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Abstract: The use of non-contact-techniques for rock mass characterization has been growing
significantly over the last decade. However, their application to stability assessment of ornamental
stone has not yet received much attention from researchers. This study utilizes rock mass data
both in terms of slope orientations and degree of fracturing obtained from a point cloud, a set of
three-dimensional (3D) points representing a rock mass surface, to (1) investigate the influence of
geostructures at different scales and (2) assess quarry stability by determining areas susceptible to
different failure types. Multi-resolution point clouds are obtained through several photogrammetric
survey techniques to identify important structural elements of the site. By integrating orientation
data of discontinuity planes, obtained with a traditional survey, and of traces, outlined on point
clouds, several joint sets were identified. Kinematic tests revealed various potential failure modes of
the rock slope. Moreover, an analysis of the influence of the discontinuity strength determined by the
presence of rock bridges was carried out. The study revealed that the strength of the quarry face is
governed by the presence of rock bridges that act to improve the stability condition of the rock fronts.

Keywords: marble quarry; slope stability; geostructural survey; point cloud; photogrammetry

1. Introduction

Surveying of geometric characteristics of discontinuities in a rock mass is fundamental for
the evaluation of potential detachable blocks. A geostructural survey devoted to a systematic and
quantitative description of rock discontinuities is crucial to understand the stability conditions of a rock
mass. Discontinuity sampling can be applied to rock faces, natural or artificial (such as excavations),
or on boreholes depending on the available data. Discontinuity properties to be measured include
dip, dip direction, length, spacing, roughness, persistence, aperture, filling, and termination [1].
A correct joint geometry representation is suggested by ISRM [2], providing that a collected sample is
representative of the entire joint population [3,4]. Measurements of dip and dip direction are used
to represent the discontinuity orientation on a two-dimensional (2D) map, in order to describe the
directional aspects of joints, faults, bedding planes and any other fracture present into the rock mass.

However, in certain contexts, such as ornamental stone quarries, traditional survey method could
lead to inaccurate and incomplete results, due to conditions of faces and the excavation environment.
In fact, in addition to being a very demanding environment in terms of safety for both workers and
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possible people performing the survey (chain-sawing machines and/or diamond wire saws at work,
heavy machineries carrying blocks, etc.), the peculiarity of a quarry is the presence of both natural rock
faces and excavated benches. The traditional geomechanical survey allows for both geometric and
geomechanical (roughness, alteration, etc.) description of the discontinuities that intersect the scanline;
however, it is limited in terms of accessibility of the higher portions of the slope and it can be very time
demanding for large rock slopes.

To overcome these limitations, recent advances in non-contact survey techniques are becoming
increasingly used; digital photography for mapping traces [5–12] and detecting failure [13–15], digital
photogrammetry, or laser scanner for surveying discontinuity planes [16–25].

The acquisition of three-dimensional (3D) data of the terrain surface is now obtained with a high
accuracy, in less time and over a wider area thanks to the evolution of satellite and remote sensing
imaging technologies. This progress has also changed the way to collect and interpret information
about the geostructural setting of large areas [26–30] or the structure of rock mass for the stability
assessment [31–37], with the great advantage of allowing for the survey of high inaccessible steep
slopes in safe conditions. To become a real alternative (both in terms of productivity as well as accuracy)
to a traditional survey, interactive or automated software tools are necessary, to allow the efficient
selection on the point cloud of elements of interest (i.e., discontinuity planes and traces, etc.).

In this work, image sequences shot both from remotely piloted aircraft and from the ground have
been used to obtain 3D point clouds to be analyzed for extracting information on the discontinuity
orientation and persistence at different scales, to be coupled with data from traditional surveys and
geostructural studies.

The test site is a marble quarry, called Piastrone, in the Carrara extraction basin: excavation
process has brought to light the rock mass, allowing for a complete outcrop of the rock structure and
making the place an ideal site for rock mechanics studies.

2. Failure Mode in Ornamental Stone Quarries

Ornamental stone exploitation is based on the extraction of large sound rock blocks to be cut into
slabs by special frames. Such an operation is possible only in massive rock masses characterized by a
low degree of fracturing. This main feature also affects the possible failure modes occurring along the
excavation fronts.

Pre-existing discontinuities and their orientation, in relation with the orientation of excavation,
determines the possible kinematic instability mode: some case studies regarding different kinds of
quarry are reported in [38–41]. Stability conditions are further affected by discontinuity persistence in
the form of rock bridges that can increase the available shear resistance [42–44]. Finally, the volume of
detachable rock block is determined by spacing of rock joints.

Planar or wedge sliding, flexural or block toppling must be identified before stability analysis are
performed [45]. Stereographic projections for the kinematic analysis of these simple failure modes are
described by Richards et al. [46] and Hoek and Bray [47].

In massive rock masses, consequently, the assessment of the discontinuity geometrical features is of
crucial importance for an accurate evaluation of stability conditions of the potentially unstable volume.

3. Geological and Structural Setting

Piastrone quarry is located in the territory of Seravezza (Lucca, Italy). It is part of the northern slope
of Mt. Altissimo in the extraction district of the Apuan Alps. The mining activity was recently resumed
after about thirty years of inactivity. It is an open pit quarry (Figure 1) and it extends between 1179 m
and 1280 m a.s.l. The metamorphic complex of the Apuan Alps crops out in the northern Apennines.
It consists of a Paleozoic basement and its Meso-Cenozoic metasedimentary cover, metamorphosed
up to greenschist facies conditions [48,49]. It is separated from the overlying non-metamorphic
sedimentary rocks of the Tuscan nappe and Liguride units by breccias and cataclasites belonging to the
“Calcare Cavernoso” formation that acted as a slip horizon both during Oligocene and Miocene [48].
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According to Carmignani and Kligfield [48] in the Apuan Alps two deformation phases, D1 and
D2, can be recognized. During D1, which is linked to the nappe staking, kilometric-scale folds with an
associated axial plane foliation (S1), and a stretching lineation (L1) were developed. Carmignani and
Kligfield [48] and Molli [50] recognized during D1 a northeast transport direction by considering the
map-scale and meso-scale geometry of folds.

The peak metamorphism, estimated at 350–450 ◦C and 0.6 GPa [49], was reached during the
early D1 phase and was dated at ~27 Ma (K-Ar and 40Ar-39Ar on white mica [51]). The D2 event
is responsible of the formation of a complex mega-antiform with Apenninic trending axis (NW-SE)
during the exhumation of the metamorphic units [48,52]. D2 is correlated to the development of folds
with an associated S2 foliation and high-strain shear zones. D2 phase initiated at temperature higher
than 250 ◦C and is considered to happen earlier than 11 Ma according to zircon fission track ages [53].

The final exhumation and uplift of the metamorphic units is characterized by the transition from
a ductile to a brittle regime, with the formation of kink folds, low- and high-angle faults, and joint
systems [48].

The Piastrone quarry exploits marbles cropping out in the normal limb of a km-scale fold.
The fold is a syncline, with younger rocks in its core and older rocks in the limbs, and it is named as
“Monte Altissimo syncline” [54] (Figure 2). The fold has a marble core and the axis trends NW-SE with
axial plane schistosity dipping to SW. This fold developed during the oligo-miocenic tectonics linked
to the D1 deformation event in the Apuan Alps and the Northern Apennines.

All the formations that outcrop in the quarry area belong to the Apuane Unit (Autoctono “Auct.”)
that underwent metamorphism in low temperature and pressure conditions (greenschist
metamorphism) during the thickening stage of the Northern Apennines. The following lithologies
are present from the older to the younger [56]: (a) white marble (Figure 3a) of Raethian age known
in literature as Megalodon-bearing marble; (b) metabreccia of Raethian-Liassic age made by marble
and dolomitic clasts (Figure 3b) within a red or green chloritoid-bearing phylladic matrix known
as Seravezza breccia; (c) massive white marble interbedded with grey marble strata (Figure 3c),
characterized by veins and brecciated levels, of Hettangian age [54]. The last two lithologies belongs to
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the “Marmi stricto sensu (s.s.) Formation”, which is the main formation that crops out in the study area
and the target of the mining activity.
Geosciences 2020, 10, x FOR PEER REVIEW 4 of 20 

 

 

Figure 2. Geological map of the “Retro Altissimo” extraction district [55]; location of Piastrone quarry 
is marked in red. 

All the formations that outcrop in the quarry area belong to the Apuane Unit (Autoctono 
“Auct.”) that underwent metamorphism in low temperature and pressure conditions (greenschist 
metamorphism) during the thickening stage of the Northern Apennines. The following lithologies 
are present from the older to the younger [56]: (a) white marble (Figure 3a) of Raethian age known in 
literature as Megalodon-bearing marble; (b) metabreccia of Raethian-Liassic age made by marble and 
dolomitic clasts (Figure 3b) within a red or green chloritoid-bearing phylladic matrix known as 
Seravezza breccia; (c) massive white marble interbedded with grey marble strata (Figure 3c), 
characterized by veins and brecciated levels, of Hettangian age [54]. The last two lithologies belongs 
to the “Marmi stricto sensu (s.s.) Formation”, which is the main formation that crops out in the study 
area and the target of the mining activity. 

Figure 2. Geological map of the “Retro Altissimo” extraction district [55]; location of Piastrone quarry
is marked in red.

Geosciences 2020, 10, x FOR PEER REVIEW 5 of 20 

 

 
Figure 3. Outcrop appearance of the lithologies of the study area: (a) Megalodon-bearing marble, (b) 
Seravezza breccia, c) contact between white and grey marbles. 

In the study area, D1 structures are present in the marble (Figure 4): here, the sedimentary 
bedding (S0) is folded and crosscut at medium-high angle by a penetrative S1 foliation, oriented NW-
SE and dipping at high-angle toward SW (Figure 5). On this foliation, a L1 mineral lineation plunges 
at medium angle toward W-SW. These data are in good agreement with results obtained by Molli et 
al. [57] in the Apuane Unit (Figure 5). 

 

Figure 4. Outcrop-scale evidence of deformed of bedding (S0) and foliation (S1) in the “marmi s.s.” 
(marble). 

Figure 3. Outcrop appearance of the lithologies of the study area: (a) Megalodon-bearing marble,
(b) Seravezza breccia, (c) contact between white and grey marbles.



Geosciences 2020, 10, 64 5 of 19

In the study area, D1 structures are present in the marble (Figure 4): here, the sedimentary
bedding (S0) is folded and crosscut at medium-high angle by a penetrative S1 foliation, oriented
NW-SE and dipping at high-angle toward SW (Figure 5). On this foliation, a L1 mineral lineation
plunges at medium angle toward W-SW. These data are in good agreement with results obtained by
Molli et al. [57] in the Apuane Unit (Figure 5).
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Early D2 deformation structures are not present in the study area. Late D2 deformation is
associated with the development of a network of joints, fractures and faults (Figure 6) under brittle
conditions. Faults show mainly a strike-slip kinematic and, in places, also a minor normal component.
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Microstructural analysis of the studied marbles highlights a granoblastic and isotropic structure.
In some cases, crystals present straight grain boundaries while in other cases the grain boundary is
lobed (Figure 7). Those features are indicative of a late- or post-D1 static recrystallization.
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4. Materials and Methods

4.1. Geomechanical Survey

For the purposes of cataloguing and characterization of the discontinuity sets, a geomechanical
survey campaign was performed according to ISRM standards [2], describing all the discontinuities
intersecting a scanline. Moreover, bibliographic data by Lorenzoni [58] were utilized for comparison.
Seven traditional surveys along horizontal scanlines were performed, of which four were on excavation
faces in the upper portion of the quarry, located at about 1260 m a.s.l. and three in the intermediate
part at 1224 m a.s.l. (Figure 8).
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4.2. Non-Contact Survey

Non-contact techniques are based on the setting up and elaboration of 3D models, each consisting
of a dense cloud of points representing the area of study. Many digital image sequences were shot,
both from remotely piloted aircraft and from the ground, covering all the quarry area. The technical
specifications of the instrumentation are reported in Table 1. Digital image sequences were processed by
the photogrammetric software Photoscan [59]: this code is based on Structure from Motion algorithms
and is able to reconstruct the surface of the photographed object, by calculating the tridimensional
coordinates of the points of the surface, and to assign a colored texture to the surface. Point clouds,
namely sets of 3D points representing, in this case, portions of rock mass surface, were created and
georeferenced, namely referred to the chosen reference system, by inputting the coordinates of points
acquired by GPS.

Specifically, two point clouds were provided: the first one represents the entire quarry (Figure 9a)
and was obtained from digital images shot by a camera carried by a drone; dimensions of the point
cloud are about 350 × 250 × 160 m, with a total of 11,117,143 points and an average resolution of 1 point
every 0.1 m.
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Table 1. Technical specifications of the instrumentation used for the photogrammetric survey.

Aerial Survey Terrestrial Survey

Remotely piloted aircraft DJI Phantom 4 Pro Camera Nikon D800
Camera resolution 5520 × 3680 Camera resolution 7360 × 4912

Focal length 24 mm Focal lengths 24 mm, 35 mm
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The second point cloud (Figure 9b) represents with a higher degree of detail the studied bench,
positioned at about 1260 m a.s.l., and includes excavation faces 1 and 3 (Figure 8). It was created by
means of close-range images shot from the ground; the point cloud in this case is very similar to a plane
of about 28 × 10 m, with a total of 1,439,000 points and an average resolution of 1 point every 0.01 m.

The models were analyzed using CloudCompare [60], in particular with the Trace tool included
in qCompass plugin. This tool allows the user to manually draw a segment connecting two points
of the point cloud in order to automatically obtain its orientation in terms of trend and plunge.
Along the excavation face discontinuity traces, namely intersections between the plane of the face
and discontinuity planes, are outlined as segments and their orientations plotted on a stereonet.
The procedure was repeated both in the case of the excavation face in detail (separated into two
portions representing excavation faces 1 and 3, respectively, characterized by different degrees of
fracturing) and the entire quarry.

4.3. Stability Assessment

Once the main discontinuity sets are known, it is possible to perform a stability analysis along
the different excavation faces. The first step is a kinematic analysis, using the Markland Test [61]
as modified by Hudson and Harrison [62] in order to identify along which discontinuities potential
kinematic mechanisms may arise. In this case, the test was carried out with respect to planar and
three-dimensional (wedge) sliding by means of Dips software [63]. Planar sliding occurs in rock masses
where a discontinuity set has an average dip direction similar to the slope face dip direction. Wedge
sliding occurs when two discontinuity surfaces intersect on a line, which has a dip direction coming
out of the slope face. These geometric relationships, in addition to a dip value of plane (intersection, in
case of wedge sliding) greater than friction angle, are the conditions for the verification of the test.

The factor of safety (FoS) was calculated for every joint set (or combination of sets, in case of
wedge sliding) resulting in a positive response of the test on the considered fronts. FoS was calculated
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according to the limit equilibrium method (LEM) and is interpreted as the ratio between resisting
forces FR that oppose the movement of a block and forces FA acting in favor of the kinematic motion.

With respect to planar sliding, FoS was calculated according to three resistance criteria:

1. Mohr-Coulomb criterion with fully (100%) persistent joint (Figure 10a): in this case, the cohesion
is considered null.

2. Mohr-Coulomb criterion with less than 100% persistent (therefore not fully persistent) joints,
due to the presence of rock bridges, namely intact portions of rock that constitute a considerable
resistant contribution.

The cohesion of the rock bridges, called apparent cohesion, is ideally spread along the entire
discontinuity (Figure 10b). Apparent cohesion capp was assumed as a portion of intact rock cohesion
cint, ruled by persistence P as expressed by the formula:

capp = c int·(1− P) (1)

Persistence P was assumed equal to the ratio between trace length measurable on an excavation
face and the dimension of the face that is more similar to the direction of the discontinuity; trace
length was determined with non-contact survey, in particular measuring, by means of CloudCompare,
segments representing traces on point clouds.

3. Barton-Bandis criterion [64], which considers conditions of peak resistance and persistence of
joints equal to 100%.
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To improve confidence in the results, FoS with respect to planar sliding was calculated in two ways:
the analytical method developed on a spreadsheet and RocPlane software [66], theoretically based on
the same calculation process. Equations adopted for the analytical model are the following ones [45]:

• Mohr-Coulomb criterion in the absence of cohesion:

FoS =
FR

FA
=

tan Φr

tanα
(2)

• Mohr-Coulomb criterion with apparent cohesion:

FoS =
FR

FA
=

cappA + W cosα· tan Φr

W sinα
(3)

• Barton-Bandis criterion:

FoS =
FR

FA
=

tan Φp

tanα
(4)

FoS equations according to Mohr-Coulomb criterion in absence of cohesion and to Barton-Bandis
criterion are geometric relationships given by the ratio between the tangent of residual (Φr) and peak
(Φp) friction angle, respectively, and the tangent of inclination (dip) of the discontinuity (α), while
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in case of Mohr-Coulomb criterion with presence of cohesion, the area of sliding surface (A) and the
weight of sliding block (W) are also involved.

FoS with respect to wedge sliding was calculated considering two different situations: in the first
one, persistence of joints is equal to 100% and cohesion is zero (Equation (5)), while in the second
one, persistence is less than 100% and there are rock bridges producing a certain apparent cohesion
(Equation (6)). The following formulas were applied [45]:

FoS = A tanφrA + B tanφrB (5)

FoS =
3
γH

(
cappAX + cappBY

)
+ A tanφrA + B tanφrB (6)

In addition to volume weight of the rock (γ) and height of the front (H), apparent cohesion of the
two discontinuity planes A and B (cappA and cappB) and their residual friction angles (ΦrA and ΦrB)
are of considerable importance; coefficients A, B, X, and Y depend on the geometry of the wedge [45].
To improve confidence in the results, FoS values are calculated using two approaches: the analytical
method developed on a spreadsheet and Swedge software [67], theoretically based on the same
calculation process.

5. Results and Discussion

5.1. Identification of the Main Discontinuity Sets

Discontinuities orientation data, obtained with the compass along seven scanlines, each
materialized on a different excavation face (Figure 8), were plotted on stereonets by means of
Dips software [63]. Five main sets of discontinuities were obtained, and then compared with those
described by Lorenzoni [58]. This comparison led to the confirmation of the obtained results: sets are
reported in terms of ranges of variability of dip and dip direction (Table 2) and represented in Figure 11.

Table 2. Range of variability of main discontinuity sets.

Set Dip Range [◦] Dip Direction Range [◦]

K1 45–60 265–268
K2 45–72 035–071
K3 78–86 328–343
K4 52–75 139–151
K5 70–75 010–015Geosciences 2020, 10, x FOR PEER REVIEW 11 of 20 
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5.2. Traces Identification

The process of identification of discontinuity traces by means of the Trace tool, included in
qCompass plugin of CloudCompare [60], was performed on point clouds representing excavation
faces 1 and 3. Traces were outlined manually drawing segments that followed trace paths: the result
associated to each segment is its orientation expressed in terms of trend/plunge. By representing the
orientation data on stereonets and performing a cluster analysis, the authors were able to identify sets
K3 and K4 in the portion of the point cloud representing excavation face 1 and K2-K3-K4 sets in the
one representing excavation face 3 (Figure 12).
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Regarding the model of the entire quarry, having a lower resolution, only the most significant
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5.3. Stability Analysis

The results of the kinematic analyses performed following the modified Markland test are reported
in Tables 3 and 4. This kind of analysis only indicates the susceptibility of a front with respect to a
certain failure mechanism, because the test is based only on geometrical and frictional conditions.
Therefore, no indications regarding the probability of occurrence, when or where it can occur are given.
However, in a peculiar environment such as a marble quarry, in which there is a continuous change
of the morphology, this kind of stability assessment is fundamental in order to understand which
directions of excavation could involve instabilities.

Table 3. Summary of potential failure mechanisms that may affect excavation faces from 1 to 7.

Face (Dip/Dip Direction) Planar Sliding Wedge Sliding

1 (87/055) K2
K2–K3
K2–K4

2 (88/345) K3 K2–K3

3 (60/050) K2
K2–K3
K2–K4

4 (89/353) K5
K1–K5
K1–K2

5 (89/057) - -
6 (89/300) - K1–K5
7 (89/048) - -

Table 4. Summary of potential failure mechanisms that may affect excavation faces A, B, and C.

Face (Dip/Dip Direction) Planar Sliding Wedge Sliding

A (70/330) -
K1–K5
K2–K4
K4–K5

B (86/043) K2

K2–K3
K2–K4
K2–K5
K3–K5
K4–K5
K1–K2

C (89/239) -

K1–K3
K1–K4
K1–K5
K3–K4

Excavation faces resulted susceptible to planar sliding, mainly along discontinuities belonging to
set K2, and to wedge sliding: different combinations among discontinuity sets were found to be able to
potentially isolate wedges, depending on front orientation.

Thanks to traditional survey performed by the authors it was possible to obtain geotechnical
parameters useful for calculating FoS, such as JRC (with a profile gauge or Barton’s comb) and JCS
(with Schmidt hammer) (Table 5). In addition, persistence P was assumed equal to the ratio between
the longest trace length of the considered discontinuity set measurable on an excavation face and the
dimension of the face that is more similar to the direction of the set. Figure 14 shows an example
with a face 5.35 m high and a sub-vertical trace 5 m long, resulting in an estimated persistence of
0.935. Residual friction angle Φr of discontinuities was obtained from direct shear tests. Unit volume
weight, friction angle and cohesion of the rock matrix have been assumed equal to 2700 kg/m3, 36◦ and
17.74 MPa, respectively, according to laboratory tests performed by the authors.
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Table 5. Geotechnical parameters used for calculating FoS.

Discontinuities

Face P [-] Fr [◦] JRC [-] JCS [t/m2]

1 0.935 28 12 6220
2 0.930 28 11 9565
3 0.949 28 8 8668
4 0.452 28 12 6118
6 0.922 28 11 6328
A 0.990 28 10 8668
B 0.990 28 10 8668
C 0.990 28 10 8668
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Table 6 summarizes the results relating to FoS with respect to planar sliding. As noted, with
the Mohr-Coulomb criterion, the absence of cohesion determines conditions of instability, while the
presence of rock bridges establishes values markedly higher than the stability threshold (equal to 1).

Table 6. Summary of results in terms of FoS with respect to planar sliding mechanism.

Face
FoS (Mohr-Coulomb) FoS (Barton-Bandis)

Equation (2) (capp = 0) Equation (3) (capp , 0) Equation (4)
Spreadsheet RocPlane Spreadsheet RocPlane Spreadsheet RocPlane

1 0.27 0.27 45.42 45.42 1.57 1.39
2 0.10 0.10 86.60 86.60 0.94 0.53
3 0.33 0.33 381.52 381.51 1.41 1.41
4 0.14 0.14 150.13 150.13 1.20 0.74
B 0.42 0.42 3.02 3.02 1.04 1.04

With the Barton-Bandis method, an intermediate situation is outlined with respect to the two ones
previously described. The values obtained with the two methods are in accordance.

In the case of wedge sliding, the absence of cohesion determines conditions of instability in most
cases (Tables 7 and 8), while rock bridges act to increase the degree of safety significantly: even a
small decrease of persistence is able to produce resisting forces more than 10 times greater than acting
forces. The values obtained with the two calculation methods are close in most of the cases. Differences
between results that should be theoretically equal can be attributed to numerical approximation,
particularly influent considering the great number of terms expressed with trigonometric functions
that are involved in FoS calculation (see Equations (5) and (6)); in cases in which differences are
significant, it is possible to suppose the presence of optimization routines in Swedge code that put
geometrical constraints.



Geosciences 2020, 10, 64 14 of 19

Table 7. Summary of results in terms of FoS with respect to wedge sliding mechanism for excavation
faces from 1 to 7.

Face Pair of Sets
FoS

Equation (5) (capp = 0)
FoS

Equation (6) (capp , 0)

Spreadsheet Swedge Spreadsheet Swedge

1
K2–K3 0.30 0.27 79.15 72.17
K2–K4 0.50 0.27 89.88 81.94

2 K2–K3 0.38 0.10 161.07 149.37

3
K2–K3 0.31 0.37 228.14 556.37
K2–K4 0.77 0.76 474.15 695.77

4
K1–K5 0.77 0.80 92.23 145.81
K1–K2 1.45 1.42 21.19 18.77

6 K1–K5 0.54 0.59 8.28 6.49

Table 8. Summary of results in terms of FoS with respect to wedge sliding mechanism for excavation
faces A, B, and C.

Face Pair of Sets
FoS

Equation (5) (capp = 0)
FoS

Equation (6) (capp , 0)

Spreadsheet Swedge Spreadsheet Swedge

A
K1–K5 0.63 0.67 20.55 18.99
K2–K4 0.67 1.07 23.00 22.19
K4–K5 0.28 0.29 88.19 73.40

B

K2–K3 0.49 0.49 12.47 11.19
K2–K4 0.67 1.07 15.02 13.69
K2–K5 0.37 0.42 12.61 8.18
K3–K5 0.15 0.27 40.59 39.65
K4–K5 0.28 0.16 120.10 118.65
K1–K2 1.91 2.86 33.74 25.29

C

K1–K3 0.36 0.52 20.01 23.70
K1–K4 0.38 1.48 27.83 34.88
K1–K5 0.62 0.40 29.27 20.91
K3–K4 0.16 0.51 66.16 66.89

In general, since no sliding events were reported in the quarry, it is possible to affirm that the
more realistic situation to be considered is the one in which cohesion is not null and discontinuities
are not fully persistent: basically, rock bridges control the stability. In the peculiar environment of a
quarry, this fact highlights the importance of a properly designed exploitation, in order to ensure a
safety workplace and not to produce rock bridges sudden breakage.

5.4. Seismic Conditions

Finally, the seismic conditions of the study area, which falls into the Zone 2 of the Italian seismic
hazard zonation [68], were analyzed with the pseudo static method. This technique considers dynamic
forces as static ones by means of a coefficient k, proportional to the peak ground acceleration (PGA).
Coefficient k was calculated according to the Italian technical legislation [69], assuming a PGA equal to
0.215 g (correspondent to a return period of 975 years), a subsoil category A (lithoid material) and
a topography category T2 (slope with average inclination higher than 15◦). In this case, only the
horizontal component of the coefficient (kh), equal to 0.077, was considered.

Tables 9–11 report FoS values obtained considering the presence of seismic action with respect
to planar and wedge sliding mechanism; calculation was performed with software RocPlane and
SWedge, respectively.
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Table 9. FoS values obtained considering the presence of seismic action with respect to planar
sliding mechanism.

Face
FoS (Mohr-Coulomb) FoS (Barton-Bandis)

(capp = 0) (capp , 0)

1 0.22 43.67 1.14
2 0.06 85.28 0.32
3 0.28 363.96 1.20
4 0.10 147.06 0.51
B 0.35 2.81 0.90

Table 10. FoS values obtained considering the presence of seismic action with respect to wedge sliding
for excavation faces from 1 to 7.

Face Pair of Sets
FoS FoS

(capp = 0) (capp , 0)

1
K2–K3 0.22 69.43
K2–K4 0.24 79.79

2 K2–K3 0.09 148.31

3
K2–K3 0.31 509.98
K2–K4 0.65 624.73

4
K1–K5 0.69 134.15
K1–K2 1.18 16.25

6 K1–K5 0.50 6.06

Table 11. FoS values obtained considering the presence of seismic action with respect to wedge sliding
for excavation faces A, B, and C.

Face Pair of Sets
FoS FoS

(capp = 0) (capp , 0)

A
K1–K5 0.57 17.68
K2–K4 0.91 20.13
K4–K5 0.23 70.98

B

K2–K3 0.41 10.50
K2–K4 0.91 12.40
K2–K5 0.36 7.71
K3–K5 0.20 38.65
K4–K5 0.13 116.50
K1–K2 2.21 19.98

C

K1–K3 0.44 22.32
K1–K4 1.27 32.30
K1–K5 0.35 19.90
K3–K4 0.40 64.73

Similar to results in Table 6, with Mohr-Coulomb criterion the absence of cohesion determines
conditions of instability (Table 9), while the presence of rock bridges establishes values markedly
higher than the stability threshold (equal to 1). With Barton-Bandis method an intermediate situation
is outlined with respect to the two ones previously described.

Moreover, similar to results in Tables 7 and 8, in the case of wedge sliding, the absence of cohesion
determines conditions of instability in almost every case (Tables 10 and 11).

In general, it is possible to observe a slight decrease of all the calculated FoS values, due to the
presence of the seismic action.
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6. Conclusions

In ornamental stone quarries, the application of non-contact survey techniques for rock mass
characterization is a relatively recent research topic. This study aimed to highlight the potential of
the application of non-contact survey based on point clouds to the stability assessment of a marble
quarry. To guarantee the completeness of the discontinuity database, this survey was performed in
conjunction with traditional survey methodologies. The results obtained confirm the potential of
non-contact survey techniques for the geomechanical study of a quarry, in particular in terms of data
sample reliability. Non-contact techniques, besides guaranteeing a higher safety level of the operators
and the observation of inaccessible parts, allow for the analysis of all the discontinuities on the entire
surface of the rock face.

The results of application of CloudCompare for the identification of discontinuity traces
demonstrate the great potential of this code on perfectly flat excavation faces: discontinuity sets were
recognized by performing a cluster analysis on traces orientation. In view of the excavation progress,
this could represent an efficient alternative to a standard survey of discontinuity planes, which would
not produce results on excavation faces.

Markland testing of the obtained discontinuity sets revealed the susceptibility of many rock
faces to two potential failure modes (planar and wedge sliding), which were further analyzed with
LEM methods. Since no failures have been reported during the excavation activity, stability analyses
were focused on the evaluation of the influence of discontinuity strength. The authors considered
the presence of rock bridges, as these represent a source of cohesion and contribute to an increase
in the resisting force opposing the sliding. Results in terms of FoS, assuming the Mohr-Coulomb
criterion, demonstrate that the absence of cohesion determines conditions of instability, while the
presence of rock bridges results in values markedly higher than the stability threshold (equal to 1). The
Barton-Bandis method, assumed for planar sliding, produces an intermediate situation with respect to
the two previously described. This comparison shows that even a small percentage of rock bridges
contribute to stability more than peak resistance conditions. Rock bridges, whose quantification is
actually very difficult in terms of geometry and strength, basically control the stability of the slopes in
the quarry, therefore they should be the subject of a detailed investigation, involving geometrical and
mineralogical aspects.

The seismic conditions of the quarry were also considered: the observed slight decrease of FoS
values produced by the seismic action does not affect the rock mass stability in cases in which the
presence of rock bridges is considered; in the other cases the already observed instability conditions
worsen in terms of calculated FoS.
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