
different groundwater levels that are mostly shallow (e.g., [89–91]). On the other hand, ridge type
structures have been proposed to have resulted from slip along buried faults that have a listric profile,
generating flat portions of the faults that may be mechanically controlled by the stratigraphy of the
deforming units [74,75]. This suggests that water bodies could be stored at this flat portion of the faults
of the Tilomonte-, Cerro Tujle- or Toloncha-, and Altos del Toro Blanco- ridges.

Although the cases studied have not been examined in detail from a hydrological and hydrogeological
perspective, the explosion depth range of Tilocálar Sur, Cerro Tujle, and Cerro Overo maars is 33–103 m,
25–35 m, and 41–115 m, respectively [50,53,54] (Figure 6). These ranges are consistent with the thickness
and regional extent of the ignimbrite deposits and local tectonic setting, supporting the availability of
groundwater levels at these locations. In addition, this spectrum of explosion depths is in the likely range
of containment depth for phreatomagmatic explosions, which is in the uppermost ~200 m [92].Geosciences 2020, 10, x FOR PEER REVIEW 11 of 27 
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4.3. Eruption Styles

Based on the general morphological, morphometric, and sedimentary characteristics of the
three scenarios in the study, the eruptive patterns are within the range of small maar volcanoes
(300–600 m diameter) with respect to the crater diameter for maar volcanoes worldwide [3]. Although
all the cases display a relatively small eruptive volume (Table 1), changes in the tephra deposit and
bed characteristics, together with the type of xenoliths and lithics, suggest specific features in the
fragmentation dynamic for each volcanic eruption.

Changes in eruptive style are typical amongst monogenetic volcanoes which typically shift from
initial hydromagmatic phases with the deposition of surge deposit to a magmatic phase with the
accumulation of scoria, spatter, and lava flows. This is characterized by the magma/water ratio and the
explosive energy-melt fragmentation or mechanical energy [94,95] which are controlled by internal-
(e.g., magma properties) and external- (e.g., environment) factors that determine the eruptive style and
volcanic landforms [11,15,94,96]. In this context, the field observation, stratigraphic, morphological,
petrographic, and geochemical characteristics of Tilocálar Sur, Cerro Tujle, and Cerro Overo volcanoes
suggest a fast ascent rate of magma. Considering the groundwater availability of the local environment
setting, the magma supply rate must be sufficiently high relative to the groundwater flux to overwhelm
it and seal the conduit walls if the rising magma is to the surface without interacting with the
water. In this context, through a relatively stagnant or slowly raised column of magma in the feeder
conduit that does not exhibit an interaction initially with external water, generating a bursting of large
gas pockets that is inferred to be responsible for Strombolian activity [97]. This type of magmatic
fragmentation is dominated by the depressurization, transition from closed to open system [98] that
characterizes a Strombolian activity [99,100]. Following this eruptive phase, the reduced eruptive
volume and the stratigraphic sequence suggest a progressive decrease in the magma supply rate
relative to the groundwater flux rate. Thus, when the magma supply rate is low and cannot overwhelm
the available groundwater flow; the groundwater generates a collapse of the conduit wall allowing
the entrance of groundwater and resulting contact with the magma, generating a phreatomagmatic
eruption. This represents a self-driven violent interaction of magma and steam, known as molten
fuel-coolant interaction (MFCI or FCI; [101,102]), which is sustained by thermal and hydrodynamic
interaction between molten fuel (magma) and a coolant (water) (e.g., [81,103,104]).

Therefore, the deposits generated by Tilocálar Sur, Cerro Tujle, and Cerro Overo eruptions
correspond to Strombolian to effusive and phreatomagmatic eruptive styles. Strombolian activity
is characterized by fallout deposits, while the effusive stage is dominated by lava flow deposits.
The deposits generated by a phreatomagmatic eruptive style are represented by surge deposit, ash and
lapilli, juvenile breccia with lithic fragments, cauliflower and chilling textures, irregular and wide
range of vesicles, and by a crater that cuts into the pre-eruptive landscape.

4.4. Magmatic Processes

The small-volume scale of monogenetic volcanoes enables preservation of the petrological features
of the magmatic systems [13]. Juvenile material of monogenetic volcanoes is considered a “window
to the mantle” allowing an insight into the processes that produce their magmas, (e.g., [105–110]),
whereas the lithic content of these monogenetic systems could be considered as a “window to the
crust and to the substrate” (e.g., [111–115]). In both senses, monogenetic volcanoes provide a unique
opportunity to study the details of volcanic processes from the magmatic source to the surface.

Textural evidence for the Tilocálar Sur, Cerro Tujle, and Cerro Overo products is mainly
characterized by fine-grained texture, skeletal morphologies of crystals (mainly of olivine phenocrysts;
Figure 7a), high abundance of microlites (mainly plagioclase; Figure 7a), and the occurrence of
sideromelane (Figure 7b). In addition, quartz xenocrysts with well-developed acicular clinopyroxene
reaction coronas (Figure 7c) and fragments of country rocks (xenoliths) that display amphibole
breakdown/reaction rim width with skeletal and sieve textures (Figure 7d) are present. Scoriaceous
material (ash and lapilli) with cauliflower texture (Figure 7e), cooling crack, chilled margin (Figure 7f),
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a wide range of vesicularity, breccias of juvenile material (Figure 7g), and impact of ballistically
transported fragments (Figure 7h,i) were identified. These textural features correspond mainly to
disequilibrium textures and indicate decompression, rapid cooling, and a relatively high magma ascent
rate (e.g., [116–118]). On the other hand, the survival of quartz xenocrysts and country rocks fragments
suggest a relatively short contact time of magma–country rock interaction, indicating a low degree of
assimilation and any significant pausing of the magma within the CVZ thick crust (e.g., [108,109,119]).
In addition, the occurrence of amphibole breakdown/reaction rim width with skeletal and sieve textures
within the xenoliths suggest that a fine-scale magma mixing/mingling would have taken place during
the magma ascent in the shallow crust at depths of 4–8 km and temperatures of 880–920 ◦C [120–122]
which is concordant with the shallow magma reservoirs reported and suggested for the Altiplano-Puna
area [67,123–125].Geosciences 2020, 10, x FOR PEER REVIEW 13 of 27 
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Figure 7. (a) Skeletal and sieve textures of olivine (Ol) phenocrysts from Cerro Overo maar (taken
from [54]). (b) Orange-red sideromelane (Sid) associated with irregular vesicles (Vs), plagioclases (Plg),
and clinopyroxenes (Cpx) from Tilocálar Sur maar (documented in detail in [53]). (c) Quartz (Qz)
xenocrysts with well-developed acicular clinopyroxene (Cpx) reaction coronas from Tilocálar Sur maar
(documented in detail in [53]). (d) Amphibole (Amp) breakdown/reaction rim width with skeletal
and sieve textures from Cerro Tujle maar (documented in detail in [50]). (e) Scoria with cauliflower
texture from Cerro Overo maar (taken from [54]). (f) Scoria with chilled margin from Tilocálar Sur maar
(documented in detail in [53]). (g) Breccia of juvenile material from Cerro Tujle maar (documented in
detail in [50]). (h,i) Impact of a ballistically transported fragment from Cerro Overo maar (documented
in detail in [54]).

Geochemically, Tilocálar Sur maar, Cerro Tujle, and Cerro Overo products correspond to basaltic
andesite to andesite (Figure 8a), calc-alkaline, and high-K calc-alkaline magmas (Figure 8b), with a
relatively high concentration of incompatible trace elements, as enrichments of large-ion lithophile
element (LILE) compared with high field strength elements (HFSE) (Figure 8c,d), and Sr isotope ratio
content similar to the evolved felsic magmas of the Altiplano-Puna Volcanic Complex.
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Figure 8. (a) TAS diagram (after [126]). (b) Alkali silica diagram [127]. (c,d) Multi-element diagrams,
Chondrite and N-MORB, respectively (normalized values from [128]). Data taken from Ureta, et al. [53],
Ureta, et al. [50], and Ureta, et al. [54].

Overall, all the samples display mixing processes that are evidenced in the absence of linear trends
on variation diagrams. Besides, a regular trend of depletion in CaO, FeO, Cr, and Ni with decreasing
MgO content suggests fractional crystallization (FC) processes consistent with the olivine ± spinel and
clinopyroxene phenocrysts observed in the samples rocks (Figure 9a–c). These magmatic processes are
expected in CVZ (e.g., [67,129–131]), considering the mafic nature of these magmas that are mantle-derived
and have crossed a thick crust (~70 km depth) during their ascent to the surface. Despite this, all the
products show a degree of crustal contamination, which is low but in the same range as magma stored in
the crust during prolonged times at polygenetic volcanoes of the CVZ (Figure 9d).

Tilocálar Sur maar and the other monogenetic volcanoes of the Tilocálar monogenetic volcanic
field [53] together with the Cerro Tujle maar evidenced deep assimilation [50]. In contrast, Cerro Overo
maar [54] shows shallow assimilation like xenoliths from Cerro Tujle and the felsic part of the mingling
of the El Maní dome at Tilocálar monogenetic volcanic field [53]. These characteristics are consistent
with a fast ascent rate of the magma, without any prolonged pausing of the magma on route to the
surface, and with the high content of xenoliths found mainly in Cerro Tujle maar with respect to the
other maars in the study. These processes can explain the preservation of the mafic composition;
nevertheless, they cannot fully explain the relatively high concentration of incompatible trace elements
(LILE) and Sr isotope ratio contents because the FC was minor and the assimilation was selective,
suggesting assimilation during a turbulent ascent process (ATA; [132]). ATA process produces a high
assimilation/crystallization ratio during a relatively short time of magma–country rock interaction
due to selective contamination at several depths and with crustal components [132–134]. Figure 9e,f
shows a reverse isotopic content of decreasing Sr isotope ratio values during differentiation, and a
variable range of Nd isotope ratio with a relative constant behavior of Nd, respectively. This magmatic
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process is consistent with fine-grained textures, skeletal textures, xenoliths, and quartz xenocrysts
found in the rock samples. ATA process has been suggested for Cerro Overo maar [54] and other
centers in the Altiplano-Puna Volcanic Complex (e.g., [108,109,135–137]). This assimilation during the
turbulent ascent process cannot be strongly supported for Cerro Tujle maar, Tilocálar Sur maar, and the
other volcanoes of the Tilocálar monogenetic field due to the little amount of isotopic data available.
Nevertheless, based on the textural evidence and chemical contents of trace elements, an ATA process
for Cerro Tujle and Tilocálar monogenetic volcanic field could also be suggested.
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Figure 9. Diagrams showing (a) MgO (wt.%) vs. Al2O3/CaO, (b) Dy/Yb ratios vs. SiO2 (wt.%),
(c) Sm/Yb vs. Sr/Y ratios, (d) 87Sr/86Sr vs. Rb/Sr ratios, (e) 87Sr/86Sr vs. SiO2 (wt.%), (f) 143Nd/144Nd
vs. Nd (ppm). Data taken from Ureta, et al. [53], Ureta, et al. [50], and Ureta, et al. [54]. Arrows of
differentiation trends after Mamani, et al. [66]. The diagram in (d) was modified from Taussi, et al. [138].
The values of both Rb/Sr and 87Sr/86Sr increase with an increasing degree of interaction with the
partially molten Altiplano-Puna Magma Body. Grey and orange fields represent the Central Volcanic
Zone (CVZ) of the Andes stratovolcano values from Mamani, et al. [66] and Uturruncu dacites from
Michelfelder, et al. [139], respectively.
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4.5. Proposed Model

Lorenz [9] and Valentine and White [6] have proposed a model for diatreme growths, which explains
the presence of deep-seated country-rock lithics in tephra deposits formed by many phreatomagmatic
explosions. Nevertheless, these proposed mechanisms for diatreme growth differ due to e.g., depression
of the diatreme in the water table in some cases, the numbers and intensity of explosions, and the depth
and the origin of the deep-seated country rock lithics present in ejecta ring deposits [6]. Following the
strengths of both models and based on the main characteristics of Tilocálar Sur, Cerro Tujle, and Cerro
Overo maar volcanoes, this work presents a set of features to help identify areas where maar volcanoes
(phreatomagmatic eruptions) can potentially developed.

The three scenarios (Figure 9) studied are located at a high altitude environment of the
Altiplano-Puna Plateau which, after the Tibetan Plateau, is the second-largest orogenic plateau
in the world and which is characterized by key features that permit and favor the growth mechanisms
for maar formations, namely:

i. A compressive tectonic setting, which generates folding systems represented by ridges structures
forming a planar pathway at a shallow depth being auspicious for reservoirs (e.g., [75])
as groundwater tables. This tectonic setting generates the appropriate structural conditions to
favor and form the space for groundwater channels that can host lenses of water bodies.

ii. Groundwater recharge, although the Altiplano-Puna area is an arid environment, the recharge
of groundwater systems is favored by the snowmelt contribution which is seasonal (e.g., austral
winter months) and greater at elevations above 4700 m a.s.l. [87,88].

iii. The lithological setting, characterized by alluvial sediments of variable thickness, overlying
fractured andesitic lavas, large ignimbritic deposits, and erosional or weathered interlayered
volcanic deposits (e.g., [44,48]). The large ignimbrite sheets are commonly extensively
welded and/or hydrothermally altered, displaying layers of low permeability and permeable
volcanic-derived sediments [88]. They form a regional groundwater flow base dipping gently
away from their respective sources that do not follow the present-day topography marked by
complex medium-volume stratovolcanic cone caps [85,86]. Besides, these extensive Pleistocene
ignimbrite sheets are relatively shallow beneath cover beds, especially in areas between major
stratovolcanoes. In those inter-cone areas, they are covered by debris fans that commonly shed
run-off towards local lowlands that functioned as large but shallow lakes in pluvial periods
(today, they are salars).

iv. The presence of aquifer and/or endorheic basins (e.g., lakes or salars), in the Altiplano area,
which demonstrates the occurrence of groundwater flows among closed basins, which provide
the hydraulic connection between groundwater levels (e.g., [85]).

v. A period of stress relaxation, although the Altiplano-Puna is dominated by a compressional
tectonic setting, monogenetic volcanism has been associated with local extension permitting
the magma to ascend to the surface (e.g., [140]).

Considering the characteristics mentioned above (Figure 10a), it is possible to identify places
where phreatomagmatic eruptions could occur, depending on if the magma flux rate is outmatched
by the groundwater table flux during the ascent from the source to the surface i.e., Tilocálar Sur,
Cerro Tujle, and Cerro Overo maar volcanoes. The cooling down of the magma against the initially
cold surrounding host rock may line the conduit walls with a viscous melt that tends to seal off the
groundwater as the magma rises and emerges to the surface [23,25], generating a magmatic explosive
or effusive activity as pyroclastic deposit or lava effusion, respectively (Figure 10b–d; e.g., [29]).
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Figure 10. Proposed model of the mechanism of maar development. (a) Lithological and hydrogeological
factors that favor phreatomagmatism in northern Chile (modified after [87,88]). The inserted box corresponds
to Figure 10b–d, respectively. (b–d) Mechanisms of magma–water interaction for maars in northern Chile
(model based on [50,53,54]).

In this context, during the late stage of the magmatic eruption, a gradual decrease in the mass
eruption rate is generated which produces an inward collapse of the wall of the conduit followed
by a blockage of the opening. This process occurs by a gradual drawback of the magma within
the conduit below the groundwater table level which the lava had drained, generating lithostatic
pressure and a sudden entry of groundwater into the volcanic conduit allowing the magma–water
interaction (e.g., [22–25,28]). On the other hand, if the magma flux is outmatched by the groundwater
flux, the groundwater comes into contact with magma generating a phreatomagmatic eruption
(Figure 10c). Both mechanisms of magma–water interaction are suggested for the Tilocálar Sur maar,
Cerro Tujle maar, and Cerro Overo maar (Figure 10).
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Based on the interplay between the internal- and external- factors previously mentioned, it is
possible to suggest that areas dominated by a basement of ignimbrites, presence of lakes or salars,
and ridge structures are auspicious for phreatomagmatic eruptions which could be associated with
non-phreatomagmatic tephra interlayered as magmatic explosive and/or magmatic effusive deposits.
Nevertheless, if the location of the vent is closer to lakes or salars the magma–water ratios can
increase, generating Surtseyan eruptions building tuff rings or tuff cones [94]. This set of features
deployed to recognize the location of growth and fragmentation of phreatomagmatic eruptions that
form maar volcanoes is supported by the maars reported by Filipovich, et al. [141] in the Pasto Ventura
monogenetic volcanic field, Puna Austral (Figure 11). Pasto Ventura’s maars are located on the ridges
(compressive tectonic setting), associated with water-saturated areas, endorheic basins such as lakes,
groundwater recharge related to stratovolcanoes with snow, and rainfall by the Altiplanic winter
(Figure 11). Therefore, the key features presented in this work could be applied in other areas of
the Altiplano-Puna where the occurrence of monogenetic volcanism has taken place as a cluster
(e.g., Pasto Ventura; Figure 11) or as isolated events (e.g., Cerro Overo; Figure 11).
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This transition of different eruption processes is recorded and evidenced in Strombolian eruptions
as pyroclastic deposits and lava effusion to phreatomagmatic eruption as surge deposits and could
take place in the temporal transitions at a single vent (e.g., Cerro Tujle maar) or at different vents
within the same maar system (e.g., Tilocálar Sur maar and Cerro Overo maar). This is consistent with
the model of maar growth suggested by Valentine and White [6], implying transitions into and out
of phreatomagmatic activity during a maar-forming eruption reflecting variations of magma flux,
inhomogeneous water distribution, and other influences on explosion initiation.

5. Concluding Remarks

Maar volcanoes in northern Chile are characterized by preserved craters that cut into the
pre-eruptive landscape which display a pyroclastic deposit (tephra ring), continuous deposit
sequences of lavas and scorias (short timescale), lapilli fragments and breccias with juvenile material,
single volcanic structure, host rock mainly composed of ignimbrites with the permeability required to
confining water layers, simple conduit system (plumbing), a small volume of erupted magma (<1 km3),
and various magma compositions (from basaltic andesite to andesite). The magmas that formed these
maars correspond to mantle-derived magmas that during their ascent from the source to the surface,
have experienced various magmatic processes such as mixing, FC, ATA, and magma–water interaction.
However, despite the absence of naked eye evidence of a typical magma–water interaction such as
thick surge levels, cross-bedded tuffs, abundant clasts emplaced from ballistic trajectories, and the
other features described in the literature [8,15,30,31,142], at least two eruptive stages for each maar in
the study are suggested in this work. The first stage is an ephemeral magmatic explosive to magmatic
effusive condition where the magma may ascend and feed intrusions without interacting with water in
the conduit and reaches the surface to erupt as a pyroclastic and/or lava deposit. The second stage is a
hydromagmatic explosive condition dominated by magma–water interaction between 25 m to 115 m
depth, along feeder dike, which forms a crater, tephra ring (such as ash and lapilli fragments that present
a great range of vesicularity, cooling cracks, cauliflower textures, chilled margins, and breccia fragments
with juvenile material and lithic clasts), and domains of brecciated country rock in the subsurface.

In this context, the phreatomagmatic eruptions in northern Chile depend and are favored mainly
by a compressive tectonic setting that favors and forms the space for ground-water channels that can
host lenses of water bodies (e.g., folds or ridges), the lithological setting, the groundwater recharge
and discharge, the presence of aquifer and/or endorheic basins (e.g., lakes or salars), the period of
stress relaxation, and by a magma flux lower than the groundwater flux. This set of features that
favor phreatomagmatic eruptions forming maar volcanoes could be applied to identify possible sites
worldwide where the magma–water interaction eruption could occur. This could be useful for the
prediction of hydromagmatic volcanic eruptions and for mitigating the impact of volcanic hazard for
the inhabitants of such locations. However, geochemical data of the eruptive sequence of juvenile
products, hydrological studies, and magnetic and geophysical measurements are necessary for further
constraints and in order to obtain a better understanding of the prediction of the emplacement location
of maar volcanoes, especially if these key features recur in other maars at other geological settings
around the world.
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