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Abstract: The article is a review of mathematical models of snow avalanches that have been proposed
since the middle of the 20th century and are still in use. The main attention is paid to the work of
researchers from the Soviet Union and Russia, since many of their works were published only in Russian
and are not widely available. Mathematical models of various levels of complexity for avalanches of
various types—from dense to powder-snow avalanches—are discussed. Analytical solutions including
formulas for the avalanche front speed are described. The results of simulations of the movement of
avalanches are given that were used to create avalanche hazard maps. The last part of the article is
devoted to constructing models of a new type, in which avalanches are considered as laminar or turbulent
flows of non-Newtonian fluids, using the full (not depth-averaged) equations of continuum mechanics.
The results of a numerical study of the effect of non-Newtonian rheology and mass entrainment on the
avalanche dynamics are presented.
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1. Introduction

Mathematical modeling is an important tool for solving engineering problems related to the protection
of people and structures in mountainous areas against snow avalanches. The modeling approach is used
more and more widely. This is facilitated by the development of computer technology. The first, very
simple mathematical models for avalanches were proposed many years ago. Nevertheless, the creation
and development of new models, as well as new computer codes, continues.

In this paper, we provide an overview of the mathematical models of snow avalanches that were
developed from the middle of the 20th century to the present time. However, we will not consider all
models developed around the world. Many articles have been published that provide a more or less
complete overview of such model, e.g., [1–13]. We focus on the work of researchers from the Soviet Union
and Russia, since many of their works have been published only in Russian and are not known in the
scientific literature. Moreover, we will not describe the models in detail. Our goal is to discuss the features
of models, as well as the statements of problems and solutions that are fundamentally new compared to
those developed simultaneously or later by other research communities. We believe that some of these
ideas and results are still relevant, and they should be considered in the models that are currently in use.
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Examples are: (i) the importance of the flow stability conditions (Section 3); (ii) the introduction of an
upper limit for the value of bottom friction (Section 2.2.5); (iii) using simplified equations to describe
motions with different scales (Section 3); (iv) importance of redistribution of mass in the flow during
movement (Section 3), etc.

In the former Soviet Union, the area of avalanche hazardous territory was about 3,500,000 km2.
In Russia, about 3,000,000 km2 of the country are subject to avalanches [14,15]. Therefore, the problem
of protecting roads, settlements, mines and other objects from avalanches was very urgent. In 1935,
the Tbilisi Research Institute of Structures in Georgia (TBNIIS) proposed a theory in which an avalanche
was considered as a mass point moving along an inclined plane under gravity, Coulomb friction and
environmental resistance proportional to the first degree of velocity [16,17]. The TBNIIS formula was used
quite widely in the former Soviet Union and, in particular, was included in the “Guide on snow-measuring
operations in mountains” (1958). A significant contribution to the development of mass point models
was made by S.M. Kozik, whose book [18] was published in 1962. The author reviews, improves and
generalizes the mass-point mathematical models for avalanches. It is worth noting that, while explaining
and estimating the terms related to friction, environmental resistance and mass entrainment in the
equations, S.M. Kozik speaks of the avalanche as of a stream. Dense avalanches on wide slopes and in
channels, as well as powder avalanches, are considered. Environmental resistance in [18] is proportional
to the square of the velocity. Practical methods for calculating the velocity and run-out distances are
described; auxiliary tables and computational charts are given (recall that the book was written before the
computer era).

Development, generalization and use of mass-point or block models for avalanches continue to this
day (see, e.g., [19]). After calibration, these models can provide approximate estimates for the velocity and
run-out distance of avalanches. In this paper we do not discuss mass-point models in order to save space
for the models that explicitly take into account the internal structure of avalanche flows. Two groups of
such models will be considered in Sections 2–7, respectively.

Sections 2–5 are devoted mainly to the so-called hydraulic models. An avalanche is treated either
as a one-layer or a multilayered flow in these models. The main parameters studied are the layer depth
and the velocity (and the density, in multilayered flows) averaged over the layer depth or over the flow
cross-section. The models proposed by researchers in the former Soviet Union and Russia are described.
Examples of analytical solutions and numerical simulations are given in Sections 3 and 5.

In Sections 6 and 7, we discuss the problems that arise when constructing new, three-dimensional,
models for avalanches. Such models are based on the full (i.e., not averaged over the flow depth) equations
of continuum mechanics. They are to describe the structure of the flow not only along its body, as in
hydraulic models, but also in the direction perpendicular to the slope. Models for dense laminar and
turbulent flows on long homogeneous slopes are suggested. Results of the numerical study of the influence
of the flow rheological properties and entrainment of the underlying material in laminar and turbulent
flows are presented.

2. Dense Avalanches Hydraulic Models

In this section, we consider models for dynamics of dense avalanches. The term “dense” here means
that the density of snow in an avalanche is much higher than the density of the surrounding air, so
that the mixing with air does not occur. Moreover, as a rule, we will assume that the density of snow
in an avalanche differs little from the density in the layer of the static snow that participated in the
avalanche formation.

Commonly, the depth of dense avalanche flows (a few meters) is substantially less than their
longitudinal size (hundreds or even thousands of meters). It is reasonable for such flows to use equations
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averaged over the depth (or over the cross-section) of the flow. This approach is adopted in the shallow
water theory and in hydraulics. Here and further, we refer to such models as hydraulic models.

It is widely recognized that A. Voellmy was the first author who suggested the equations to describe
an avalanche as a fluid flow using a hydraulic model [20]. However, we should note that A. Voellmy did
not present a complete system of differential equations for calculation of the depth and the depth-averaged
velocity: he did not consider the differential continuity equation. Therefore, it is impossible to calculate
the variable flow depth by his theory. Moreover, A. Voellmy assumed the depth and the depth-averaged
velocity to be the same at all points of the avalanche, which means that in fact the avalanche moves as a
solid block. The first paper, which contained a complete system of partial differential equations to describe
the motion of dense avalanches in the hydraulic approximation, was the paper published in 1967 by S. S.
Grigoryan, M. E. Eglit and Yu. L. Yakimov [21].

2.1. The MSU-1D Model

The first hydraulic model for an avalanche was formulated under the assumption that the avalanche
is a 1D turbulent flow on a wide slope [21–25]. Here and further we refer to this model as MSU-1D (after
Moscow State University) model. Below, we shortly describe this model and we compare it to the Voellmy
model [20] as well as to models used in hydraulics of water flows.

The continuity and momentum equations are

∂h
∂t

+
∂hv
∂x

= 0 , (1)

∂v
∂t

+ v
∂v
∂x

= − 1
2h

∂

∂x

(
h2g cos ψ

)
+ g sin ψ− τ

ρh
. (2)

Here, t and x are the time and the coordinate along the slope; v(x, t) and h(x, t) are the depth-averaged
velocity and the depth (thickness) of the flow measured along the normal to the slope; ψ(x) is the slope
angle; g is the gravity acceleration; τ is the friction at the bottom per unit area, ρ is the density of the
avalanche snow (Figure 1). The friction τ is a function of h and v consisting of two parts: the so-called
dry friction τd which does not vanish at v = 0 and the hydraulic friction τh. The Coulomb law for τd and
dependence on the velocity squared for τh are assumed in [21–25]:

τ = τd + τh , τd = µρhg cos ψ
v
v

, τh = kρvv . (3)

In these relations, µ is the coefficient of dry friction and k is the coefficient of hydraulic
turbulent friction.

Significant difference between the system (1)–(3) and the equations of standard hydraulics is due to
the following facts. First, the meaning of h is different: it is the depth along normal to the slope, while h is
usually the vertical depth in hydraulics. This difference is essential since avalanches mainly move along
the bottom with a large inclination angle. Second, the friction at the bottom contains the term that does not
vanish at zero speed: avalanches, unlike water flows, can stop on an inclined surface. Third, an avalanche
has a leading edge, and the medium in front of it (snowpack) differs from the medium in the avalanche;
the latter behaves like a fluid, while the snowpack is considered as a solid in this theory.
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Figure 1. Scheme of the avalanche.

Equations (1) and (2) do not contain the terms related to the snow entrainment by the avalanche.
However, it is known that entrainment significantly affects the flow dynamics. The following mechanism
of entrainment (the so-called “frontal entrainment”) is considered in [21–25]. It is assumed that the
entrainment occurs at the avalanche leading edge. The avalanche operates like a bulldozer pushing
the snow ahead of it, breaking the snow structure and involving it in the motion. Thus, in [21–25] the
entrainment is accounted for by conditions at the leading edge (x = X f (t)). These conditions follow from
the the mass and momentum conservation laws

h̄(w− v̄) = h0w,

h0wv̄ =
h̄2g cos ψ

2
− σ∗

ρ
h0 ≡ P at P ≥ 0 .

(4)

Here, w is the speed of the avalanche leading edge, h̄ and v̄ are the depth and the flow velocity on the
front; σ∗ is the compressional strength of the snowpack layer that can be entrained by the avalanche, h0

is its thickness; ρ is the density of snow in the avalanche (which is assumed equal to the density in the
snow cover).

In [26] an avalanche behavior in the run-out zone was considered. The avalanche decelerates in this
zone. Decrease in the velocity leads to the decrease in the height of the avalanche front, i.e., P decreases.
When P = 0 the front stops, according to (4). However, it does not mean stopping the entire avalanche
since the rear parts continue to move. The snow piles at the front, so that P increases and the motion
continues. If for some reason P < 0, i.e., the force exerted by an avalanche on a layer of snow located in
front of it becomes insufficient to disrupt it, then, instead of the relationships (4), one of the following
conditions can be used in calculations

a) w = v̄ = 0; b) h0 =
ρh̄2g cos ψ

2σ∗
; c) w = v̄, h̄ = h0 = 0. (5)

They mean, respectively, (a) stopping of the avalanche; (b) stopping and further movement with
entrainment of a thinner layer of snow; (c) motion over the snow cover without entrainment. The situation
with P < 0 can arise in a run-out zone. A study of the structure of the avalanche deposits shows that
at the end of the path the avalanche ceases to entrain snow, that is, the third condition in (5) is fulfilled.
Calculations show that any of the conditions (5) give an almost equal run-out distance [26].
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Relationships (4) or (5) are the boundary conditions for Equations (1) and (2) at the avalanche leading
edge (x = X f ). At the rear edge (x = 0) the conditions h = 0, v = 0 are assumed. The initial conditions
set the velocity and depth in the area of the initially destroyed snow, which turned into an avalanche:
v = v0(x), h = h0(x) at t = 0, 0 ≤ x ≤ l0 where l0 is the length of the region. In reality, the functions
v0(x) and h0(x) are not known. Calculations show that when an avalanche moves with mass entrainment
down a long slope, the influence of the initial data becomes insignificant some time after the start. When
moving without entrainment, the initial mass of snow that is set in motion is important, while the effect of
the initial velocity and thickness distributions decreases.

So, if the frontal entrainment takes place, the leading edge of the avalanche is a kind of hydraulic
jump: on one side of it h = h0, v = 0 , and on the other side, h = h̄, v = v̄. Note that this jump differs
from a usual hydraulic jump because the media at different sides of the jump are not the same—ahead of
the jump it is a solid and behind it behaves like a fluid. Therefore, the leading edge can be considered as a
phase transition boundary.

To conclude the description of the MSU-1D model, let us compare it again to the Voellmy model [20].
The formulas for friction at the bottom are common to both models, though different notations are used for
hydraulic friction coefficient: it is denoted by k in the MSU-1D model and by g/ξ in the Voellmy formula.
The crucial difference is the following. The model MSU-1D contains two coupled partial differential
equations, which allow one to calculate the velocity and thickness variation in time and their variation
and mass distribution along the body of the avalanche as well. In contrast, the Voellmy model contains
only one ordinary differential equation to calculate the velocity variation in time under the assumptions
that the velocity is the same in all points of the avalanche and the thickness is constant and known. Other
important issues are an explicit introduction of flow leading edge and modeling mass entrainment.

The results of analytical and numerical investigation of the MSU-1D model as well as its further
development and use for simulation natural avalanches are presented in Sections 2.2 and 3–5.

2.2. Further Development of the MSU-1D Model

2.2.1. Two-Dimensional Motion

The following equations for two-dimensional motion of an avalanche were formulated in [27–30]:

∂h
∂t

+ divhv = 0 , (6)

dv
dt

= − g
2h

grad(h2 cos ψ) + g sin ψe− F(v, h, x, y)v . (7)

Here, v is the depth-averaged velocity vector, ψ is the local angle between the horizontal plane and
the plane tangent to the slope (the bed surface), e is the vector directed along the line of maximum slope in
the tangent plane, F(v, h, x, y)v is the friction force per unit mass, t is time, x, y are coordinates at the bed
surface; div and grad are two-dimensional operators at the bed surface. An example of an expression for
the friction force reads (compare to (3))

F(v, h, x, y)v = µg cos ψ
v
|v| + k

|v|v
h

. (8)
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If the frontal entrainment mechanism is assumed, then the conditions at the avalanche front are
(compare to (4))

h(wn − vn) = h0wn,

ρh0wnv =
1
2

ρgh2 cos ψn− h0σ∗n .
(9)

Here, n is the unit vector directed along the normal to the avalanche leading edge, wn is the normal
component of the local propagation velocity of the leading edge, vn is the normal component of the snow
velocity at the leading edge, ρ is the avalanche snow density and σ∗ is the compression strength for the
snow layer to be entrained.

Equations (6)–(9) allow to model the lateral spreading of an avalanche.
The two-dimensional movement of an avalanche down a slope with smoothly varying properties,

taking into account the complex shape of the fracture line that could develop in time, was studied
analytically in [27]. Several variants of the fracture line and the avalanche behavior were considered.
Simulations of real avalanches in Caucasus and Khibiny mountains were performed using the
two-dimensional model [28,30–32].

2.2.2. Channeled Avalanches

Paths of the real avalanches often include channels. The equations obtained by averaging over the
flow cross-section were written. Channels with different variable shapes of cross-sections were considered
in [29,30,33–36]. The influence of the chute width variation on the velocity and depth of the avalanche
is shown in Figure 2. The equations contain terms related to friction against the side walls. The wall
friction increases with increasing the depth of the flow, in contrast to the situation with friction against
the bottom. Friction on the side walls affects the velocity and thickness of the avalanche. It can also lead
to qualitatively new shapes of the flow, in particular, to the existence of zones of sharp decrease in the
thickness of the flow [29,30,34]. Simulations of real channeled avalanches were performed [31–33,37–40].
Analytical solutions were obtained for motion in chutes with constant inclination angle and constant shape
and dimensions of their cross-sections. In simulations of real avalanches [31–33,37–40] the shape of the
channel cross-sections was approximated by a trapezoid with a variable width of the base and variable
angles of inclination of the sides.
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Figure 2. An avalanche in a chute. Calculated distributions of the depth (full lines) and velocity (dashed
lines) along the avalanche body: (a) wide chute, (b) narrow chute; (c) the avalanche passes the sharp
increase in the chute width; location of the change in the chute width is indicated by a small black triangle;
(d) the avalanche after the pass of the decrease in chute width; (e,f) the shapes of the avalanche deposits.
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2.2.3. Influence of the Slope Surface Curvature

Equations for motion at a curvilinear slope were derived and used in [26,41]. For 1D motion of a
dense avalanche with frontal entrainment, these equations are (compare to Equations (1) and (2))

∂h
∂t

+

(
1 +

h
R

)
∂hv
∂x

= 0,

∂v
∂t

+

(
1 +

h
R

)
v

∂v
∂x

= g sin ψ−
(

1 +
h

2R

)(
1

2h
∂

∂x

(
h2g cos ψ +

h2v2

R

)
− τ

ρh

)
.

(10)

Here, R is the radius of curvature of the slope; R > 0 in the concave sections of the slope and R < 0 in
the convex sections. The equations have been derived assuming that |R| � h; terms of the order h2/R2

and higher have been neglected. The slope curvature causes a change in bottom friction τ. In particular, if
a part of the friction τd is proportional to the pressure at the bottom, then this part should be written as
(compare to Equation (3))

τd = µρ

(
gh cos ψ +

v2

R

)
. (11)

If the frontal entrainment takes place, then the conditions at the avalanche leading edge are

ρh̄(w− v̄) = ρ0h0w,

ρ0h0wv̄ = 0, 5ρh2
(

g cos ψ +
v̄2

R

)
− σ∗h0 ≡ P (P ≥ 0) .

(12)

The influence of the curvature of the slope on the dynamics of the avalanche is mainly due to the
presence of a centrifugal force. It can be seen from Equations (10) to (12) that this force affects the speed
and run-out distance of the avalanche in two ways. On a concave slope, it increases friction, which leads
to a decrease in the velocity. On the other hand, the centrifugal force increases the pressure gradient,
including the pressure of the avalanche on the snow in front of it. This leads to an increase of the avalanche
velocity. The result of the combined action of both factors can be either an increase or a decrease in the
velocity and therefore in the run-out distance, depending on the values of the friction coefficient and
the radius of curvature. Numerical study of the influence of the curvature of the path on the avalanche
dynamic parameters and run-out distance was performed in [26,41,42].

2.2.4. Entrainment

The gradual entrainment from the underlying snow layer was considered in addition to, or instead
of entrainment at the front in [41,43–49]. In fact, the entrainment of snow at the front described in the
previous subsection does not obligatory mean the plough entrainment by the avalanche front. It can be
related to a graduate entrainment from the underlying layer if it occurs in the narrow zone adjacent to the
front. Field observations confirm that usually a significant fraction of the entrainment takes place in the
relatively narrow front part of the avalanche (within the first few tens of meters) [50]. This front part can
be either replaced by a jump in mathematical modeling as is done in MSU-1 model or it can be considered
as a narrow zone with gradual entrainment. Moreover, the gradual entrainment from the underlying
layer can continue (at diminishing rate) along the body of the avalanche outside of the frontal part, if all
available snow is not entrained by the frontal part. This should be accounted for by the model.
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If the gradual entrainment is considered, then additional terms enter the equations. For the 1D motion
on a wide slope, the continuity equation now reads

∂h
∂t

+
∂hv
∂x

= q , (13)

where q is the rate of volume entrainment per unit area at the flow bottom. Different formulas to determine
q were suggested and used in [41,43–49,51–53]. A review of various ways of incorporating the entrainment
effect into models of flows of different physical nature can be found in [44]. In particular, in [43], it is
assumed that the boundary between the moving avalanche snow and the underlying static snow layer is a
shock wave inclined to the bottom, in which the snowpack is broken up and entrained into the avalanche.
At certain additional hypotheses, this approach leads to the formulae

q = k
√

h− h∗ if h > h∗; q = 0 if h ≤ h∗ . (14)

where k is a model parameter and h∗ is the value of the flow thickness at which the pressure at the flow
bottom reaches the compression strength of the underlying snow. Some critical comments on this approach
can be found in [44,52].

Another mechanism for basal entrainment is considered for dry dense, powder, and mixed avalanches
in [41,45–49,53], see Section 4. It is supposed to be similar to mixing in turbulent jets. Mixing is largely
driven by the instability at the flow boundaries leading to formation and breaking of waves there.
The growth rate of the disturbances is known to be proportional to the velocity difference between
the flow and the ambient medium with the coefficient depending on the density ratio [54]. It is reasonable
to assume that the entrainment rate meets the same rule. Then for dry dense avalanches entrainment rate
from the underlying still snow layer is [45,46]

q = m10v
√

ρρ0

ρ + ρ0
,

where m10 is the coefficient and v is the velocity of snow in the avalanche; ρ0 and ρ are the densities in the
underlying snow layer and in the avalanche, respectively. For more details see Section 4.

2.2.5. Friction

The expressions (3) and (4) for both dry and hydraulic frictions were modified. First, following
Grigorian [55] the Coulomb’s law for dry friction τd was changed by introduction of an upper limit for
its value [55]. The new law states that the bottom shear stress τd is equal to µ p, where µ is the friction
coefficient and p is the bottom pressure, unless µ p is not larger than the minimal shear strength τ∗ of the
moving and underlying materials. Otherwise, τd equals τ∗ (Figure 3):

τd = µp if µp < τ∗ ; τd = τ∗ if µp ≥ τ∗ . (15)
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p

τ

τ
*

Figure 3. Grigorian friction law.

Grigorian proposed formula (15) based on the general concept that for every process, there is a limit
stress that it can withstand for each material. In particular, one of the goals was to explain the observed
excessively large run-out distances for large avalanches. The phenomenon can be formally described
by introducing the dependence of the Coulomb friction coefficient µ on the avalanche volume [38,56].
However, this assumption does not correlate with the physical meaning of µ as a local characteristic
determined by local properties of the moving snow and the bottom. Let us show that there is no need
to introduce the dependency of µ on the avalanche volume if the formulas (15) are respected. If the
bottom pressure is p = ρg cos ψh, then τd = µρgh cos ψ until h ≤ h∗ where h∗ = τ∗/(µρg cos ψ). Thus,
the dry friction per unit mass τd/(ρh) = µg cos ψ does not depend on h. However, for h > h∗ one has
τd/(ρh) = τ∗/(ρh). Therefore, for avalanches with h ≥ h∗ the dry friction force per unit mass will decrease
with h. That is why large avalanches move faster and extend farther than small ones with the same value
of the friction coefficient µ.

Formula (15) for dry friction and its modifications to account friction against side walls for channeled
avalanches were used in [30,34,35,37,38,41,57]. In particular, it was found that replacing the Coulomb
law with formula (15) would result not only in a change in the values of v and h but also in a qualitative
change in the shape of the flow. Thus, regions with a sharp decrease in v and h can appear at the back of
the avalanche [35].

Further development of the formulas for bottom friction concerns the stopped parts of the
avalanche [26,41]. The friction force can be less than the dynamic friction there. The static friction is
equal to the active forces (gravity) [26]. This could be important in the run-out zone where the front parts
of the avalanche can stop while the rear parts continue to move.

The expression for the hydraulic friction τh depends on three factors: the flow regime (turbulent or
laminar), the rheology of the moving material and the shape of the channel cross-section (for channeled
avalanches). For 1D turbulent flow down a wide slope it is reasonable to use formula (3) with τh
proportional to v2 at Re ≥ Recr, where Re is the Reynolds number. If the flow is laminar (Re < Recr),
then the formula for τh depends on the moving snow rheology (see Section 3). For linear viscous medium
τh/(ρh) = k1v/h2. Besides, the flow regimes can be different in different parts of the avalanche; this
should be taken into account when choosing formulas for τh [26,41].

2.3. Flow Stability Conditions

It is known that flows in open channels and on slopes can lose stability. Then, the so-called roll waves
can appear. The waves have hydraulic jumps at their fronts whose height can be much greater than the
depth of the flow. This leads to a restructuring of the entire flow including a change in the velocity (see
Section 3). Whether a flow with constant or slowly varying parameters is stable or not depends on the
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magnitudes of the flow parameters and the properties of the path. It is known [29,58] that a 1D flow with
constant h and v is stable with respect to disturbances propagating along the flow direction if and only if
the following condition is fulfilled:

a− ≤ a ≤ a+ where a± = v± c, c =
√

g cos ψ . (16)

Here, a and v± c are the propagation velocities of small disturbances in large-scale and small-scale
approximations, respectively (see Section 3), and c =

√
g h cos ψ is the propagation velocity of small-scale

disturbances relative to the flow particles.
In [59] the stability criteria for flows at wide homogeneous slopes have been derived for

2D perturbations propagating at arbitrary angles to the flow velocity (see examples in Section 3).
A homogeneous flow on a wide slope is stable if the following conditions are fulfilled:

Fr

∣∣∣∣∣∣∣
τ − h

∂τ

∂h

v
∂τ

∂v

∣∣∣∣∣∣∣ ≤ 1 if 2τ ≥ v
∂τ

∂v
; (17)

Fr

∣∣∣∣∣∣∣
τ − h

∂τ

∂h

v
∂τ

∂v

∣∣∣∣∣∣∣ ≤ ξ∗ if 2τ < v
∂τ

∂v
, where ξ∗ =

2τ

v

(
∂τ

∂v

)−1√ v
τ

∂τ

∂v
− 1. (18)

Here, Fr = |v|/
√

g h cos ψ is the Froude number.
The information about the flow stability is of particular importance for numerical modeling. If it is

expected that stability criteria are not met in some sections of the avalanche path, then a numerical scheme
with low numerical viscosity must be used [25].

The stability criteria for laminar and turbulent motions on wide slopes and in channels with different
expressions for the friction are given in [25,29,34,35,59–61].

2.4. Comments to a History of Dense Avalanche Hydraulic Models

The one-dimensional model MSU-1 was published in 1967. In the model, an avalanche was considered
as a flow of a continuous medium, and the depth-averaged partial differential equations of the mass and
momentum balance were used. Over the next two decades, in the Soviet Union, the further development
of this model was intensively carried out (e.g., the two-dimensional model—1973; Grigorian law of
friction—1979). These models were used for estimation of the avalanche parameters and creation of
avalanche hazard maps [28,31,40,62,63].

Meanwhile, researchers and engineers developed and used mathematical models considering an
avalanche as a moving solid block. The PCM (Perla, Cheng and McClung) [64] and VSG (Voellmy, Salm,
Gubler) [65] models are two widely known examples. Only in the late 1980s did the hydraulic approach
find its recognition in the western scientific literature. In [66] the so-called NIS (Norem, Irgense, Shieldrop)
model was described. Another model published in 1989 [67] became known as the Savage–Hutter
model. In 1993, the Savage–Hutter model was extended for two-dimensional flows [68], and in 1999 the
channelized flows were studied [69].

The Savage–Hutter model presented in [67] differs from the MSU-1 model in two aspects: (1) it
does not include velocity-dependent part of friction; (2) it introduces the so-called earth pressure
coefficients kactpass. Both of these points are questionable. Due to the absence of the velocity-dependent
friction, the Savage–Hutter models cannot describe a steady homogeneous flow at a slope with constant
incline. However, it is widely believed that such flow can occur in the transit part of an avalanche
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path. In fact, the models including the velocity-dependent friction have continued to develop [5,13,56,70].
The introduction of the coefficient kactpass is reasonable in statics of soil. However, in fast turbulent flows,
the moving material is destructed and behaves like a fluid rather than a structured solid. Besides, kactpass

is a discontinuous function of the flow and the slope parameters. This make the governing equations
extremely nonlinear. The models and computational codes that are developed currently do not include
both mentioned features of the Savage–Hutter models, and they are closer to the MSU-1 model and its
modifications [13,56].

3. Analytical Solutions

In this section we describe asymptotic (as t → ∞) analytical solutions for dense avalanche
dynamics [24,25,27,29,34,35,60,61]. Such solutions allow one to estimate the avalanche parameters at long
slopes and in long chutes without complicated calculations. Besides, they can serve to verify numerical
schemes and computer codes proposed for more detailed modeling.

In the following section, we describe a method for obtaining analytical solutions to the problems of
avalanche dynamics based on the use of equations in the large-scale approximation. Examples of analytical
solutions are given as well.

3.1. Large-Scale and Small-Scale Motions

The key idea in constructing analytical solutions is to use the simplified equations in large-scale
approximation. Consider, for example, the flows described by the MSU-1D model [25]. Denote by L and T
the distance and time, at which the magnitudes of v and h change significantly; L and T are termed the
length and time scales for the flow. Usually T = L/V for problems in study, where the typical velocity
magnitude V is known. Denote by H the typical magnitude of h and by F the typical value of friction per
unit mass τ/(ρh). According to definitions of L and T, the following estimates for the magnitudes of the
space and time derivatives of v and h hold:

∂v
∂x
∼ V

L
,

∂h
∂x
∼ H

L
,

∂v
∂t
∼ V

T
=

V2

L
.

Let us compare different terms in the momentum Equation (2). The left-hand side of this equation
and the first term in its right-hand side are of the orders V2/L and gH cos ψ/L, respectively. The orders of
their ratios to the friction term are

V2

FL
,

gH cos ψ

FL
.

If L is large, namely, if

L� max
(

V2

F
,

gH cos ψ

F

)
, (19)

then we can neglect the differential terms in the momentum Equation (2) to obtain its
large-scale approximation

g sin ψ− τ

ρh
= 0 (20)

This equation together with the continuity Equation (1) describes the large-scale motions. The theory
based on Equations (1) and (20) is referred to as the kinematic waves theory [58,71].

Since τ is a known function of h and v, Equation (20) determines v as a function of h

v = V(h) .
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Substituting this expression into the continuity equation we come to the equation for h

∂h
∂t

+ a
∂h
∂x

= 0, a(h) ≡ ∂hV
∂h

.

This equation has a characteristic form, and a(h) is the characteristic speed. In particular, small
disturbances propagate with the velocity a(h).

When friction is expressed by formula (3) the condition under which we can neglect the differential
terms can be written as

L� max
(

H
k

,
H

tan ψ− µ

)
. (21)

A different approximation can be used for small-scale motions, when

L� min
(

V2

F
,

gH cos ψ

F

)
. (22)

At these conditions, the space and time derivatives of v and h are relatively large, and the friction can
be neglected in the momentum equation. The resulting system of differential equations has two families of
characteristics. The propagation velocities of small perturbations in this approximation are v± c where is
c =

√
g h cos ψ.

3.2. Analytical Solution for a 1D Flow at a Long Wide Homogeneous Slope

Let us consider first the one-dimensional problem for a dense avalanche moving down a long wide
homogeneous slope [24,25,29]. Assume that the movement is described by the MSU-1D model, including
frontal entrainment (see Section 2.1). The slope angle ψ, the depth h0 and the strength σ∗ of the entrainable
snow layer are constant. The avalanche is not very large (τd < τ∗, h < h∗), so the traditional Coulomb
law can be used; the motion under Grigorian friction was considered in [35]. The slope is steep enough
(tan ψ > µ) so that the avalanche does not stop on this slope.

Suppose that when moving down a long homogeneous slope with entrainment (h0 6= 0), the velocity
of the avalanche leading front tends to a constant with increasing time, while the length of the avalanche
increases. The latter is due to the fact that the hydraulic friction per unit mass decreases with increasing the
thickness of the flow. Therefore, the thicker frontal part of the avalanche moves faster than its less thick rear
part. Numerical studies confirm this behavior of the flow [24,25]. Consequently, at a large amount of time,
the derivatives of h and v with respect to x and t are small everywhere except, possibly, a zone adjacent to
the leading edge of the avalanche. We can conventionally divide the avalanche into two zones: a long
zone 2 with a large length scale L2 (of the order of the avalanche length) and a relatively narrow zone 1
adjacent to the avalanche leading edge. Note that such division is reasonable if the stability conditions for
the flow with slowly varying parameters are satisfied. Otherwise, the length scale is determined not by
the length of the avalanche but by the length of the waves appearing in it due to instability; then L2 cannot
be large despite the large length of the whole avalanche. In the problem in study, the stability condition for
the flow in zone 2 is [59]:

tan ψ− µ ≤ 4 k. (23)

3.2.1. Solution for the Large-Scale Zone 2

Let the condition (23) be respected. In the large scale zone 2, we can use the simplified momentum
Equation (20). With account for the relationships (3), this equation reads

f (h, v) ≡ g sin ψ− µg cos ψ− k
v2

h
= 0. (24)
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Equation (24) allows one to find v as a function of h

v = V(h) =

√
hg cos ψ(tanψ− µ)

k
. (25)

Substituting this result into the continuity Equation (1) we obtain the equation for h

∂h
∂t

+ a
∂h
∂x

= 0, (26)

where

a(h) ≡ ∂hV
∂h

= V + h
∂V(h)

∂h
=

3
2

V(h) =
3
2

√
hg cos ψ(tanψ− µ)

k
. (27)

Equation (26) has a characteristic form, and a(h) is the velocity of characteristics. Large-scale
disturbances of h (and v since v = V(h)) propagate with the velocity a(h).

Let us discuss the boundary conditions for zone 2 at its boundary with zone 1. Since zone 1 is narrow
in comparison to large-scale zone 2, we can replace the entire zone 1 by a jump (a shock) when constructing
the solution to Equation (26). We will refer to this jump as a kinematic jump. Further we will consider the
solution in zone 1, which actually describes the structure of this kinematic jump.

The only conservation law on the kinematic jump is the condition of mass conservation

hi(w−V(hi)) = h0w or w =
hiV(hi)

hi − h0
, (28)

where w is the jump speed and hi, vi = V(hi) are the flow depth and velocity behind the kinematic jump.
If there are no other conditions at the jump, then it follows from the Lax evolutionarity condition [72] that

a(hi) ≥ w . (29)

On the other hand, it follows from the definition of the leading edge of zone 2 that w ≥ a(hi).
Combining this inequality with the Lax condition (29) gives

w = a(hi) . (30)

Besides, there is formula (28) for w. Therefore,

w =
hiV(hi)

hi − h0
= a(hi) =

3
2

V(hi) , i.e., hi = 3h0, w =
3
2

V(hi) . (31)

Let us find the distribution of h and v inside zone 2. Equation (26) can be rewritten as

dh
dt

= 0 at
dx
dt

= a(h), i.e., h = const at x = a(h)t + x0 .

The solution is a Riemann wave. The region of initial perturbation, from which the avalanche has
developed, is small from the large-scale point of view, and it can be replaced by a point x = 0. Then the
solution in zone 2 is given by the formulas

a(h) =
x
t

, v = V(h) at 0 ≤ x ≤ a(hi)t ; hi = 3h0 . (32)
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By use of formulas (25) and (27), we write the solution in explicit form

h =
4k

9g cos ψ(tanψ− µ)

x2

t2 , v =
2
3

x
t

at 0 ≤ x ≤ a(hi)t, (33)

w =
3
2

√
3h0g cos ψ(tanψ− µ)

k
. (34)

However, this solution is valid only if there exists a solution in zone 1, which determines the structure
of the kinematic jump.

3.2.2. About Solution for Zone 1 (Adjacent to the Leading Edge)

The entire zone 1 (it may be called “the head” of the avalanche) was replaced by a jump in constructing
the solution for zone 2. However, knowledge of h and v inside zone 1 is also important. So, we need to
find a solution to the full (not simplified) Equations (1), (2) and (4) at the following conditions.

1. It is stationary in the coordinate system moving at a speed w: the flow cannot change significantly
over a period of time that is small from a large-scale point of view.

2. The velocity v̄ and thickness h̄ at the avalanche leading edge x = X f satisfy the relationships (4).
3. At the rear boundary, h and v tend to hi and V(hi) satisfying (25).

Due to condition 1, the solution in zone 1 can be written as h = h(ξ), v = v(ξ), where ξ = x− wt.
Then the continuity equation gives

(w− v)h = wh0 ≡ Q, i.e., v = w− Q
h

.

Using the latter relationship, the momentum equation is transformed into an ordinary differential
equation for h, which can be written as [29]

dh
dt

=
h f (h, v)

(a+ − w)(w− a−)
, (35)

where v = w − Q/h , a± = v ±
√

ghcosψ; f (h, v) is defined by formula (24) and w is a parameter
that, in general, can be arbitrary. The question is whether Equation (35) has a solution that satisfies the
boundary conditions 2 and 3 with w determined by the formulas (31) and (34). A rather complicated
investigation [25,29] shows that the answer depends on the value of the strength σ∗ of the snow that the
avalanche entrains. If σ∗ is large enough, namely, if

σ∗ ≥ σ̂ , σ̂ ≡ ρg cos ψh0

(
4− 9

2
tanψ− µ

k

)
, (36)

then the required solution for zone 1 exists. This means that the solution (33) and, in particular,
formulas (31) and (34) for the avalanche front speed are valid. The solution in zone 1 can be found
by solving Equation (35) numerically. The magnitudes of the velocity v̄ and thickness h̄ at the leading edge
are calculated by Equations (4) taking into account the known value (31) of w (Figure 4a).

However, for σ∗ < σ̂ Equation (35) has a solution that satisfies the boundary conditions 2 and 3 only if

h̄ = hi .

The latter is a new condition at the kinematic jump in addition to (28). The evolutionarity condition
now reads w > a(hi). It means that for σ∗ < σ̂, formula (31) obtained without consideration of the
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kinematic jump structure is no longer valid. In this case, the magnitudes of w, h̄ = hi and v̄ are calculated
by Equations (4) and (28). Finally, the solution for both zones 1, 2 for σ∗ < σ̂ is

h =
4k

9g cos ψ(tanψ− µ)

x2

t2 , v =
2
3

x
t

at 0 ≤ x ≤ a(hi)t,

h = hi at a(hi)t ≤ x ≤ wt.

(37)

The shape of the avalanche in this case is shown in Figure 4b.

x

h
(a) (b)

x

h

Figure 4. Avalanche for (a) σ∗ ≥ σ̂ ; (b) for σ∗ < σ̂.

3.3. 1D Motion without Entrainment

Consider an avalanche moving down a long homogeneous steep slope without entrainment [25].
Denote the initially released mass per unit width by M; M = const during motion. The statement of the
problem is similar to that described in previous subsections except the conditions at the leading edge:
to describe motion without entrainment we just set h0 = 0. In this case, there is no jump at the leading edge,
and an asymptotic solution with w = const does not exist. However, the length of the avalanche increases
with time and the derivatives over t and x decrease everywhere except the narrow zone 1 adjacent to the
leading edge. Therefore, at large time we can use the large-scale approach and obtain

h =
4k

9g(sin ψ− µ cos ψ)

x2

t2 , v =
2
3

x
t

.

The speed of the avalanche front can be found by using the condition of mass conservation. Neglecting
the length of zone 1, we write

x f∫
0

ρh(x, t) dx =
4kρ

27g(sin ψ− µ cos ψ)

x3
f

t2 = M ,

where x f is the front position. Therefore,

w ≡
dx f

dt
= 3

√
2Mg(sin ψ− µ cos ψ)

ρkt
=

√
3Mg(sin ψ− µ cos ψ)

ρkx f
, h̄ =

3M
ρx f

.

These formulas show that in motion down a long homogeneous slope without snow entrainment,
the avalanche front speed tends to zero even if tan ψ > µ. This is due to redistribution of mass over the
avalanche body.

3.4. Solution under the Instability of Smooth Flows

The analytical solutions described above were obtained under the essential condition that the flow
is stable. If the stability condition is not met, then it is impossible to use the equations in large-scale
approximation. Waves and hydraulic jumps can appear in zone 2. Moreover, the small disturbances
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that arise in zone 2 will propagate into zone 1; they can possibly reach the leading edge and change its
velocity. To clarify this situation, consider the solution in zone 1. First, it is known that the flow just
behind a hydraulic jump (in particular, behind the avalanche leading edge) is subcritical: w− v̄ < c(h̄),
c(h) ≡

√
gh cos ψ, i.e., ā+ ≡ v̄ + c(h̄) > w (see Sections 2.3 and 3.1). Second, in the general case, a+ > w

everywhere in zone 1. The flow cannot become supercritical anywhere because the solution to Equation (35)
is not valid near the critical point h = hcr (where w− v = c, i.e., w = a+): the denominator in Equation (35)
is zero at this point. Third, it follows from the assumed instability of the flow in zone 2 that a > a+ in this
zone (a is the propagation speed of small disturbances in zone 2, see the relations (16)). Thus, we may come
to the following conclusion. If a smooth flow is unstable, then a > a+ > w; the disturbances arising in the
rear part of the avalanche reach the leading front and change its speed. The flow with constant w does not
exist. However, this is not always true! Note, that the magnitude of w is not prescribed in our reasoning.
We can choose w to satisfy the relation f (h, w−Q/h) = 0 at h = hcr. Then both the denominator and the
numerator on the right side of the Equation (35) tend to zero at the critical point, i.e., the following two
relationships are satisfied

f (h, v) = 0, and a+ = w, where v = Q/h, Q = wh0. (38)

In this case, the transition through the critical point is possible, and it is carried out in the solution
to Equation (35). In the rear part of zone 1, the velocities of small perturbations are less than the front
speed w. Therefore, the disturbances arising in zone 2 do not reach the avalanche front and cannot affect
its speed [25,29]. It is this solution that describes the front zone of the avalanche at large values of time if a
smooth flow in the rear part of the avalanche is unstable. If the flow is described by the MSU-1 model,
then the instability condition is

tan ψ− µ > 4k

and the value of the leading edge speed calculated by Equation (38) is [25]

w =
√

gh0 cos ψ

(
1 +

√
tan ψ− µ

k

)3/2

. (39)

Calculations performed in [24,25] confirm this result. A possible shape of the avalanche is shown in
Figure 5.

Figure 5. A possible shape of an avalanche under conditions of instability.
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3.5. Concluding Remarks to Analytical Solutions for MSU-1 Model

Remark 1. The obtained solutions are valid for the flow at large time from the start of motion (as t → ∞).
However, calculations by the initial (not simplified) system of Equations (1)–(4) show that in fact the flow parameters,
including the leading edge velocity, become close to those given by the analytical formulas shortly after the start of
movement [24].

Remark 2. It is worth mentioning that the approximate formula by Voellmy [20] relating the velocity and thickness
for a 1D avalanche at a long constant slope

v =
√

ξh cos ψ(tan ψ− µ) , ξ = g/k

is suitable for large-scale parts of the flow. The formula is not suitable for parts with sharp variation of the flow
parameters, e.g., for zone adjacent to the leading edge. The solutions described above emphasize that accounting for
the flow depth variation is very important, see Section 3.3.

3.6. Other Analytical Solutions

The method described above has been applied to construct analytical asymptotic (as t→ ∞) solutions
for various flows. Some time after the start of movement down a long homogeneous slope, a zone with
large scales is formed, where the flow parameters satisfy the simplified momentum equation for 1D motion

g sin ψ− τ

ρRh
= 0,

where Rh is the hydraulic radius. For 2D motion, the equation becomes

g sin ψe− τ

ρh
= 0

(see Section 2.2.1). In the hydraulic approach, the friction τ is a function of v and h. In general, the formulas
for τ depend on the flow regime (turbulent or laminar), the flow rheology and the bottom properties.
The same factors determine stability conditions for homogeneous flows; such conditions must be accounted
for while constructing solutions.

3.6.1. 1D Laminar Flow of Generalized Power-Law Fluid

For 1D laminar flows of a power-law fluid, the friction model can be generalized by including the
Coulomb friction. The friction at the bed is then the following function of the depth-averaged velocity v
and the flow depth h:

τ = µρgh cos ψ
v
|v| + K

(
2n + 1

n

)n vn−1v
hn .

Here, µ is the coefficient of Coulomb friction; K and n are the rheological coefficients of the power-law
fluid: in simple shear flow of a standard power-law fluid (without dry friction) the shear stress τ is
related to the shear rate γ̇ by the formula |τ| = K|γ̇|n. If n = 1 and µ = 0, then the fluid is linear-viscous
(Newtonian) and K is the viscosity coefficient. If the avalanche moves down a long homogeneous steep
slope (tan ψ > µ), it is possible to construct an asymptotic (as t→ ∞) analytical solution. Such solution
for the laminar 1D flow was obtained for n = 1 in [60] and for arbitrary n in [61]. Following the approach
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described in the previous subsections, the flow is divided into two parts: large-scale main body (zone 2)
and a head (zone 1). In zone 2, the system of equations is

∂h
∂t

+
∂hv
∂x

= 0,

f ≡ gsinθ − µgcosθ − ν

(
2n + 1

n

)n vn

h(n+1)
= 0 ,

(40)

where ν = K/ρ. It follows from the second equation above that

v = V(h) =
n

2n + 1

(
gsinθ − µgcosθ

ν

)1/n
h(n+1)/n . (41)

The solution in the large-scale zone 2 is

v =
n

2n + 1
x
t

, h =

(
ν

gsinψ− µgcosψ

)1/(n+1) ( x
t

)n/(n+1)
at 0 ≤ x ≤ wt,

w =

(
gsinψ− µgcosψ

ν

)1/n
(βh0)

(n+1)/n , β ≡ 2n + 1
n + 1

.

(42)

However, this solution is valid only if the following two conditions are satisfied.
First, the flow with slowly varying parameters should be stable. The stability conditions in the case

study are [59]

Fr ≤ n
n + 1

if n ≤ 2 tan ψ

tan ψ− µ
; Fr ≤ n

n + 1
ξ∗ if n >

2 tan ψ

tan ψ− µ
. (43)

Here, Fr = v/
√

g h cos ψ is the Froude number, and ξ∗ is defined by the formulas

ξ∗ =
2
λ

√
λ− 1 , λ ≡ n(tan ψ− µ)

tan ψ
.

The stability conditions can be rewritten by use of formula (41) for v:

(
g sin ψ− µg cos ψ

ν

) 1
n

h
n+1

n ≤ ξ∗β
√

g h cos ψ,

ξ∗ = 1 if λ ≤ 2 ; ξ∗ =
2
λ

√
λ− 1 if λ > 2 .

The second condition for the solution (42) to be valid is related to zone 1: a suitable solution for zone 1
should exist. It was proved in [60,61] that the required solution in zone 1 exists, if the strength σ∗ of the
entrainable layer satisfies the condition

σ∗ ≥ σ̂ , where

σ̂ = ρβ2

(
g h0 cosψ

2
−

nh2
0

2n + 1

(
β h0g(sinψ− µcosψ)

ν

)2/n
)

.
(44)
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If at least one of the conditions (43) and (44) is not satisfied, the solutions will differ from those given
by Equations (42). More details are not presented here; they can be found in [61].

3.6.2. 2D Motion on Slopes with Smoothly Varying Properties

Consider a two-dimensional flow down a slope with smoothly varying steepness and snow cover
properties [27]. This means that the linear scale L∗ of change in the slope and snow cover parameters
is large enough. Denote the typical scale and the characteristic time of variation of the solution by L
and T, respectively. It is obvious that L ≤ L∗. For sufficiently large values of L, the differential terms in
momentum Equation (7) can be neglected. Then this equation takes the form

g sin ψe = Fv ,

where e is a unit vector along the steepest descent line, and Fv is the friction per unit mass (cf. Equation (24)).
Therefore, in the large-scale approximation, v is parallel to e and the avalanche moves along the steepest
descent lines. Such lines are known if the slope topography is given. The following method was proposed
for constructing a solution [27]. Divide the entire slope into narrow stripes along the steepest descent
lines. Then the avalanche is a collection of one-dimensional flows in the corresponding stripes. These
one-dimensional flows interact only through their leading edges. Thus, to solve a two-dimensional
problem, a number of one-dimensional problems can be solved together with additional conditions on the
flows’ leading edges. This method was applied (without reference to the theory of kinematic waves) by
Ostroumov in simulations of the Tubri avalanche in Georgia [40].

3.6.3. About the Other Analytical Solutions

In addition to the solutions described above, the asymptotic analytical solutions have been constructed
(i) for avalanches obeying the Grigorian dry friction law (15) [29,35,57]; (ii) for avalanches moving in long
narrow chutes with different cross-sections shapes [29,34,36,57].

A common feature of those problems is that in the large-scale zone, the dependence of the speed
of the characteristics a(h) (or a(S)—for chute avalanches, S is the flow cross-sectional area) on the flow
depth h (or S) is not monotonous. This is due to the special dependence of the friction on the depth.
For example, let us consider a flow in a chute. Until the flow becomes deep enough, the contribution of
friction on the sides of the chute is small, and the total friction per unit mass decreases with increasing
depth. At large depth of the flow, the contribution of friction against the chute walls becomes significant,
which leads to an increase in the total friction with an increase of the flow depth. Figure 6 shows the typical
variations of the flow rate Q. For a one-dimensional motion on a wide slope, Q = hV(h). For motion along
a chute, Q = SV(S) where S is the flow cross-section area. The velocities of characteristics in large-scale

equations are: a(h) =
∂hV
∂h

and a(S) =
∂SV
∂S

, respectively. For the cases shown in Figure 6b,c, they are not
monotonous. In such cases, jumps can occur either with increasing or decreasing the flow depth (Figure 7).
This should be taken into account when performing numerical calculations.



Geosciences 2020, 10, 77 20 of 42

h

hV

(a)

h

hV

(b)

S

SV

(c)

Figure 6. (a) Motion on a wide slope, Coulomb dry friction; (b) Motion on a wide slope, Grigorian dry
friction; (c) Motion in a chute with a rectangular cross-section.

Figure 7. A jump with a decrease in depth; the avalanche moves under Grigorian dry friction.

4. Powder Snow Avalanches and Mixed Avalanches

One of the main features of powder avalanches (Figure 8) is an intensive mixing of snow with
ambient air, which leads to a decrease in the density and increase in the avalanche height. In this section,
we outline very briefly three groups of mathematical models proposed and used for modeling powder
snow avalanches, as well as mixed-type avalanches consisting of a dense core and a powder layer above it.
More details and a review can be found in [49,73].

4.1. Powder-Snow Cloud

The models of the first group treat the avalanche as a snow-air cloud with a given geometric shape.
These models contain equations for calculating the velocity of the center of mass of the cloud, the cloud size,
mass and average density. The first model of this type was proposed in [53] and investigated in [10,74,75].
This model is cited in literature as KS model [3,10,75]. The shape of the longitudinal section of the cloud
is assumed to be a semi-ellipse. The longitudinal diameter is the length of the avalanche L, and half the
second diameter is the height of the avalanche h. The governing system of equations in KS-model consists
of four equations.

Figure 8. Powder avalanche in Khibiny moutains. Photo by Centre of Avalanche Protection of JSC
“Apatit”, 1966.
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In addition to the mass and longitudinal momentum conservation equations, it includes the equation
for avalanche volume variation due to entrainment of ambient air

dA
dt

= bV1 (45)

and the Lagrange equation which is related to the motion inside the cloud

d
dt

(
∂T
∂ḣ

)
− ∂T

∂h
= Q1 + Q2 . (46)

In Equations (45) and (46), A and b are the cloud volume and its upper surface area per unit width,
respectively; V1 is the volume of air entrained by the cloud per unit time and per unit surface area; T is
the kinetic energy of the internal motion resulting in deformation of the cloud; Q1 is the gravity force
component normal to the slope, and Q2 is the lift force appearing due to the pressure gradient on the top
boundary of the cloud (due to overflow of the cloud by air).

The model takes into account the air and underlying snow entrainment, particles sedimentation,
ground friction and air drag. The formulas for the air and snow entrainment rates, as well as for the
ground friction and air drag are taken to be similar to those used in the theories of turbulent jets and
flows in channels. In particular, the air entrainment rate V1 is assumed to be proportional to the avalanche
velocity U and the square root of the ratio of the cloud density ρ and the air density ρa

V1 = k U
√

ρ/ρa.

This formula with the value k = 0.055 was used by Onufriev [76] to simulate the motion of circular vortex
representing the front zone of lifting warm air jet. Results of simulations using KS-model are presented
in [74,75]. In [75] these results are compared to experiments described in [77,78].

The KS model was published in 1977. A few years later, there appeared the papers [77,78] which
proposed a model that looked similar to the KS model. The same semi-elliptic shape of the cloud is
considered. However, Equations (45) and (46) are not included. Instead, the following empirical relations
for growth the cloud dimensions are proposed

dh
dx f

= α1,
dL
dx f

= α2 ,

where x f is coordinate of the front edge, and α1, α2 depend on the slope angle only. The values of α1 and
α2 have been determined in experiments with a flow of salt fluid along a flat bottom in a water tank [77,78].
The detailed comparison of this model with the KS model can be found in [75,79].

In [80] the KS model was extended to describe a 3D cloud. It is assumed that the cloud has the form
of a half-ellipsoid with variable length, height and width. In particular, the lateral spreading of the cloud
can be calculated. The entrainment of air and snow by an avalanche as well as snow sedimentation are
included. The forces are the gravity force, bottom friction, air drag and the pressure gradient due to the
flow of air over the cloud. The inner motion inside the cloud is taken into account, and two Lagrange
equations are formulated with the cloud height and width used as the generalized coordinates. A series
of test calculations aimed to study the qualitative behavior of a 3D cloud and the influence of the model
coefficients and initial conditions have been conducted. Special calculations were made to understand
whether the model described the experimental results of Beghin and Olagne, who studied the motion of
3D clouds of salt fluid along constant slopes in a tank filled by clear water [81]. Neither entrainment of the
underlying layer nor sedimentation were modeled in these experiments. Accordingly, in the calculations,
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the corresponding terms of the equations were excluded. It was found that the qualitative behavior is in
agreement with the experimental data from [81]. In particular, (a) in a certain range of the slope angles,
the cloud dimensions increase linearly along the path except the initial stage of motion; (b) the height
growth rate for a 3D cloud is less than that in the 2D case; (c) the height growth rate can be approximated
by a linear function of the slope angle; (d) the growth rate of width is much larger than that of height and it
can be approximated as being independent of the slope angle. If the cloud does not entrain the underlying
snow, then the cloud velocity first increases and then decreases as the cloud moves along. Calculations
show that entrainment of snow changes this behavior of the velocity. Thus, the velocity can continue
to increase.

4.2. Hydraulic Models for Powder and Mixed Avalanches

The models of the next group are formulated to describe elongated powder avalanches and mixed
avalanches (a dense core and a layer of snow powder above it). These models are of hydraulic type:
the flow consists of several layers (Figure 9), and the equations in each layer are averaged over the
depth [41,45–49].

h₂

h₁

h₀

Figure 9. Scheme of mixed avalanche.

The equations for a mixed avalanche are written below [41]. These equations describe a
one-dimensional motion down a wide slope with the inclination angle ψ. Three layers are considered.
The lowest layer is the layer of static snow; ρ0, h0 are its density and depth. The middle layer models
the dense core of the avalanche; its parameters are marked by sub-index 1. The parameters of the upper
(powder) layer are marked by sub-index 2; ρa is the ambient air density.

The volume, mass and momentum conservation equations for the powder layer are

∂h2

∂t
+

∂h2v2

∂x
= V2a + V21 −Vs ,

∂ρ2h2

∂t
+

∂ρ2h2v2

∂x
= ρaV2a + ρ1V21 − (ρ2 − ρa)Vs ,

∂ρ2h2v2

∂t
+

∂ρ2h2v2
2

∂x
= (ρ2 − ρa)h2 sin ψ− ∂

∂x
(ρ2 − ρa)h2

2g cos ψ

2
−

−τ2a − τ21 − (ρ2 − ρa)Vsv2 + ρ1V21v1 − gh2(ρ2 − ρa) cos ψ
∂(h0 + h1)

∂x
.
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Here, V2a, V21 and Vs are the rates of change in height due to the entrainment of air, snow and
sedimentation, respectively; τ2a and τ21 are friction forces at the avalanche air boundary and snow powder
layer and dense layer boundary, respectively. The equations for the dense layer are

∂h1

∂t
+

∂h1v1

∂x
= −V21 + V10 + Vs ,

∂ρ1h1

∂t
+

∂ρ1h1v1

∂x
= ρ1h1g sin ψ− ∂ρ2h2g cos ψ

∂x
h1 − τ12 − τ10−

− ∂

∂x
ρ1h2

1g cos ψ

2
− ρ1h1g cos ψ

∂h0

∂x
− ρ1V21v1 + (ρ2 − ρa)Vsv2.

Here V10 and τ10 are the rate of height variation and friction force related to an interaction with the
snow cover upon which the avalanche moves, respectively.

The equation describing variation of h0 is

∂h0

∂t
= −V10 .

The main problem in modeling multilayered flows is to establish reasonable formulas that determine
the mass transfer at the boundaries of the layers, as well as mixing with the ambient air and entrainment of
snow from the snow cover. In [41,45–48] the mechanism of mass transfer is associated with the instability
of the boundaries of the layers. Such instability leads to the formation of internal waves, their development
and destruction. Then the following formulas are reasonable

Vij = mij|vi − vj|
√

ρiρj

ρi + ρj
.

Here, the indices i, j denote layers with the numbers i and j, respectively, and mij are empirical
coefficients. Their values can be determined by fitting the modeling results for avalanches whose velocity
and other parameters have been measured. The complete system of equations and their modifications are
presented in [41,45–48]. The calculations show that the transformation of a dry dense avalanche into a
powder one can be described by this model [47,48]. The simulation of real powder and mixed avalanches
in Khibiny and Pamir mountains using the multilayered model was performed by Nazarov [46–48] and by
several students at Moscow University, whose works, unfortunately, have not been published (see the
Section 5).

Historical remark. The paper [41] that suggested multilayered hydraulic model for mixed avalanches
was published in 1983. During the following decade, the other papers mentioned above appeared [45–48].
Later, similar models but with different assumptions concerning the formulas for friction and entrainment
were published in the western literature [70].

The Analogy of Powder Avalanches and Turbidity Currents

Turbidity currents are flows of a sediment-water mixture moving in ambient water along a sloping
bottom under gravity. Physical processes that determine the behavior of such currents are the same as
for powder snow avalanches. Both are “flows induced by the action of gravity upon a turbid mixture of
fluid and (suspended) sediment, by virtue of the density difference between the mixture and the ambient
fluid” [82]. Therefore, mathematical models for powder avalanches and turbidity currents can be similar.
There exist different mathematical models for turbidity currents, including hydraulic models [83–86].
The hydraulic models differ by the formulas that determine the water and sediment entrainment rates.



Geosciences 2020, 10, 77 24 of 42

A review of various formulas can be found in [44]. In [85,86] a turbidity current is considered as a turbulent
flow. The entrainment rate of ambient fluid is supposed to be proportional to the depth-averaged turbulent
mean squared velocity q in the current, i.e., V2a = σq, where σ is an empirical constant. To have a complete
system of equations, the authors use the Reynolds averaged energy equation with the assumption that the
turbulent energy dissipation equals κq3 where κ is a second empirical constant. In [85] the values σ = 0.15
and κ = 0.9 are suggested.

4.3. Powder Avalanche Models with Resolution in Normal to Bed Direction

The next group presents models based on full (i.e., not averaged over the flow depth, or over the entire
body of the avalanche) equations. One of the first models of this type was proposed in [60]. In this paper,
a powder avalanche is considered as a turbulent flow of a two-component snow-air mixture. The basic
equations are the Reynolds’ equations. The proposed new semi-empirical model for turbulent stresses is
in some aspects similar to the well-known Prandtl model. Namely, the stresses can depend on the distance
from the bottom. However, the essential difference is that the turbulent stress is assumed to depend
also on the integral of the vertical gradient of averaged velocity rather than on the averaged shear rate.
Such modification of the Prandtl theory is needed because the vertical profile of the flow velocity is not
monotonous in a powder avalanche: the velocity equals zero at the bottom and tends to zero at the upper
surface. Some test calculations were made by using this new model, but in those days (1974) no attempts
were made to use it to simulate a real avalanche.

Later, 3D models began to develop for powder avalanches and a powder layer in mixed avalanches.
They were based on some other semi-empirical turbulence models (mainly the k-epsilon model and its
modifications) [87–90].

5. Calculations

Calculations by using the models can be divided into two groups. The first group contains numerical
investigation of the models and calculations for different hypothetical slopes. The second group deals
with avalanches on real mountain slopes.

The aim of the calculations of the first group was to estimate the effect of different terms and
coefficients in the equations as well as the initial conditions and the morphometric parameters of the slope.
The sensitivity of the model to the errors in the input data was also studied [37,38,45,46,91–93]. Numerous
calculations using different combinations of values of the parameters and comparison with the data known
from observations permitted to obtain possible ranges of the model coefficients.

The results of test calculations are useful for constructing regional empirical formulae to calculate the
dynamical parameters and runout distances of avalanches [92].

Below the results of simulations of avalanches occurring in real avalanche catchments are given.
Some results concern the catchments, for which the avalanche velocities and depths were not measured.
The calculations were based on the data about the boundaries of avalanche deposits and snow distribution
before and after the avalanche event. Several avalanches were recorded by stereophotogrammetric
methods [94,95]. Two of them were simulated with the use of the models described above.

One of the simulated avalanches is a so-called “Home avalanche” that descends from the slope
of the Mount Cheghet (Elbrous region, central Caucasus) several times every winter. The Lomonosov
Moscow State University Research Station is situated quite close to this avalanche site. The data about
Home avalanche can be found in [96]. Home avalanche was simulated by Ostroumov [33] by using 1D
models different for different parts of the avalanche path. The Home avalanche catchment consists of three
sections: the starting zone that has a shape of a great funnel, the transit zone—a channel and a runout
zone that has a shape of a cone. Ostroumov assumed that the snow in a starting zone moves along the
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lines of the steepest descent. He replaced the starting zone by a set of channels bounded by these lines
and calculated the velocity and the flow thickness at the end of the starting zone using the 1D model for a
flow in such a representative channel. The transit zone of the path was approximated by a channel with
a rectangular cross-section. The width of the channel was prescribed according to the large-scale map
of the slope. In the runout zone, the motion was supposed to occur along the elements of the cone, thus
being one-dimensional in polar coordinates. Ostroumov found that the values µ = 0.45, k = 0.05 and
σ∗ = 2 · 104 Pa led to a good agreement of calculated and measured run-out distances for the avalanche.

Ostroumov also simulated avalanches in a catchment Tubri (Low Svanetia, central Caucasus) with
the aim to prove the project of constructing a special damb in order to protect a village [40]. The values of
the coefficients he used were µ = 0.22, k = 0.08 and τ∗/ρ = 16 m2/s2.

Simulation of two observed wet avalanches in Apkhiz (west Caucasus) for two similar avalanche
catchments II and III above the Moon Glade was made by Mironova [31] using the data obtained by
Volodicheva and Oleinikov. Calculations for starting zones and channeled parts were made by using a
1D model, while a 2D model was applied to calculate the motion in the runout zones. The data about
the avalanche II were used to find the values of model coefficients: µ = 0.3, k = 0.1, τ∗/ρ = 30 m2/s2.
Using these values, the motion of the avalanche III was simulated and good agreement with the observed
data was obtained concerning the runout distance, lateral spreading and the deposits area. Calculations
with different possible values of the avalanches volumes were also made. They were used to refine the
avalanche hazard maps drawn for that region by using geographical methods.

A similar approach (1D model for a chute and 2D model for runout zone) was applied by Mironova [30]
to simulate a dry avalanche in the avalanche catchment 22 in the Khibiny mountains (Figure 10). The motion
was recorded by use of sterephotogrammetry [95]. The values of coefficients were found to be µ = 0.245,
k = 0.05 and τ∗/ρ = 10 m2/s2.

Figure 10. Mountain slopes in Khibiny.

On 9 January 1987, a great avalanche that was called Koghutaiskaya descended from the Mount
Koghutai (3819 m), Elbrus region. It reached a hotel standing at the foot and destroyed several small
buildings. Detailed measurements of the avalanche deposits were made immediately after the event.
The data about the snowpack and meteorological conditions were recorded. The map in scale 1:10,000 was
also available for the region.

Similar large avalanches were observed at the place in 1932 and 1954. Their traces can be seen even
now. Simulations of all these avalanches were made by Mironova [30] by 1D and 2D models. To obtain
a good agreement with the measured runout zone boundaries, she modified the equations to include
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successive layered deposition of the snow in a deposit zone [32]. The values of coefficients for the avalanche
1987 were taken to be µ = 0.2, k = 0.02, τ∗/ρ = 10 m2/s2.

Simulations of dry avalanches with formation of snow powder clouds were performed in [47] by
using 1D two-layer model. A Home avalanche (Elbrus region) and an avalanche in Khibiny mountains
were calculated. Both avalanches produced a powder cloud that continued to move after stopping of
the dense part. For Home avalanche, the dynamical pressure and its variation in time and space were
compared with the measured values [97]. For Khibiny avalanche, the calculated dependencies of the
thickness and velocity of the avalanche front on the front coordinate were compared with the measured
ones. The agreement was good at µ = 0.4, k = 0.02, τ∗/ρ = 6 m2/s2 for Home avalanche, µ = 0.25,
k = 0.02, τ∗/ρ = 10 m2/s2 for Khibiny avalanche and µ = 0.3, k = 0.02, τ∗/ρ = 5 m2/s2 for Pamir
avalanches. The data about Pamir powder avalanches can be found in [98] and results of their simulations
are presented in [48]. One should have in mind that the two-layer model contains a number of extra
coefficients besides µ, k and τ∗ for a dense layer. These coefficients determine the forces and mass transfer
at the dense layer, powder layer and at avalanche ambient air boundaries.

Note that the suggested values for the hydraulic friction coefficients k for all avalanches mentioned
above were rather high. Recall that the Voellmy friction coefficient ξ is linked to k by the formula ξ = g/k
where g is the gravity force acceleration. Thus, the values of ξ varied from 100 m2/s to 500 m2/s. Similar
low values of ξ have been obtained in simulations of avalanches in Ile (Zailiyskiy) Alatau range (Tian-Shan
Mountains) [19,38,39].

6. Models Based on Full Equations of Continuum Mechanics Problems

6.1. Weak Points of Hydraulic Models

Hydraulic models for avalanches are fairly easy to use; they can even give analytical formulas for the
velocity and other dynamic parameters of avalanches. However, the following two features of hydraulic
models call for more advanced three-dimensional models.

First, hydraulic models allow one to calculate only the depth-averaged flow parameters. The velocity
and density profiles cannot be calculated. Detailed velocity and densities distributions are very important,
for example, for calculating the forces that act on the objects upon impact with an avalanche. Figure 11
shows the result of an avalanche impact against a vertical wall [99,100]. The distribution of the pressure in
the flow, and in particular at the wall and on the slope in front of the wall, is very complicated. There are
areas of both high and low pressure. This result illustrates that models with the cross-flow resolution are
actually needed.

Figure 11. Pressure (divided by atmospheric pressure) in an avalanche after hitting a wall.
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The second weak point of hydraulic models is the presence of empirical coefficients. These coefficients
are not related to the physical properties of the moving snow and the underlying material explicitly. To find
their magnitudes, a calibration is required for each region, each type of snow and the slope, etc.

3D models that describe the processes inside the avalanche will be free from these shortcomings of
hydraulic theories.

For powder snow avalanches, three-dimensional models which account for the vertical structure of the
flow were proposed earlier (see, e.g., [12] for a review). Recently, such models for dense avalanches began
to develop actively [101–107]. The next sections are devoted to new models, mainly for dense avalanches.

6.2. Problems Arising at Construction of 3D Models for Dense Avalanches

The first problem, which arises in the formulation of a 3D model, is connected with the so-called
rheological relationships for the moving snow, i.e., the dependences of the stresses on strains or strain-rates
inside the avalanche. Recall that in hydraulic models, it is sufficient to know the stress on the bottom
only. To obtain the rheological relationships, measurements inside the avalanche are needed. The moving
snow in dense avalanches can hardly be modeled as an ordinary Newtonian fluid with high viscosity:
Newtonian flow cannot stop at an incline, while dense avalanches can.

The second problem is related to the the entrainment of snow by an avalanche. The entrainment law
should be based on the physical mechanism of the process, and at the same time it should be expressed
in terms of the flow macroscopic parameters. Again, data from experiments and field measurements
are needed.

The third problem arises in modeling of turbulence in avalanches. Many semi-empirical models
have been proposed for various turbulent flows. Commonly, the existing theories concern flows of
Newtonian fluids in pipes. There is no widely accepted turbulence model for 3D open flows of media with
complex rheology.

A possible way to create a model that answers all the problems mentioned is as follows.

1. Formulation of more or less reasonable hypotheses that are in qualitative agreement with the
measurement data.

2. Incorporation of the accepted hypotheses into a mathematical and numerical model.
3. Investigation of the influence of accepted hypotheses on the flow behavior by solving various simple,

specific problems.
4. Comparison of the results with the data of measurements to support or reject the accepted hypotheses.

Papers [103–106] that will be reviewed below follow this method. They contain a study of the
influence of hypotheses concerning (a) the rheological relations for moving snow, (b) the entrainment law
and (c) the turbulence model. A complete system of equations is formulated only for homogeneous flows
on long homogeneous slopes.

6.3. Basic Hypotheses

6.3.1. Rheological Relationships for the Moving Snow

For moving snow, many different rheological models have been proposed, ranging from linearly
viscous (Newtonian) fluid to more complex models (see References in [103]). In [103–106] most of the
simulations are based on the use of the so-called Herschel–Bulkley rheological model. This model
allows one to describe typical velocity profiles observed in dense avalanches as well as the possibility of
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stopping an avalanche on an incline. In a simple shear flow, the Herschel–Bulkley model is based on the
following relationships: 

dv
dz

= 0, if |τxz| ≤ τy,

|τxz| = τy + K
∣∣∣∣dv

dz

∣∣∣∣n , if |τxz| > τy.
(47)

Here, the x-axis is directed along the flow velocity and the z-axis is directed along the normal to the
bottom. K is the consistency index, n is the power-law index and τy is a yield stress. The fluid behaves as a
solid if the values of the tangential stresses are less than τy.

For τy = 0 and n = 1, the model is reduced to a linear viscous fluid. If τy 6= 0 and n = 1, Equations (47)
correspond to a Bingham fluid. If the power-law index is less than 1, the fluid is pseudoplastic (shear
thinning); if n is larger than 1, the fluid is dilatant (shear thickening). Bingham and Herschel–Bulkley
fluids with different values of τy, K and n were suggested for the modeling of snow avalanches, debris
flows and other natural slope flows; see Table 1 for the examples.

Table 1. Orders of rheological constants in the Hersche–Bulkley model for different natural flows.

ρ, kg/m3 τy, Pa K, Pa·sn n Comment

200 0 0.2 1 dense dry snow avalanche [108]

400± 50 740± 100 0.033 2 dense snow [109]

2000 400 100 0.33 water-debris flow mixture
of the concentration 68.4% [110,111]

1300 10 0.03 0.8 mineral particles suspension
of the concentration 3–5% [112]

2600 105 109 1 silicic lava [113]

In [105] the Cross rheological model is considered, in addition to the Herschel–Bulkey model. For a
simple shear flow, the rheological relationship of the Cross model is

|τxz| =
µ0 + µ1kc

∣∣∣∣dv
dz

∣∣∣∣
1 + kc

∣∣∣∣dv
dz

∣∣∣∣
∣∣∣∣dv

dz

∣∣∣∣ . (48)

Here, µ0, µ1 and kc are empirical coefficients. An effective viscosity µe f f ≡ |τxz/γ̇| varies between
two limits with variation of the shear rate: µe f f → µ0 at γ̇ → 0 and µe f f → µ1 at γ̇ → ∞ (γ̇ ≡ dv/dz).
The Cross model was used in [109] for modeling of a snow flow in a chute.

In papers [103–106] the rheological relations (47) and (48) for dense avalanches with various values of
the coefficients µ, τy, K, n, µ0, µ1, kc are used to model the moving snow properties.

6.3.2. The Entrainment Hypothesis

In [103–106] the entrainment of the underlying material (the basal entrainment) and its influence on
the avalanche dynamics are investigated. The approach that was suggested in [51,102] is adopted. Namely,
it is assumed that the entrainment of the underlying material occurs if the shear stress at the bottom of
the flow (τb) reaches the shear strength τc of the underlying layer; τb cannot exceed the value τc. This
statement is referred to as the entrainment henceforth (hypothesis I).



Geosciences 2020, 10, 77 29 of 42

6.3.3. Turbulence Models

The snow motion in most large natural avalanches is turbulent. The most common approach
for mathematical modeling of turbulent flows is based on the separation of the time-averaged flow
characteristics and those for turbulent pulsations. The averaged momentum equations are called the
Reynolds equations. They contain turbulent stresses together with the averaged molecular stresses. Then
the additional equations for turbulent stresses and, probably, for some other turbulent characteristics
should be formulated to obtain the complete system of equations. These equations determine the so-called
turbulence model.

In [103,104,106] models based on the Reynolds averaging are used. Then the stresses are the
sums of the averaged molecular stresses and turbulent stresses. Two problems arise in this approach.
The first one concerns averaging the nonlinear molecular viscosity. In [103,104,106] it is assumed that the
rheological relations retain their structure under averaging. The other problem concerns the formulation
of the turbulence model. Several turbulence models have been proposed in the literature beginning
with the well-known Prandtl model [114]. The main results were obtained in [103,104,106] by the
Luschik-Paveliev-Yakubenko (LPY) model described in [103,115].

7. Unsteady Uniform Flow down a Slope with Constant Inclination

Construction of a three-dimensional model for dense avalanches on real slopes is a complex problem.
Therefore, it is worth starting from a simplified formulation, in which only some properties of the flow are
considered. A flow down a slope with constant properties and inclination was investigated in [103–106].
The main goal was to investigate the basal entrainment and its influence on the dynamics of flows with
different rheology.

7.1. Mathematical Statement of the Problem

An unsteady two-dimensional laminar or turbulent flow moving down a slope with constant
inclination angle ψ and constant bed material properties (τc = const) is considered. (Bed material
properties are taken into account through the shear strength τc.) The moving material is incompressible.
The flow depth h is constant along the flow, but it can vary in time due to entrainment of the bottom
material: h = h(t).

The coordinate system is shown in the Figure 12. We assume that vx = v(z, t), vz = 0 where vx, vz

are the velocity components for the laminar flow, and they are the Reynolds-averaged (time-averaged)
velocity components for the turbulent flow. The longitudinal momentum equation is

∂v
∂t

= g sin ψ +
∂τxz

∂z
, (49)

where g is the gravity force acceleration; τxz is the shear stress, for the turbulent flow it is a sum of the
time-averaged viscous stress and the turbulent Reynolds stress. The momentum equation in the z direction
yields the hydrostatic pressure distribution.
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Figure 12. Scheme of the flow and the coordinate system. The origin is located at the upper surface, x-axis
is directed along the slope, z-axis is normal to the upper surface of the flow and directed to the bottom. For
fluid with the yield stress, there is a plug layer 1 adjacent to the open boundary, its thickness is hb. Layer 2
is the shear layer.

The initial conditions for (49) are

v(z, t)|t=0 = v0(z) (and h|t=0 = h0). (50)

The boundary conditions are following:

1. Zero friction at the upper free surface:
τxz|z=0 = 0. (51)

2. No-slip condition at the bottom:
v|z=h = 0. (52)

Note that a question whether the no-slip condition is suitable for various natural slope flows has no
definite answer yet (see a discussion in [103]).

3. An additional condition at the bottom, which is fulfilled for the entraining flow:

|τxz|z=h = τc. (53)

The last condition allows to find the position of the entrainment front (see line AB in Figure 12, which
is the boundary between the moving medium and the underlying material).

To obtain a closed system of equations, one needs to specify rheological properties of the moving
medium, i.e., to add to (49)–(53) certain relations between shear stresses τxz and strain rates exz. The linear
viscous and the Bingham fluids have been considered in [103,106]; the power-law and the Herschel–Bulkley
fluids with n = 2 and the Cross model have been considered in [103–105].

7.2. Laminar Flows Entraining the Underlying Snow

The following results have been obtained in [103,105] for laminar flows entraining the bottom material.
All of the results listed below are qualitatively the same for flows with all considered rheological properties
(see also [102]).

(1) The entrainment starts in two cases: first, if the initial depth h0 = h|t=0 of the flow is larger than
the depth of the stationary flow (hst) with the shear stress at the bottom |τb| equal to the shear strength of
the bed material τc: h0 > hst; second, if the shear strength of the bottom material τc is less than the shear
stress at the bottom in the flow τb: τc < |τb|.

(2) If entrainment occurs, the flow depth, mean and maximum velocities increase. At a large amount
of time from the start of entrainment, their dependences on time are approximately linear. This effect does
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not depend on the rheology of the moving medium (see also [102]). Figure 13 shows the dependences of
the flow depth and mean velocity on time for the Herschel–Bulkley fluid with the parameters

n = 2, ρ = 500
kg
m3 , K = 0.044

kg
m

, τy = 103 Pa, (54)

which are close to the parameters found in [116] and for the Cross fluid with the parameters

µ0

ρ
= 2.52

m2

s
,

µ1

ρ
= 0.29 · 10−2 m2

s
, kc = 1.153 s. (55)

The values (55) of the rheological constants have been chosen so that the stationary velocity profile
of the flow with the Cross rheology is close to that of the flow of the Herschel–Bulkley fluid with
parameters (54).
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Figure 13. The depth (a,c) and mean velocity (b,d) versus time in laminar flow entraining the bottom
material. (a,b) the Herschel–Bulkley fluid; (c,d) the Cross fluid.

(3) The velocity profiles have an approximately linear part that is adjacent to the bottom and expanding
with time. Examples of the velocity profiles in the flows of the Herschel–Bulkley and the Cross fluids
with entrainment are shown in Figure 14. The velocities and the flow depths are close for the flows of the
Herschel–Bulkley fluid and the Cross fluid with the parameters (54) and (55).
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Figure 14. Velocity profiles at different instants for the laminar entraining flow of the Herschel–Bulkley
fluid (a) and the Cross fluid (b).
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(4) The entrainment rate q ≡ dh/dt tends to a constant qas with increasing time (Figures 13a,c and 15).
The values of qas are different for different rheological models, slope angles and shear strengths of the
bottom material.

0.03

0.05

0.07

0.09

0.11

0
20 40 t, s

q, m/s asymptotic value of q

entrainment rate

obtained numerically

Figure 15. Comparison of the entrainment rate obtained numerically (dashed line) with the asymptotic
value qas (solid line) for the Herschel–Bulkley fluid with the parameters (54); τc = 1.2× 103 Pa, ψ = 30◦.

7.3. Asymptotic Analytical Solution for the Entrainment Rate

An asymptotic analytical formula for the entrainment rate can be derived for large time from the start
of the entrainment. Consider the flow layer adjacent to the bottom. In accordance with the calculation
results described above, assume the following:

1. Due to entrainment, the lower boundary of this layer (the bottom) moves down at a constant speed:
dh/dt = q = const.

2. The flow is stationary in the coordinate system (x, ζ), ζ = h− z, which moves with the bottom.

In the moving coordinate system vζ = q, and the momentum equation in x-direction is

q
dvx

dζ
= g sin ψ +

dτxζ

dζ
. (56)

A solution of Equation (56) can be found for the flow of a linear viscous fluid, for which τxζ = µdvx/dζ.
Using the condition vx|ζ=0, we have

vx = C1

(
e

qζ
µ − 1

)
+

g sin ψ

q
ζ, C1 = const. (57)

The constant C1 should be equal to zero because vx cannot grow exponentially with ζ. This yields
the result:

vx =
g sin ψ

q
ζ =

g sin ψ

q
(h− z) .

Therefore, the velocity profile is linear,

dvx

dζ
= A = const, where A =

g sin ψ

q
.

Using the boundary condition at the bottom

τxζ |ζ=0 = τc, (58)
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and the rheological relation

τxζ = µ
dvx

dζ
,

we obtain
µg sin ψ

q
= τc.

Hence, an asymptotic formulae for the entrainment rate qas and the velocity profile for linear viscous
flow are

qas =
µg sin ψ

τc
, vas

x =
τc

µ
(h− z).

For a non-linear dependence of τxζ on dvx/dζ, Equation (56) cannot be solved analytically. However,
we can construct the solution using the additional assumption: at large time values the velocity profile
is linear in the considered layer, vx = Aζ. The validity of such assumption is demonstrated by the
computation results shown in Figure 14. Since A = const , i.e., dvx/dζ = A = const and τxζ = const,
Equation (56) is reduced to

qA = g sin ψ, where A =
dvx

dζ
= const =

dvx

dζ

∣∣∣∣
ζ=0

.

Therefore, the following asymptotic formula for qas is valid for flows with arbitrary dependence of
the shear stresses on the shear rates:

qas =
gsinψ

A
=

gsinψ

dvx
dζ

∣∣∣
b

=
gsinψ∣∣∣ dvx

dz

∣∣∣
b

, (59)

where the subindex b marks the value at the bottom. The value of A = dvx
dζ

∣∣∣
b

can be found from the
boundary condition (58). For instance, for the Herschel–Bulkley fluid

τxζ |b = τy + K
(

∂vx
∂ζ

)n∣∣∣
b
= τy + KAn = τc, therefore, A =

(
τc−τy

K

) 1
n .

When the constant A is found for corresponding rheological model, the asymptotic formulae for the
entrainment rate qas and flow velocity vas

x (ζ) can be obtained

1. for the Herschel–Bulkley fluid

qas = g sin ψ

(
K

τc − τy

) 1
n

, vas
x =

(
τc − τy

K

) 1
n

ζ , (60)

2. for the Cross fluid

qas =
2µ1kcg sin ψ

τckc − µ0 +
√
(µ0 − τckc)2 + 4µ1τckc

, vas
x =

τckc − µ0 +
√
(µ0 − τckc)2 + 4µ1τckc

2µ1kc
ζ. (61)

Recall that ζ = h− z, z-axis is directed from the upper boundary to the bottom (see Figure 12).
Expressions for the asymptotic entrainment rates and flow velocities for a linear viscous, power-law

and Bingham fluids follow from (60) if τy = 0, n = 1; or τy = 0, n 6= 1; or n = 1, τy 6= 0, respectively.
Analytical formulae (60) and (61) show that the asymptotic entrainment rate depends on the gravity

acceleration, slope angle ψ, bed material shear strength τc and rheological constants of the moving medium.
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Note that the dependence of qas on sin ψ is linear. The entrainment rate q is higher for higher yield stress
τy (see (60) and Figure 16).

0 5 10 15 20 t, s
0

0.4

0.8

1.2

1.6

h(t), m

τy/ρ=1 m!/s!

τy/ρ=1.7 m!/s!

τy/ρ=2 m!/s!

Figure 16. h versus t for flows of the Herschel–Bulkley fluid with different yield stresses τy. The other
parameters are the same for three given variants and correspond (54).

The values of the entrainment rate qas obtained analytically are in agreement with the results of
calculations. For instance, formula (60) gives q = 0.073 m/s for parameters (54) (see Figure 15); formula (61)
gives q = 0.059 m/s for the set of parameters (55). In [50] the value of basal entrainment rate 0.05 m/s
is given for the flow with the density ρ = 200 kg/m3. The order of entrainment rate in [50] is close to
entrainment rates obtained in our calculations. Thus, it can be expected that our approach is suitable for
modeling the avalanche basal entrainment.

Remark 3. The solutions described above were constructed for large values of time, strictly speaking, for t→ ∞.
Therefore, we assumed an infinitely large thickness of the entrainable layer. However, calculations show that the
dependences of h on t become linear, and, accordingly, the entrainment rate becomes approximately constant within a
few seconds after the start of the enrainment. The thickness of the layer that was entrained during these seconds is
not large (see Figures 13a,c and 15). In fact, asymptotic formulas can be used after a fairly short period of time from
the start of the entrainment.

Remark 4. Simulations have been performed for idealized situations: homogeneous flows on homogeneous slopes.
Besides, the values of the coefficients defining the rheological properties of the moving medium and of the shear
strength of the bottom material do not exactly correspond to any real materials. Therefore, the results cannot be
directly applied to describe a real avalanche. However, they show certain qualitative features of the flows entraining
the bottom material, which can be confirmed (or refuted) by observations.

7.4. Turbulent Motion of Avalanches. Results of Numerical Investigation

This section is devoted to turbulent unsteady open slope flows. The results of investigation of
the effect of rheological properties and of the entrainment of the underlying material are presented.
The entrainment hypothesis I described in Section 6.3.2 is used to model the basal entrainment. As in
the previous sections, the homogeneous flows on long homogeneous slopes are studied (see Figure 12).
In [103,104,106] the models for such flows are proposed based on the Reynolds-averaged equations and
the generalized Lushchik-Paveliev-Yakubenko (LPY) three-parameter turbulence model [115].

LPY-model contains three differential equations for turbulence parameters T (the turbulent shear
stress per unit mass), E (the turbulence kinetic energy per unit mass) and ω = E/L2 where L is the
turbulence length scale. A detailed description of application of LPY-model for slope flows modeling,
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as well as the equations for T, E, ω, and the values of the model coefficients are given in [103,104,106].
Numerical methods have been developed and software has been created by the authors to simulate steady
and unsteady turbulent flows. Series of simulations of stationary and non-stationary flows of media with
different rheological properties have been performed. The velocity, turbulent stress and turbulent energy
profiles, as well as the magnitudes of the bed material entrainment rate were calculated and compared.
Their variations with time were investigated [103,104,106].

First, the turbulent flows without entrainment were considered. In particular, the effect of the yield
stress on the flow velocity was studied. In laminar stationary flows (without entrainment), the increase
in the yield stress τy leads to the flow velocities decrease (Figure 17b). For turbulent flows, the influence
of the yield stress can be the opposite. For the studied range of yield stresses, an increase in the yield
stress leads to an increase in the velocity throughout the flow except for a thin layer near the bottom.
A possible explanation for this effect is that the presence of a yield strength reduces the turbulence intensity.
In Figure 17a, the velocity profiles in stationary turbulent flows of linear viscous (τy = 0) and Bingham
(τy/ρ = 0.2 m2/s2) fluids are compared. The results shown in Figure 17 have been obtained using the
following input data: θ = 30◦; ν = 0.001 m2s−1, h = 1 m for turbulent flows, and ν = 0.01 m2s−1,
h = 0.5 m for laminar flows.

(a) (b)

Figure 17. (a) Velocity profiles in turbulent stationary flows for τy/ρ = 0 and 0.2 m2/s2 (curves 1, 2,
respectively). (b) Velocity profiles in laminar stationary flows for τy/ρ = 0; 0.5; 1 m2/s2 (curves 1, 2,
3, respectively).

Turbulent stresses and turbulent viscosity coefficient defined as the ratio |ρT| to |∂vx/∂z|, are smaller
in the Bingham flow than that in the linearly viscous one (Figure 18).

The following results concern the turbulent flows with entrainment. One of the results is related to
the flow velocity profiles. In entraining turbulent flows of fluids with different rheologies (linear viscous,
power-law and Bingham rheological models) the velocity profiles, contrary to laminar flows, have no
expanding linear parts adjacent to the bottom. The near-bottom velocity profiles in terms of the so-called
“wall” variables (v+, z+, see [104] for definition of these variables) do not depend on the flow rheology.

The next results concern the influence of entrainment on the flow velocities. In entraining turbulent
flows with different rheologies, the flow depth, maximal and mean velocities increase in time. At large
time from the start of the entrainment, their dependencies on time are approximately linear, similarly to
laminar flows with entrainment. The entrainment rate at large time tends to a constant in turbulent flows,
as it does also in laminar flows. However, the magnitude of the entrainment rate is significantly higher in
turbulent flows.
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|T|/ρ

Figure 18. The profiles of the turbulent stress per unit mass in stationary flows of 1—linear viscous fluid
(τy = 0); 2—Bingham fluid (τy/ρ = 0.2 m2/s2). The results were obtained by the LPY-model.

Turbulent stress |T| and turbulent energy density E distributions have two local maxima in entraining
flows. One of these maxima is located near the bottom, while the other is in the central part of the flow.
If the bottom material entrainment continues, the turbulent parameters at points of their maximum will
increase near the bottom and decrease in the main flow.

8. Conclusions

We have presented a review of the studies of dynamics of natural slope flows conducted in USSR and
Russia over the last 50 years.

In recent years, some attempts have been made to develop models of dense snow avalanches based on
full, non-depth-averaged equations of continuum mechanics. Validation of such models is difficult because
it requires accurate experimental data about the distributions of the velocity, shear stresses and turbulent
characteristics across the entire flow. The other problem is related to the modeling of turbulence. For most
common turbulence models based on the Reynolds averaging, the model coefficients have been fitted for
flows of Newtonian fluids only. True avalanche simulations need to take into account non-Newtonian
properties of the moving medium. Therefore, a large amount of work is needed in order to determine the
constants of the turbulence models for media with different rheology.

The hydraulic-type models discussed in Section 2 are significantly simpler than the models based
on the equations of continuum mechanics, and they require less experimental data for confirmation of
their validity. Thus, exact distributions of the dynamic characteristics across the flow are not needed,
and only depth-averaged values are important. Nevertheless, the models can incorporate rather complex
phenomena typical for dense snow avalanches such as the possibility of the flow to stop at the slope and
the entrainment of the underlying material and the snow in front of the avalanche. Analytical solutions
discussed in Section 3 can be used for validation of increasingly evolving numerical models.

To use the theoretical models described here, one should know the values of model coefficients.
Relations between the coefficients’ values and conditions at a slope are not established reliably because of
lack of measurements for real moving avalanches. Still, there are some data that can be used to estimate
avalanche parameters by mathematical simulations.
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