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Abstract: A site located on the island of Brač is known in history for world-famous architectural
stone and stone mining, dating all the way back to ancient Greek and Roman times. The most
famous building constructed from the stone from Brač is the Diocletian Cesar Palace in the town Split.
Prospective new locations for quarries are still required because the demand for the stone from the
island is still high. This paper presents a review of undertaken geophysical investigations, as well as
engineering geologic site prospection, with the purpose of determining if the rock mass quality is
suitable for the mining of massive blocks needed for an architectural purpose—dimension stones.
Several surface noninvasive geophysical methods were applied on the site, comprising of two seismic
methods, multichannel analysis of surface waves (MASW) and shallow refraction seismic (SRS)
electrical methods of electrical resistivity tomography (ERT), as well as electromagnetic exploration
with ground penetrating radar (GPR). Results of geophysical investigations were compared to the
engineering geologic prospection results, as well to the visible rock mass structure and observed
discontinuities on the neighboring existing open mine quarry. Rock mass was classified into three
categories according to its suitability for dimension stone exploitation. Each category is defined by
compressional and shear seismic velocities as well as electrical resistivity. It has been found that even
small changes in moisture content within the large monolithic rock mass can influence measured
values of electrical resistivity. In the investigated area, dimension stone quarrying is advisable if the
rock mass has values of resistivity higher than 3000 Ωm, as well as compressional seismic velocities
higher than 3000 m/s and shear wave velocities higher than 1500 m/s. Georadar was found to be a
good tool for the visual determination of fissured systems, and was used to confirm findings from
other geophysical methods.

Keywords: surface geophysics; MASW; SRS; ERT; GPR; rock mass quality; dimension stone

1. Introduction

The main purpose of all undertaken explorations was to evaluate the location’s acceptability
for future exploitation of the architectural structural stone, in the manner of extraction of dimension
stones [1]. The research site is located in the Republic of Croatia, on the island of Brač, the largest
island of central Dalmatia. The area spans over 3 hectares, the terrain elevation is 320 m above sea
level, and the closest inhabited place, Donji Humac, is approximately 660 m northwest from the site.
The geographical location of the research site is shown in Figure 1. To consider rock mass interesting
from the point of view of extracting a dimension stone, a large supply of mass with similar texture and
color should be confirmed. From the economical perspective of dimension stone mining, the strength
and deformation properties of the analyzed jointed mass are very important [2].
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Figure 1. Research site location on the island of Brač. 

Investigation works comprise geological surveys and geophysical explorations. Geological 
prospection includes engineering geologic map creation at an appropriate scale, showing all the 
available geological elements [3], such as bedding planes, folds and shear zones as well as geological 
boundaries visible form the terrain surface. Deeper rock mass quality was assessed by geophysical 
profiling with a planned depth resolution of 20–30 m [4]. Altogether, four seismic profiles were 
recorded, Seis-1 to Seis-4, with dispositive lengths of 69 m, applying two seismic techniques, 
multichannel analysis of surface waves (MASW) (Vs) and shallow refraction seismic (SRS) (Vp), two 
electrical resistivity tomography (ERT) profiles, each 277.3 m in length, and six georadar (GPR) 
radargrams of 100 to 300 m in length. Westward, in the near vicinity of the investigated site, is an 
operational stone quarry. Stone blocks from the neighboring quarry vary in quality. For the purpose 
of this investigation, the terrain’s surface was partially cleared of vegetation so that the geophysical 
profiles could be laid down. In conclusion, the site’s suitability for mining applications was primarily 
based on the result of geophysical explorations distributed in profiles as in Figure 2. All named 
investigative works were done in October 2019. 

Relevant structural properties of dimension blocks were defined through a single criterion—an 
absence of structural and macro discontinuities [5]. Other desired parameters, like color and texture, 
were not considered in this work. Geophysical methods are considered to be helpful to define macro 
discontinuities, fractures and fractured zones [6]. Successful explorations with the use of georadar 
are documented as a single geophysics addition to geological mapping and core drilling [7].  

Figure 1. Research site location on the island of Brač.

Investigation works comprise geological surveys and geophysical explorations. Geological
prospection includes engineering geologic map creation at an appropriate scale, showing all the
available geological elements [3], such as bedding planes, folds and shear zones as well as geological
boundaries visible form the terrain surface. Deeper rock mass quality was assessed by geophysical
profiling with a planned depth resolution of 20–30 m [4]. Altogether, four seismic profiles were recorded,
Seis-1 to Seis-4, with dispositive lengths of 69 m, applying two seismic techniques, multichannel
analysis of surface waves (MASW) (Vs) and shallow refraction seismic (SRS) (Vp), two electrical
resistivity tomography (ERT) profiles, each 277.3 m in length, and six georadar (GPR) radargrams of
100 to 300 m in length. Westward, in the near vicinity of the investigated site, is an operational stone
quarry. Stone blocks from the neighboring quarry vary in quality. For the purpose of this investigation,
the terrain’s surface was partially cleared of vegetation so that the geophysical profiles could be laid
down. In conclusion, the site’s suitability for mining applications was primarily based on the result of
geophysical explorations distributed in profiles as in Figure 2. All named investigative works were
done in October 2019.

Relevant structural properties of dimension blocks were defined through a single criterion—an
absence of structural and macro discontinuities [5]. Other desired parameters, like color and texture,
were not considered in this work. Geophysical methods are considered to be helpful to define macro
discontinuities, fractures and fractured zones [6]. Successful explorations with the use of georadar are
documented as a single geophysics addition to geological mapping and core drilling [7].
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The usual way of assessing prospective dimension stone locations is by the basic geological tools
of mapping and diamond core drilling [6]. As presented in this paper, secondary surface deposits
can mask the entire process of geological mapping, so insight into deeper rock formations could not
be acquired [8]. In this case study, rock mass structural elements could only be acquired at Research
Plot 1 and only on a very few available rock outcrops. Adjoining the investigation plot there is an
open mine with visible artificial cutting lines, thus enabling data from geophysical explorations to
be compared, corelated and calibrated. For complete insight in terms of color variations or textural
variations, boreholes are needed.
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blocky mass type, and rarely has inserts of laminated limestone or dolomite. According to 
petrographic classification, limestone is mostly of calcareous composition and only partially 
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Figure 2. Geophysical profiles distributed on the two research plot areas. The profiles are mainly
positioned around the two parallel profiles defined with electrical resistivity tomography (ERT-1 and
ERT-2) profiles. The position of the neighboring quarry on the west side is also labeled.

2. Geological Properties of Investigated Area

The researched area is relatively well investigated in the geological sense, as mining on the island
is well established. Several references regarding the geological structure were addressed, and the
most important are [9–11]. The rock mass structure in the region is carboniferous, mainly built of
limestone of the upper Cretaceous age—Santonian. Santonian limestone—K2

3—is thick-bedded, of
blocky mass type, and rarely has inserts of laminated limestone or dolomite. According to petrographic
classification, limestone is mostly of calcareous composition and only partially bioaccumulated. The
percentage of calcareous compounds is high, up to 99%. Biogenic compounds are mainly contained in
the fragments. Rock mass, depending on biogenic percentage, was classified as either wackestone or
floatstone [3].



Geosciences 2020, 10, 112 4 of 15

Geological mapping on the terrain’s surface revealed several rock outcrops of blocky type limestone
with rock mass structural elements not completely clear [12]. Photographs of two observation points
are shown in Figure 3.
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Structural properties of rock mass, as recorded from the surface, are depicted on the engineering
geological map in Figure 4.
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The stratification plane (SS) is almost horizontal, just slightly inclined towards the
Northeast—direction azimuth 15–20◦, inclination 5–15◦. Axial planes (AR), although unclearly
expressed because of blocky rock mass bedding, have a general direction 200◦/80◦. Planes perpendicular
to the structural axis (b) have direction 110◦/80◦–85◦. It needs to be remarked that only a few surface
outcrops of blocky type limestone (dugv K2

3) are visible on Research Plot 1 of the investigation area,
Figure 3a. On Research Plot 2 none of the named stone could be observed. On Research Plot 2,
quaternary deposits are also present (deQ2) and on the far southeast, a relatively wide zone of thin
laminated clayey limestone (plv K2

3) was also identified (Figure 3b). On the eastern border of Research
Plot 1, fault zone was registered which could be observed along the 40 m long line. The fault strike
is inclined towards the southwest with an inclination of 55◦–60◦. Fault planes and adjoining crack
orientations are 220◦/55◦–60◦. The fault planes match the orientation of axial planes (AR). Perpendicular
to the axial planes, perpendicular planes to the structural axis (b) could be singled out with the direction
330◦/15◦–30◦.

The range of the measured inclinations is a result of extremely karstified surface conditions and
superficial karst topography. The structural geological rock mass elements observed on the surface of
the investigation area are shown in Table 1. Measurements were conducted on eleven observation
points, of which eight had visible stratification planes and three had visible crack orientations.

Table 1. Summary of measured rock mass structural elements.

Structural Element Azimuth of Plane Inclination Inclination

Stratification plane SS 15◦–20◦ 5◦–15◦

Axial plain AR 220◦ 60◦

Perpendicular to axis b 330◦ 15◦–30◦

Besides the described lithology member of Santonian limestone, slightly transported
colluvium-residual soil of brown–red silty clay was also identified on the site—terra rossa.

In the hydrogeological sense, the investigated area is poor with groundwater. Two water reservoirs
were found on the site which are used for watering in local farming.

3. Geophysical Investigations

Several geophysical techniques were used to identify deeper rock quality apart from visible
geological elements observable from the surface. In this preliminary phase, boreholes were not
considered because of disadvantages such as expenses, limited data and damage to the study area, and
because they would have taken a relatively long time to execute. Four surface geophysical methods
were available, and each method was evaluated for its advantages and disadvantages according to the
target type of the study area [13].

3.1. Georadar (GPR)

Rock quality could be well investigated using electromagnetic techniques. Electromagnetic waves
propagate through the medium of blocky limestone, thus reflecting inhomogeneity with different
parameters such as layer boundaries. The received signal, however, in addition to the reflected wave,
also contains a direct wave that travels the shortest distance, directly from the transmitting to the
receiving antenna. Therefore, the receiver's output signal is a combination of the transmitter's pulse
followed by reflected pulses. This transmitter's pulse should be used as a starting point for estimating
a delay time of reflected signals for the purpose of determining the target's depth. The section of the
recorded GPR-2 radargram is shown in Figure 5. Dielectric permeability equal to six was chosen for a
time-depth conversion procedure in blocky limestone [14]. Values are primarily controlled by water
saturation and, secondarily, by porosity and mineralogy. Differences in the dielectric constant must be
greater than two to produce reflections that can be recorded above background noise.
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Figure 5. Radargram recorded along line GPR-2 with interpreted stratification planes observed along
the profiles. Measured inclination of 3◦–5◦. Measured dip corresponds well to the observations on
surface rock outcrops.

Field GPR profiling was done using a ZOND12e GPR system (Radar System, Inc. Latvia) and a
300 MHz shielded antenna. Acquiring was done with the Prism2 software. Only a high-pass real-time
filter was used for trace recording. The filter’s cutoff frequency is automatically set to attenuate
low-frequency noise, which arises while the antenna is crossing the rough terrain. The trace stacking
selected was two, with 512 samples per trace. The signal was recorded without any gain. Gain is used
only while displaying the data in the form of the radar profile. Pulse delay changes the sounding
signal’s position within the sounding time range. Values for shown recordings are 300 to 500 ns,
depending on the chosen resolution depth. It is important to ensure an appropriate setup at the first
start of georadar, with a given antenna and for the given range value. Distance of profile is measured
by the wheel attached to the antenna.

It is important to understand GPR images, and the limits of GPR imaging the difference in
dielectric constants. It is evident that the influence of changed porosity is more pronounced when
water occupies the pores. As shown in Figure 5, visible bedding planes must exceed at least 35%
porosity differences to obtain a high reflection coefficient to show sharp contact, as in the figure.

Limestone rock mass has an average propagation velocity of ∼0.3 m/ns, while the water or air in
cracks between stratum contact surfaces have velocities of either 0.11 m/ns or 0.03 m/ns, thus giving
high velocity contrast [15]. High contrast, in the example, produces a good quality GPR radargram.
Radargram traces contain few phases of waves arrived on the receiver: first arrivals of reflected waves
passed only once through the medium, and secondary waves in the form of direct or refracted waves.
The special shape of the emitted pulse wave makes it possible to detect position within the reflected
signal, and it is used to determine zero ground level for ground-coupled antennas.
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Figure 6 shows an example of a good quality GPR radargram, together with the corelating
photography and visible planes of stratum, parting as photographed on the neighboring open mine
artificial cutting line.Geosciences 2020, 10, x FOR PEER  7 of 15 
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Based on the presented results, georadar has been verified as a good-quality investigation method
for the designated purpose of assessing the acceptability of rock mass for the exploitation of the
architectural structural stone.

3.2. Electrical Resistivity Tomography

The advantage of the 2D electrical resistivity method is its ability to study complex subsurface
structures. It has a good ability to detect groundwater or, more importantly, changes in moisture
content. It is a relatively economical method, portable, and capable of imaging a kilometer-long single
profile. Moisture content in rock mass is a result of water distribution through fissures and cracks,
so the electrical resistivity could be directly correlated to the rock mass quality. The importance of
choosing proper measuring arrays is critical for a good interpretation of the subsurface [16]. A Wenner
array was used as it has good vertical resolution. That is, horizontal anomalies could be detected with
high resolution. Other options for resistivity imaging are dipole–dipole and Wenner–Schlumberger,
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pole-pole, etc. [17]. A GF Instruments, s.r.o ARES multielectrode resistivity imaging system with active
multi-electrode cables was used as an electrical resistivity imaging system on the site.

On site, two parallel ERT profiles were recorded, each with a length of 277.3 m, using a 48-electrode
array. Figure 7 shows inverse model resistivity sections of the two recorded ERT profiles. Collected
ERT data on the site were interpreted using RES2DINV 2-D inversion software, which uses the rapid
least squares inversion method to model the final resistivity section [18,19].
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Figure 7. Inverse model resistivity sections of profiles ERT–1 and ERT–2. The resistivity scale is divided
according to the rock mass degree of weathering.

On the basis of measured electrical resistivity values at the ERT profiles, conclusions on the rock
quality were derived. According to resistivity ranges (Figure 7), three lithological rock mass types
could be differentiated. Lower electrical resistivity values, in the range of 500–2000 Ωm, correspond
to a highly weathered rock mass. Highly weathered rock mass is distributed along the profiles at
shallow depths as a result of surface weathering processes (up to 5 m). Additionally, a very important
large area of highly weathered rock is visible on the west area of profile ERT-1 (Figure 7). The same
area visible on the ERT profile corresponds to the observed fault on the engineering geological map
(Figure 4). The electrical resistivity profile reveals the real magnitude of the fault area, covering a large
part of the ERT profile. The depth of fault influence on the rock quality is registered as deep as is
visible with the ERT profile resolution depth. This investigation area is not suitable for architectural
structural dimension block mining. As will be shown later, electrical resistivity imaging will be a base
for creating engineering geologic sectional profiles.

3.3. Seismic Profiling

The construction of a seismic velocity model is a primary use of seismic profiling. Seismic wave
propagation velocities are influenced by internal rock mass conditions, that is, fluid saturation, fissures,
and crack distribution. Seismic velocity in rock formations also depends on mineral composition, the
granular nature of the rock matrix, cementation, porosity, fluid content and geological pressure, as
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well as geological age [20]. Both seismic velocities (Vp & Vs) are dependent on rock mass density.
Relationships between seismic velocities and rock mass densities have been established in the literature
through extensive laboratory and field experimentation [21,22]. Shear wave seismic velocity is directly
related to shear modulus at the small-strain deformation. Therefore, compressional and shear wave
propagation velocity is the direct result of stiffness of the medium and/or damping profile [23].

3.3.1. Shallow Refraction Seismic (SRS)

The simplest principle for observing propagation velocity is to measure the delay time between
the seismic source and fixed receivers positioned in line. Refraction seismic profiling uses the travel
time of active seismic impulses, the first arrivals of the wave refracted from the contact of the two media.
The precision of the impulse time arrivals is the precision of measurement, as well as the obtained
seismic profile. Seismic refraction is applicable on soil with increasing seismic velocity profile with
depth [24]. At the site, four shallow refraction seismic (SRS) profiles were recorded with 24 geophones
in line, spaced 3 m. All the recordings were done using a Geometrics Inc., Geode seismograph. First
time arrivals are picked from the recorded seismographs. Interpretation was done using the Rayfract
2.63 software pack—Intelligent Resources Inc.

The stated condition is necessary for the wave to refract on the contact surface of two materials.
With higher seismic velocity contrast, better detection of the contact plane is obtained. Figure 8 displays
two seismic refraction profiles recorded at the site, showing different weathering zone depths and rock
mass qualities. Geophysical properties of the weathering zone are defined according to classification of
the carbonate rock mass by Novosel [25]. Weathering zones corelate to the 4th and 5th rock categories,
with geophysical parameters ranging, for seismic waves, Vp = 900–2000 m/s, Vs = 400–1000 m/s, and
for electrical resistivity 500–2000 Ωm.
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Figure 8. Models of compressional wave velocities (Vp), interpreted from shallow refraction seismic
(SRS). (a) Deeper weathering zones could be observed on the central part of the seismic profile
Vp=2000–3500 m/s; (b) Refraction seismic profile, with rock quality layers following slope inclination
and bedrock compressional wave velocity higher than Vp = 4500 m/s.
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3.3.2. Multichannel Analysis of Surface Waves (MASW)

The application of the multichannel analysis of surface waves (MASW) method was appropriate
for the measurement of shear wave velocities as an alternative to the shear-wave refraction method.
The shear wave refraction method does not work well in noisy areas. It takes more time for data
acquisition and requires excessive post-acquisition processing compared to the MASW method [23].
Data acquisition for refraction and MASW seismic surveys were conducted along the same seismic
lines, utilizing 4.5 Hz geophones. In common stratigraphic conditions, the surface wave propagation
is dominated by the fundamental mode. In cases with a very strong velocity contrast between layers at
shallow depths, higher modes may be excited and may need to be considered in inversion analyses [26].
Profiles with a gradual increase in shear wave velocity with depth are called normally dispersive
profiles. Figure 9 shows the results of shear wave velocities at the position of profile Seis–1 from the
interpretation of the fundamental mode.
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Figure 9. Shear wave velocity model obtained by the multichannel analysis of surface waves (MASW)
seismic method. (a) Phase velocity curves with corresponding signal-to-noise curves on the left side
and corresponding shear velocity 1D profile on the right side. (b) S-velocity model obtained using the
Seisimager CMP technique, OYO Corporation.

The surface wave profiles (MASW) show more averaged images than the ones obtained by shallow
refraction seismic (SRS) profiling. This is due to the fact that two methods and their propagation
velocities are governed by different stiffness moduli: longitudinal and shear. Compressional waves
respond to the presence of pore fluids and saturation overall, while shear waves’ response to these is
negligible, for the reason that fluids do not have shear resistance.

The MASW data were used to generate 2D shear wave velocity (Vs) profiles. Recorded seismograms
were processed by widely used MASW techniques for picking amplitude maxima in 2D spectral
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representations of the wavefield [26]. The MASW 2D Vs profiles and the refraction SRS profiles
compared well in mapping the rock mass property that varies with changes in conditions such as crack
density. The results confirmed that the MASW method can be an alternative to the shallow seismic
refraction method when the near-surface conditions allow. It is good practice to discard traces with
lower values of signal-to-noise ratio.

4. Results

Comprehensive data were gathered at the investigation site, which were then used to distinguish
parts of the terrain more or less suitable for dimension stone mining. Based on the obtained geophysical
data and engineering geological mapping, two geological sections with representations of rock quality
in three categories were created.

The area on the geophysical profile with the highest change in parameter gradient is considered
to be a fault contact. If there is a sharp transition from a compact environment to a less compact one, a
fault contact is assumed, since such a sharp transition cannot have a character other than a tectonic
one, especially in such a homogenous environment.

Using the process shown in Figure 10, two engineering geological cross-sections were created along
the main geophysical lines of ERT-1 and ERT-2 profiles and are shown in Figure 11. Derived categories
in Figure 11 represent decisive criteria for considering the acceptability of rock mass structural elements
for the extraction of dimension stones [27]. This criterion could also be used for quick assessment of
target areas in that region.
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engineering geological cross-section of the process.
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5. Discussion

Engineering geologic mapping from the surface of the terrain gives quality data about rock mass
structural elements, like discontinuity systems’ orientations and fault positions. However, they could
not provide decision-making details concerning deeper rock mass quality, which was the main objective
of this research. Geological investigations often are accompanied by exploratory drilling, which has its
drawbacks. Borehole investigations are expensive and long term. It is a kind of point test, so a lot of
small defects are missed by drilling. This is why the geophysical site investigation was used on a case
study area.

In the applied geophysics, is well known that for assessing the adequacy of the geophysical
method, geophysical contrasts at the investigated site have to be understood. It is also important to
evaluate site characteristics, regarding the penetration depth and resolution of the geophysical method.
As well, it is also very important to calibrate acquired data by means of geological/geotechnical data.
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The reported case study shows a successfully employed geophysical/geological investigation with the
purpose of determining the suitability of rock mass for dimension stone mining.

Radargrams are good visual aids to geological mapping, because georadar profiling reveals
bedding planes. Therefore, georadar results can be very useful in exploration of the architectural
structural stone.

Geoelectrical tomography has proven to be a very good method for detecting fault zones. Profile
ERT-1 revealed a wide and deep influence of faults on rock quality, thus revealing a part of terrain not
suitable for the designated purpose. The fault area detected by surface mapping is clearly visible on
the geoelectrical and seismic profiles, as depicted in Figures 7, 8a and 10. ERT profiles are also suitable
for the assessment of limestone rock quality. It was shown that electrical resistivity values in the range
of 500–3000 Ωm correspond to a highly to moderately weathered rock mass, which has questionable
properties for mining massive blocks.

Geophysical seismic investigations directly reflect rock mass mechanical properties. In general, a
lower seismic velocity indicates a very fragmented rock mass with poorer mechanical properties. Higher
seismic velocities indicate a solid rock mass which is more suitable for dimension stone exploitation.

Correlating the observed rock mass structural elements to the measured geophysical properties
resulted in a categorization of rock mass suitability for dimension block extraction. Parameters were
defined for each category as depicted in Figure 11. Rock mass of blocky, thick-bedded limestone,
in the investigated area of the island Brač, is suitable for architectural structural stone mining if in
general it has electrical resistivity higher than 3000 Ωm, seismic compressional wave velocity higher
than 3000 m/s and shear wave velocity higher than 1500 m/s. Lithological characterization is done
through geological surveys [28]. The defined parameters are key for the structural characterization of
the prospective dimension stone locations.

6. Conclusions

Dimension stone mining is important from the perspective of the island of Brač’s industry.
For the optimum results of dimension stone extraction, it is important to understand the physical
properties of the rock mass. Structural geological surveys give insight, with valuable data on the
orientation of bedding plains as well as their discontinuity geometry. The density of discontinuities and
local variations in rock quality govern decisions about site acceptability for the extraction of natural
dimension stones. As shown in this paper, this can be assessed by geophysical survey.

Borehole investigations are expensive, and, also, borehole patterns cannot economically be spaced
out to detect all discontinuities and fractures. Many small defects are missed by drilling.

Geophysical site investigations on a case study area resulted in rock mass categorization regarding
its acceptability for block extraction. The used geophysical methods and tests have been proven on the
site as useful tools for site characterization.

Electrical resistivity tomography revealed the extent of fault zones mapped from the surface.
Disturbed rock mass along the fault enables water infiltration through cracks and fissure systems,
which effectively changes electrical resistivity, thus producing good resistivity contrast. The electrical
resistivity method was used as the base information for producing engineering geologic section profiles.
Another advantage of electrical resistivity profiling is that profiles can also extend in a long line, so
a large area of terrain can be covered. Changes in electrical resistivity reflect even minor change in
moisture content due to small fissures inside monolithic blocks. It has been found that a limestone
rock mass with resistivity higher than 3000 Ωm is good for producing dimension stones.

Seismic refraction complements resistivity profiles and also directly reflects mechanical properties.
Resolution of shallow refraction seismic is high, contouring bedrock with great detail. The surface
wave profiles show more averaged velocity images, without the sharp boundaries of refraction profiles.

Georadar profiling only revealed bedding planes with widely parted stratification planes, and for
that reason it can be used as a good visual aid to geological mapping.
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It is planned to verify the result of this investigation with structural geological boreholes at two
positions. The investigation result could then be calibrated to borehole logs, as well as the provisions
in this paper additionally acknowledged.
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3. Gusić, I.; Jelaska, V. Stratigrafija Gornjokrednih Naslaga Otoka BRACA u Okivu Geodinamske Evolucije. Jadranske

Karbonatne Platforme; Jugoslavenska Akad. Znanosti Umjetnosti: Zagreb, Yugoslavia, 1990.
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