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Abstract: This study aims at mapping soil erosion caused by water in the Candelaro river basin,
Apulia region, Italy, using the G2 erosion model. The G2 model can provide erosion maps and
statistical figures at month-time intervals, by applying non data-demanding alternatives for the
estimation of all the erosion factors. In the current research, G2 is taking a step further with the
introduction of Sentinel2 satellite images for mapping vegetation retention factor on a fine scale;
Sentinel2 is a ready-to-use, image product of high quality, freely available by the European Space
Agency. Although only three recent cloud-free Sentinel2 images covering Candelaro were found in
the archive, new solutions were elaborated to overcome time-gaps. The study in Candelaro resulted
in a mean annual erosion rate of 0.87 t ha−1 y−1, while the autumn months were indicated to be
the most erosive ones, with average erosion rates reaching a maximum of 0.12 t ha−1 in September.
The mixed agricultural-natural patterns revealed to be the riskiest surfaces for most months of the
year, while arable land was the most extensive erosive land cover category. The erosion maps will
allow competent authorities to support relevant mitigation measures. Furthermore, the study in
Candelaro can play the role of a pilot study for the whole Apulia region, where erosion studies are
rather limited.
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1. Introduction

1.1. Objectives

In this study, the spatial erosion patterns in the Candelaro river basin, Apulia region (or Puglia
region), in the south of Italy, were mapped on month-time intervals. Candelaro was selected due to its
morphology, land cover, and crop diversity, as well as for being one of the few sloping areas in Apulia.

The G2 erosion model was employed as an appropriate tool for high-resolution erosion assessments,
while Sentinel2 satellite imagery was used to detect vegetation patterns in detail throughout the year.
Specific objectives of this study were:

• To indicate the specific contribution of different land covers to soil erosion in Candelaro, especially
regarding the seasonal changes of rain intensity and vegetation cover;

• To introduce Sentinel2 imagery in the vegetation factor algorithm of the G2 methodology, thus
revising the model; this could be novelty of the current work;
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• To assess the potential of the herewith-revised G2 model, through its application in Candelaro,
in terms of a pilot study, towards expanding its application at a later time in the whole Apulia
Region (where erosion studies are rather limited).

1.2. Erosion in Italy

The Mediterranean region is particularly prone to erosion [1,2], because it is subject to long dry
periods followed by heavy bursts of erosive rain, falling on steep slopes with fragile soils. Erosion
rates are expected to rise during the twenty-first century due to climate change. This will be reflected
by a more dynamic hydrologic cycle that in turn will be associated with frequent torrential rainfall
patterns; thus, increasing water erosion intensity [3]. In addition to that, the impacts by the erosion
process in the Mediterranean regions are the worst compared with other regions in Europe [4–7]. This
is particularly relevant when dealing with typical heavy rainfall events that often characterize the
Mediterranean region and Italy in particular [8].

Severe soil erosion affects 17% of the land area of Italy; based on OECD data (2008) [9], about 30%
of the Italian territory is affected by soil erosion, with rates greater than 10 t ha−1 y−1. The semi-arid
zones of the south of Italy and the islands of Sicily and Sardinia are particularly prone to erosion due
to a combination of climatic factors and rugged terrains, often bare of vegetation because of historical
overgrazing and frequent forest fires [10,11]. Landslides on the other side are estimated to affect almost
half of the Italian cities [12].

The topic of land degradation due to soil loss by water erosion has been extensively studied in
Italy. Several soil erosion studies [13–17] and numerous publications [11,18–22] focus on different soil
erosion processes. As in many other countries, erosion estimates have also been subject of continuous
debates and adjustments. For instance, the estimates made by Van der Knijff et al. (1999) [14], were
challenged by Grimm et al. (2003) [23] that estimated lower erosion risk rates for the Alps and the
Apennines, and on the contrary, higher ones for the central part of Sicily than those provided by [14].

According to Costantini and Lorenzetti (2013) [24], critical areas at risk of soil erosion are located
in central and southern Italy, on slopes where agricultural lands are intensively cultivated. The natural
erosion process is typical for several areas of Calabria and Basilicata with the presence of the so-called
calanchi (Figure 1). In contrast, woodlands with the highest risk of erosion and landslides are more
widespread in northern Italy, on the steep slopes of the Alps, and the Apennines. Italy’s annual average
erosion rates are equal or more than 11 t ha−1 y−1 and the annual economic damage from landslides,
floods, and soil erosion is estimated at 900 million euros [24].
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Calabria, Italy (Photo credit: P. Zdruli).
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1.3. The G2 Model

G2 is an empirical model for soil erosion on month-time intervals, with two distinct modules:
one for soil loss and one for sediment yield [25,26]. The module for soil loss (denoted by G2los) uses
the main empirical formulas of the Universal Soil Loss Equation (USLE) [27,28], which according to
Ferro (2010) [29], is a robust empirical model with a logical structure regarding the variables used to
simulate the physical erosion process.

With G2los, five input erosion factors are combined in a multiplicative equation, to estimate a
quantitative soil loss output from sheet and interill erosion processes [26]:

Em =
Rm

Vm
·S·

T
L

(1)

where Em: soil loss for month m (t ha−1); Rm: rainfall erosivity of month m (MJ mm ha−1 h−1);
Vm: vegetation retention for month m (dimensionless; inversely analogous to C-factor of USLE);
S: soil erodibility (t ha h MJ−1 ha−1 mm−1); T: terrain influence (dimensionless; analogous to
LS-factor of USLE); L: landscape effect (dimensionless; inversely analogous to P-factor of USLE).
Compared to other USLE-family models, an added value of G2 can be considered the possibility for
non-demanding data alternatives for all erosion factors. (Details on the erosion factors are provided in
the Methodology section).

Developed in 2010, within the framework of GMES Initiative (now, Copernicus Land Monitoring
Service, CLMS) and specifically by the ‘geoland2’ project team [30], the G2 model was developed
with a steady view to serve as an effective decision-making tool based on harmonized datasets and
procedures. Since then, it has been revised through a series of published case studies conducted in
Greece, Bulgaria, Albania, Cyprus [31], and more recently, in Poland [32]. Today, the G2 model is
listed among other well-known models in the ‘Water Erosion Theme’ of the European Soil Data Centre
(ESDAC) of the Joint Research Centre (JRC) [33].

Up until now, the G2los module relied on the use of the fraction cover (or FCover) layers for
the estimation of the vegetation retention factor, together with information on land cover derived
from CORINE Land Cover (CLC) datasets. Provided by CLMS, FCover layers are available at either
333 m or 1 km, processed from MERIS or SPOT/VGT images, respectively, on 10-day intervals. FCover
belongs to a set of layers of biophysical properties (known as ‘BIOPAR’ products), provided regularly
by CLMS [34].

Lately, Sentinel2 imagery provided free by the European Space Agency (ESA), through the
Copernicus Open Access Hub, as a high-resolution dataset on 5-day intervals, offers the possibility
to replace the pre-existing low spatial resolution FCover layers by a higher resolution vegetation
layer. Sentinel2 images are captured by the MultiSpectral Instrument (MSI) and carry 13 spectral
bands ranging from the visible and near-infrared to the short-wave infrared, ready-to-use in an
atmospherically corrected reflectance mode. The spatial resolution varies from 10 to 60 m, depending
on the spectral band, with a 290 kilometers field of view [35,36].

2. Study Area and Dataset

2.1. Study Area

The Candelaro river basin is in Foggia regional unit, in the northern part of the Apulia Region,
Italy (Figure 2). It comprises a geo-morphological environment typical of the ‘Tavoliere delle Puglie’,
which is the largest alluvial plain in southern Italy and the second largest in Italy [37]. The Candelaro
river basin discharges into the Manfredonia Gulf. The drainage catchment area is 2331 km2, and the
main river course has a length of 67 km. Major streams from north to south, are Macchione Canal and
of the Triolo, Casanova, Salsola, Vulgano, and Celone streams. The mean elevation is 300 m above sea
level, ranging from 0 to 1142 m. A big part of the upland area of the catchment belongs to the Gargano
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National Park, founded in 1991. The soils exhibit a texture varying from sandy-clay-loam to clay-loam
or clay. Erosion signs can be observed mainly in the hilly cultivated slopes (Figure 3).
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Figure 3. Typical landscape of Candelaro watershed with agricultural crops in the bottom valleys (a)
and natural lands on the surrounding slopes (b) (Photo credit: P. Zdruli).

From 1990 to 2016, the average annual precipitation in the catchment was 570 mm. The orographic
aspects affect rainfall amounts, as well as the patterns of rainfall events. The rainfall is mostly
concentrated in autumn and winter seasons, it is unevenly distributed and often occurs with high
intensity in short duration. The stream flow regime changes rapidly and follows the precipitation
regime closely. The discharge per unit area ranges between 2.6 and 5.6 L s−1 km−2.

The range of average daily temperature is 12–15 ◦C. The average annual potential evapotranspiration
is about 1060 mm [38].

The main economic activity in the plain area is intensive agriculture, the main farm products
being durum wheat, tomatoes, sugar beet, olives, and vineyards. In the mountainous part of the basin,
natural and manmade forest lands and pasture are frequent, occasionally associated with fruit trees,
vineyards, and olive groves [39].
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2.2. Dataset Description

According to the parameters of the G2 erosion factor equations, the following required data
became available to this research (Table 1):

a. Monthly rainfall figures and number of rainy days per month for the period 2000–2013 from
13 weather stations throughout the study area (Source: Hydrographic and Mareographic Office of
Bari for the Basins with the mouth of the Adriatic and Ionian coasts from Candelaro to the Lato of
Puglia region) (Figure 4). These data were used to compute the monthly rainfall erosivity figures.

b. Pre-existing soil profiles from 70 locations [40], including texture class, organic matter content,
structure class (according to the American Soil Taxonomy), and permeability class (Source:
ACLA2 project, Agro-ecological characterization of Apulia region) (Figure 5). The soil profile
data were used to the compute soil erodibility values.

c. A set of almost cloud-free Sentinel2 satellite images acquired in 25 October, 2018; 24 March, 2019;
and 7 July, 2019 (Figure 4) [41] (source: Scientific Hub, Copernicus). Because the Candelaro area
is not covered by a single Sentinel2 scene, a couple of images were downloaded and mosaicked
into single images per date; and then were masked to the outline of the study area (Figure 5).
These satellite images were used to compute vegetation index layers, which in turn were input
to the vegetation retention factor equation. They were also processed with a Sobel 3 × 3 filter
(an edge-detection filter) in order to be used for computing the landscape effect factor.

d. A digital elevation model (DEM) of 90 m spatial resolution (constructed from digitized contour
maps) (Source: Hydrographic and Mareographic Office of Bari for the Basins with the mouth of
the Adriatic and Ionian coasts from Candelaro to the Lato of Puglia region) (Figure 5). From this
DEM, the flow accumulation (surface runoff) and the slope layers were computed, as input to
the topographic influence layer.

e. Land cover data derived from the CORINE Land Cover (CLC) geodatabase for 2018 (Figure 6) [42].
The CLC layer was used in order to compute the LU parameter, a corrective input variable to the
vegetation retention equation.

Table 1. Geospatial properties of the input datasets for the Candelaro erosion study.

Erosion Factor Input Data Scale/Time Step Acquisition/Production
Time

R, Rainfall erosivity 13 weather stations 1 station per 179 km2 /
Monthly step

2000–2013

V, Vegetation retention
Sentinel2 imagery

(6 scenes) 10-m pixel size / 3 dates
25 October, 2018;
24 March, 2019;

7 July, 2019

CORINE Land Cover 1:100,000 2018

S, Soil erodibility 70 soil profiles 1 soil profile per 33.3 km2 2005 (year of survey)

T, Terrain influence Digital elevation model 90-m cell size N/A

L, Landscape effect Sentinel2 imagery
(2 scenes) 10-m pixel size / 1 date 7 July, 2019
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3. Methodology

3.1. Overview

Every erosion factor was assessed separately and then introduced to the main G2los formula
(Equation (1)). Data exploration indicated which alternative would be possible to follow in the
Candelaro study; thus, leading to several adaptations or simplifications regarding most of the erosion
factors. Matching data with erosion model requirements must be considered as part of the model
calibration process [43,44].

3.2. R-Factor

For the estimation of the rainfall erosivity (R-factor) per month, the G2 model has adopted the
Brown and Foster (1987) [45] formula:

Rm =
1
n

n∑
i = 1

 k∑
j = 1

(EI30) j


i

(2)

where Rm: rainfall erosivity for month m (MJ mm ha−1 h−1); i: the years recorded; j: the erosive events
during month m; and EI30: the rainfall erosivity index of event j. The event erosivity (EI30) is defined as:

EI30 = (
t∑

r = 1

ervr)·I30 (3)

where er: rainfall energy per surface unit and per rainfall volume of a predefined time interval
(e.g., 10 min) (MJ ha−1 mm−1); vr: the rainfall volume during the predefined time interval (mm); r:
predefined time intervals during the rainfall event; and I30: the maximum rainfall intensity of the
event during a period of 30 minutes (mm h−1). The unit of rainfall energy (er) is computed for each
predefined time interval as follows:
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er = 0.29
(
1− 0.72 e−0.05ir

)
(4)

where ir: rainfall intensity during the predefined time interval r (mm h−1).
Due to unavailability of rain intensity data on half-hourly basis, however, the true rain intensity

parameter (ir) was replaced by a ‘simulated rain intensity’ term, according to which rain intensity
was set equivalent to the ratio of monthly rain volume over the number of rainy days during the
same month. This approach was introduced and verified by Panagos et al., 2012 [3], as an alternative
to possible lack of the originally required data; and after calibration to the current dataset, it was
expressed as follows:

im = 1.4
vm

dm
(5)

where im: simulated rain intensity, equivalent to ir for month m (mm/h); vm: rain volume for month m;
and dm: number of rainy days for month m. Another assumption was that the rain events last one hour,
on average, and only one significant rainfall event occurs during a rainy day. From the rain figures,
it was also estimated that 70% of the rain volumes on average, occurred during the first hour of the
rain events. Thus, adapting for the half-an-hour duration of the I30 parameter to the hourly duration of
im, the constant (0.7 × 2 = 1.4) of Equation (5) was resulted.

The computations of the simulated rain intensity values were made in excel spreadsheets for each
of the 13 available stations separately. The year 2000 was selected as a reference year for the available
records, with a view to emphasize possible effects of the climate change in the erosion patterns; and
also, to match with vegetation and land cover data, which needed to be as recent as possible. Then,
the estimated R-values per station were joined to the locations of the corresponding weather stations
in a Geographic Information System (GIS).

Finally, the point R-values at the stations were interpolated with ordinary kriging to produce an
R surface per month; specifically, a spherical model with 6 neighboring points was applied. All the
Rm layers were produced with a 235-m cell size, resulted from the interpolation process parameters
and the density of the weather stations, which was one station per 179 km2 on average. The annual
R-factor layer was produced by summing up the monthly R layers (Figure 7).
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3.3. V-Factor

For the estimation of vegetation retention (V-factor) per month, the G2 model has introduced
an algorithm, based on vegetation indices and quantification of land cover from experimental data
available by USLE and the Erosion Potential Model (EPM or Gavrilovic model). The equation for the
computation of V-factor in G2, is as follows [26]:

Vmj = (1− imp)−1eLU·FCm (6)

where Vmj: V-factor for month m and land cover j, in range [1,+∞) (dimensionless); imp: imperviousness
degree corresponding to a range of 0–100% of soil sealing, in range [0,1) (dimensionless); LUj: empirical
parameter for land cover j, in range [1,10], with lower values corresponding to intensive management
or unprotected land covers and higher values corresponding to better management conditions [26];
and FCm: fractional vegetation cover for month m, in range [0,1] (dimensionless). The exponential
shape of Equation (6) is imposed by the relation formed when C-factor values are plotted against plant
cover experimental data of USLE [27].

Due to the fact that Sentinel2 images have the potential to detect vegetation on a high resolution
compared to the low resolution of the original FCover layers (i.e., 10 m vs. 333 m or 1 km), use of the
impervious degree parameter (imp) became unnecessary in the current study, and thus Equation (6)
was simplified into the following one:

Vm = eLU·FCm (7)

The fraction cover layers (FC) for each month were created from the normalized difference
vegetation index (NDVI) layers using a formula adapted from Baret et al. (2013) [46]:

FC = 1.62 NDVI2.1 (8)

NDVI is a simple and well-known biomass and vegetation vigor index, defined as the normalized
difference of the red and near-infrared (NIR) wavelengths of the imaged features, thus ranging in
[−1,+1]. Equation (8) was extracted from data derived from SPOT/VGT sensor with a 10-day temporal
sampling and about 1-km pixel at equator and is valid for NDVI values up to 0.8 (CYCLOPES products;
global coverage, Version 3.1) [46].

Band-4 and Band-7 of the Sentinel2 images were used as input for the red (665 nm) and NIR
(783 nm) wavelengths, respectively, in the computation of the NDVI layers for each of the available
dates. Then, the NDVI layers for the rest of the months, denoted by NDVIm, were computed as a
weighted average of the closest available computed NDVI:

NDVIm = a NDVI1 + b NDVI2 (9)

where NDVI1: the closest previous month and NDVI2: the closest following month of month m. As an
example, NDVI of month April was computed as the weighted average of March and July NDVI layers,
with weights: a = 0.75 and b = 0.25. By replacing NDVIm in Equation (8) from Equation (9), it results in:

FCm = 1.62 (a NDVI1 + b NDVI2)
2.1 (10)

Finally, by replacing FCm in Equation (7) from Equation (10), the V layer for every month is
estimated as:

Vm = e1.62 LU (a NDVI1+b NDVI2)
2.1

(11)

The land use empirical parameter values (LU) were assigned to all the different third level CORINE
Land Cover (CLC) categories found in the Candelaro basin according to the empirical values elaborated
by Karydas and Panagos (2018) [26]. A LU value of 1 was assigned to mineral extraction sites (131) and
to all the water surfaces; although the latter are by default non-erosive surfaces, G2 does not skip these
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surfaces in mapping, due to the rough spatial detail of CLC, which might neglect small internal surfaces
belonging to other categories. A LU value of 3.5 was assigned to vineyards (221). A LU value of 4.5
was assigned to tree and berry plantations (222 and 223, respectively); a LU value of 5.5 was assigned
to arable land and associations of annual crops with permanent cultures (211 and 241, respectively);
a LU value of 6.5 was assigned to mixtures of agricultural and natural land (243); a LU value of 5.5
was assigned to arable land and associations of annual crops with permanent cultures (211 and 241,
respectively); a LU value of 7 was assigned to complex cultivation patterns, transitional woodlands,
sparsely vegetated areas, and burnt areas (242, 324, 333, and 334, respectively); a LU value of 8 was
assigned to natural grasslands (321); a LU value of 9 was assigned to sclerophyllous vegetation (323);
a LU value of 9.5 was assigned to pastures (231); a LU value of 10 was assigned to urban, industrial
and commercial units, transportation networks and installations, and all types of forests (111, 112, 121,
122, 124, 311, 312, and 313, respectively) (Table 2). All the Vm layers were produced with a cell size of
10 m, following the resolution of Sentinel2 imagery. A mean V-factor layer was computed from the
monthly ones (Figure 8).

Table 2. The LU parameter values assigned to the different Candelaro CORINE Land Cover (CLC) categories.

CLC Code LU Value CLC Code LU Value

111 10 243 6.5

112 10 311 10

121 10 312 10

122 10 313 10

124 10 321 8

131 1 323 9

211 5.5 324 7

221 3.5 333 7

222 4.5 334 7

223 4.5 411 1

231 9.5 421 1

241 5.5 511 1

242 7 512 1
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3.4. S-Factor

For the computation of soil erodibility (S-factor, denoted by K in USLE), the G2 model has adopted
the equation introduced by Renard et al. (1997) [28], which is derived from the USLE dataset (and is
resolved by the USLE nomographs) [27]:

S = 0.001317
[
2.1·10−4 M1.14(12−OM) + 3.25 (s− 2) + 2.5 (p− 3)

]
(12)

where, S: soil erodibility (t ha h ha−1 MJ−1 mm−1); M: the textural factor defined as percentage of silt
plus very fine sand fraction content (0.002–0.1mm) multiplied by the factor 100-clay fraction; OM is the
organic matter content (%); s is the soil structure class (s = 1: very fine granular, s = 2: fine granular,
s = 3, medium or coarse granular, s = 4: blocky, platy, or massive); and p is the permeability class (p =1:
very rapid, . . . , p = 6: very slow).

Because the available soil texture and organic matter data from the current study area were only
categorical and, thus, Equation (12) could not be resolved as it was, an alternative solution for S
values estimation was followed. According to this alternative, which has been applied to several G2
applications [26], the textural factor (M) and the organic matter content (OM) terms of Equation (12)
are replaced by another power-law term developed by Panagos et al. (2012) [3]:

Sc = Soe−0.1013 OM (13)

where Sc: soil erodibility value corrected for the organic matter content’s effect, So: original soil
erodibility value taken from an empirical table elaborated by Van der Knijff et al. (1999) [14], based
exclusively on the soils’ textural classes (Table 3); OM: organic matter content classes (1–4), with high
class values corresponding to higher values of organic matter content.

Table 3. Soil erodibility values estimated according to textural classes (from Van der Knijff et al. (1999)) [14].

Class Description Clay (%) Silt (%) Sand (%) So

0 No information - - -

9 No texture (Histosols, ...) - - -

1 Coarse (clay < 18% and sand > 65%) 9 8 83 0.0115

2 Medium (18% < clay < 35% and sand >
15% or clay < 18% and 15% < sand < 65%) 27 15 58 0.0311

3 Medium fine (clay<35% and sand<15%) 18 74 8 0.0438

4 Fine (35% < clay < 60%) 48 48 4 0.0339
5 Very fine (clay > 60%) 80 20 0 0.0170

As a result of the above replacement, Equation (12) was transformed into the following equation
(variables explained earlier):

S = Soe−0.1013 OM + 0.001317 [3.25 (s− 2) + 2.5 (p− 3)] (14)

Equation (14) can also be used in other similar cases when only categorical input soil data are
available in a test site. Finally, the computed S values at the sampled points were interpolated using
the inverse distance weighting (IDW) methodology, to produce an S surface, which corresponds to
the S-factor layer. IDW is an appropriate technique for large scale soil sampling, such as the one
applied in Candelaro [47]. The S-factor layer was derived with a 200-m cell size, resulting from the
specific interpolation process parameters and the density of the soil profiles, which was one station per
33.3 km2 on average (Figure 9).



Geosciences 2020, 10, 89 12 of 22

Geosciences 2020, 10, 89 12 of 22 

 

 
Figure 9. The computed S layer and the available soil profiles for the Candelaro river basin. 

3.5. T-Factor 

For a quantitative estimation of terrain influence (T, denoted by LS in USLE), G2 uses the Moore 
and Burch (1986) formula [48]:  = 22.13 . ∗ 0.0896 .

 (14) 

Where As: flow accumulation (as a simulator of surface runoff) (m); β: slope angle (rad). The 
denominators and the exponents are suggested by Moore and Wilson (1992), as derived from the 
USLE experimental data [49]. This method is considered to estimate T values equivalent to those 
taken from the original USLE formulas [50]. 

The available DEM was used as input dataset for computing flow accumulation and slope layers 
(Figure 6). The spatial resolution of the DEM, i.e., 90 m, can be considered as satisfactory, because the 
area has a smooth terrain in general, with an average slope of 3 degrees and only 3% of the area 
higher than 15 degrees. The T-factor layer was produced with the same resolution (90 m), as the 
original resolution of the input DEM (Figure 10). 

 

Figure 9. The computed S layer and the available soil profiles for the Candelaro river basin.

3.5. T-Factor

For a quantitative estimation of terrain influence (T, denoted by LS in USLE), G2 uses the Moore
and Burch (1986) formula [48]:

T =
( As

22.13

)0.4
∗

(
sin β

0.0896

)1.3

(15)

Where As: flow accumulation (as a simulator of surface runoff) (m); β: slope angle (rad).
The denominators and the exponents are suggested by Moore and Wilson (1992), as derived from the
USLE experimental data [49]. This method is considered to estimate T values equivalent to those taken
from the original USLE formulas [50].

The available DEM was used as input dataset for computing flow accumulation and slope layers
(Figure 6). The spatial resolution of the DEM, i.e., 90 m, can be considered as satisfactory, because the
area has a smooth terrain in general, with an average slope of 3 degrees and only 3% of the area higher
than 15 degrees. The T-factor layer was produced with the same resolution (90 m), as the original
resolution of the input DEM (Figure 10).
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3.6. L-Factor

Landscape effect (L-factor) expresses the possibility of linear landscape features to function as
obstacles to water movement and thus interrupt surface runoff. As such, L-factor can be considered as
inversely analogous to the support practice factor (P) of USLE formula. In addition, it can be seen as a
corrective parameter to terrain influence (T-factor), specifically for slope length [51].

The L-factor in G2 is computed through a 3 × 3 non-directional edge-detection filter, specifically a
Sobel filter applied on the near-infrared (NIR) band of a high-resolution satellite image; NIR is usually
the most spectrally variant among image bands. The result of image filtering is a new continuous type
image layer (Sobel image).

Landscape features, which might intercept slope and are capable to be captured by a 3 × 3 Sobel
filter, include roads, paths, soil strips, fences, hedges, terraces, etc. Because of the corrective role of the
L-factor in the main G2 equation, L-values are usually only slightly over 1, and by default less than 2.
The standard G2 formula for L-factor estimation is as follows [26]:

L = 1 +

√
S f

S f max
(16)

where, L: landscape effect in range [1,2] (dimensionless); Sf: Sobel 3 × 3 filter value in range [0, Sfmax]
(dimensionless). For the computation of the Sobel filter image, the Sentinel2 image of March was used,
as it was the clearest and the richest in landscape alternations. Then, Equation (15) was applied with
the derived Sobel image, resulting in the L-factor layer (Figure 11).
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4. Results

The soil erosion patterns were mapped in Candelaro by implementing the G2 model into a GIS
environment. The erosion layers were produced at 10-m cell size, following the resolution of the
Sentinel2 images, which was the finest among the input datasets. All the other input layers with lower
resolution, such as the LU layer of 100-m (as derived from CORINE Land Cover), or the T-factor layer
of 90-m (as derived from the DEM), as well as the interpolated outputs from points (i.e., the R-factor
and S-factor layers) were resampled to 10-m resolution layers in order to match spatially with the
V-factor layers and the T-factor layer, which originated from the 10-m resolution Sentinel2 images.

After the computation of the monthly erosion maps, the erosion rates were classified into seven
groups, according to the Pan-European Soil Erosion Risk Assessment (PESERA) model literature [4];
these groups are (from lower to higher): 0–0.5, 0.5–1, 1–2, 2–5, 5–10, 10–20, and > 20 t ha−1. Grouping
values allows easier inspection of the erosion maps and better understanding or erosion spatial patterns;
moreover, when a fine resolution of 10 meters is available as in the current study. The annual erosion
layer was produced by summing up the monthly erosion layers (Figure 12).

The mean annual soil loss rate derived with the G2 model for the area of Candelaro was found to
be 0.87 t ha−1. The maximum annual value was 210 t ha−1 and the minimum 0. The mean erosion
values per month were found to range from 0.03 t ha−1 for May up to 0.12 t ha−1 for September.
The very eastern and western parts of the basin show clearly to be more threatened by erosion than the
central parts. This could be attributed to the topographic nature of the basin (see Figure 9). In fact,
the central part of the basin is flat, in contrast to the sides, which are hilly or mountainous areas.

In addition, the application of the G2 model in Candelaro made it possible to identify soil erosion
changes between months; thus, allowing seasonal comparisons. All months from September, October,
November, December, and June showed to be the most erosive months over the year. The maximum
erosion values per month were found to range from 6.69 t ha−1 for July up to 27.3 t ha−1 for November
(Table 4).
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Table 4. Statistics of monthly erosion (t ha−1) derived with the G2 model for the Candelaro river basin.

Month Jan Feb Mar Apr May Jun

Mean 0.05 0.03 0.05 0.06 0.03 0.09

Std 0.21 0.18 0.26 0.24 0.10 0.30

Max 12.7 16.8 12.3 17.6 7.3 21.2

Month Jul Aug Sep Oct Nov Dec

Mean 0.06 0.05 0.12 0.11 0.11 0.10

Std 0.17 0.15 0.40 0.39 0.42 0.41

Max 6.7 7.1 24.8 22.4 27.3 26.8

The contribution of each month to the overall spatial distribution of erosion figures in the Candelaro
river basin was found generally equivalent in terms of magnitude, with only slight differentiations.
However, it seems to differ in spatial distribution; for example, in June, September, November,
and December, the mountainous areas show to have higher erosion values than the plains (Figure 13).
In general, the seasonal alterations showed to be affected mainly by rainfall erosivity figures rather
than vegetation or land use changes (Figure 14).
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5. Discussion

The current study was the first erosion study in the area; thus, providing a reference for future
assessments. Soil erosion does not appear to be a major problem in the study area and quite limited to
some spots mostly in the sloping areas. However, erosion is still a problem, even if it concerns limited
areas (Figure 15).

Geosciences 2020, 10, 89 18 of 22 

 

 
Figure 14. Mean monthly figures of rainfall erosivity and vegetation retention (left axis; logarithmic), 
vs. erosion (right axis; linear) for the Candelaro river basin. 

5. Discussion 

The current study was the first erosion study in the area; thus, providing a reference for future 
assessments. Soil erosion does not appear to be a major problem in the study area and quite limited 
to some spots mostly in the sloping areas. However, erosion is still a problem, even if it concerns 
limited areas (Figure 15).  

 
Figure 15. Erosion signs in a sloping cropland near Volturino, Province of Foggia (Photo credit: P. 
Zdruli). 

The riskiest land covers for erosion in the Candelaro river basin were found to be the lands 
principally occupied by agriculture (CLC code 243), the olive groves (CLC code 223) and the burnt 
areas (CLC code 334). The burnt areas were the riskiest land cover on an annual basis, with a value 
of 3.90 t ha−1, and the monthly values varying from 0.42 t ha−1 in December to 0.57 t ha−1 in September. 
However, the specific surfaces were very limited (0.88 Km2) in the Candelaro river basin during the 
study period and moreover, they change rapidly over time. The agricultural-natural mixtures (CLC 
code 243) show noticeable erosion risk figures (2.88 t ha−1), but they also keep a small share in the 
land of Candelaro (28.3 Km2); this category revealed to contain the riskiest surfaces for most months 
of the year. Finally, the olive groves show also noticeable values throughout the year, with an annual 

Figure 15. Erosion signs in a sloping cropland near Volturino, Province of Foggia (Photo credit: P. Zdruli).

The riskiest land covers for erosion in the Candelaro river basin were found to be the lands
principally occupied by agriculture (CLC code 243), the olive groves (CLC code 223) and the burnt
areas (CLC code 334). The burnt areas were the riskiest land cover on an annual basis, with a value of
3.90 t ha−1, and the monthly values varying from 0.42 t ha−1 in December to 0.57 t ha−1 in September.
However, the specific surfaces were very limited (0.88 Km2) in the Candelaro river basin during the
study period and moreover, they change rapidly over time. The agricultural-natural mixtures (CLC
code 243) show noticeable erosion risk figures (2.88 t ha−1), but they also keep a small share in the land
of Candelaro (28.3 Km2); this category revealed to contain the riskiest surfaces for most months of the
year. Finally, the olive groves show also noticeable values throughout the year, with an annual erosion
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rate of 2.04 t ha−1; at the same time, they occupy a significant part of Candelaro than the previous
two (100.5 Km2).

On an annual basis, land covers in the Candelaro river basin, which demonstrate erosion risk
higher than the annual average (i.e., larger than 0.87 t ha−1) and at the same time cover a significant
surface (more than 5 Km2) include non-irrigated arable land (CLC code 211), olive groves (CLC
code 223), natural grasslands (CLC code 321), sparsely vegetated areas (CLC code 333), small forested
surfaces, as well as other types of cropland. It is noticeable that one third of the olive groves, natural
grasslands, sclerophyllous vegetation surfaces, sparsely vegetated surfaces, and mixtures of cropland
with natural patches, half of the agricultural-natural mixtures, and almost one fifth of the arable land
are more erosive than the average on an annual basis (Table 5).

Table 5. Extents for erosion rates higher than the annual erosion mean (0.87 t ha−1) per CORINE Land
Cover category in the Candelaro river basin.

CORINE Land Cover Category Erosive Extent (Km2) Erosive % of the Class

211 (Non-irrigated arable land) 282.5 18.1

221 (Vineyards) 8.9 8.6

223 (Olive groves) 37.2 36.7

241 (Annual with permanent crops) 9.2 26.7

242 (Complex cultivation patterns) 11.4 8.1

243 (Agricultural-natural mixtures) 13.0 46.8

311 (Broad-leaved forests) 8.8 13.0

321 (Natural grasslands) 22.1 34.1

323 (Sclerophyllous vegetation) 13.5 29.1

333 (Sparsely vegetated areas) 21.5 34.7

Total/Average 427.9 19.4

The generally low erosion figures in the Candelaro basin derived with the current study seem to
differ from the moderate to high values (5–10 t ha−1) reported for the entire regional unit of Foggia by
the Joint Research Centre (reference year: 2010) [2]. However, this difference could be justified by the
fact that the two assessments have been conducted at completely different spatial and temporal scales
(i.e., the entire regional unit vs. only the Candelaro river basin; and annual vs. monthly assessments).
In addition to that, JRC’s assessment was focused only on agricultural lands, in contrast to the current,
which is generic for all existing land covers.

For the first time, the G2 model was applied using a new satellite image type, namely Sentinel2,
concluding with an invention of a new alternative for estimating the V-factor. When there are not
cloud-free images for all months, weighted averaging of vegetation cover layers derived from the
available cloud-free Sentinel2 images can be computed for the missing months.

6. Conclusions

In this research, the Candelaro river basin in Apulia region (Italy) was mapped for soil erosion on
a month-time interval, using the G2 model, in a Geographic Information System (GIS), and Remote
Sensing modelling framework. The study achieved to reveal the specific contribution of every land
cover to soil loss, especially regarding the seasonal changes of rain intensity and vegetation cover.

The mean annual soil loss rate was found to be 0.87 t ha−1. The seasonal balance of erosion risk was
mainly for autumn months, but also for December and June. Burnt areas, mixed agricultural-natural
surfaces, and olive groves grown in the hills proved to be the riskiest land covers in the area. Arable
land was the most extensive land cover with erosion figures higher than the mean annual rate.
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Soil erosion is not a widespread problem in the study area. However, considering that in specific
locations, months, and land covers, erosion exceeds alarm rates (i.e., 10 t ha−1), the entire area should be
put under careful monitoring, and emphasis should be given to sustainable land management measures.

With the rising number of available cloud-free Sentinel2 image scenes, the new alternative for
V-factor computation introduced in this study appears to be suitable for future erosion assessments
with G2, or other empirical models.

One more time, the (now, revised) G2 model proved to work as a rapid, robust, and—at the same
time—flexible mapping tool. Moreover, it shows to be an appropriate solution for expanding erosion
assessments in the whole Apulia region.

Author Contributions: Conceptualization, C.K. and P.Z.; methodology, C.K.; software, C.K., O.B.; validation, O.B.,
P.Z.; investigation, C.K., P.Z.; resources, P.Z., O.B.; data curation, C.K., O.B.; writing—original draft preparation,
C.K., O.B.; writing—review and editing, P.Z., O.B.; visualization, C.K.; supervision, P.Z.; project administration,
P.Z.; funding acquisition, P.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the CIHEAM Mediterranean Agronomic Institute of Bari in the context of
the Master Programme 2018–2019. Ouiza Bouarour received the title Master of Science under this programme.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Jones, R.J.; Le Bissonnais, Y.; Diaz, J.S.; Düwel, O.; Øygarden, L.; Prasuhn, P.B.V.; Yordanov, Y.; Strauss, P.;
Rydell, B.; Uveges, J.B. Work Package 2: Nature and extent of soil erosion in Europe. Available online:
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.486.3962&rep=rep1&type=pdf (accessed on
26 February 2020).

2. Panagos, P.; Borrelli, P.; Poesen, J.; Ballabio, C.; Lugato, E.; Meusburger, K.; Montanarella, L.; Alewell, C.
The new assessment of soil loss by water erosion in Europe. Environ. Sci. Policy. 2015, 54, 438–447. [CrossRef]

3. Panagos, P.; Karydas, C.G.; Gitas, I.Z.; Montanarella, L. Monthly soil erosion monitoring based on remotely
sensed biophysical parameters: A case study in Strymonas river basin towards a functional pan-European
service. Int. J. Digit. Earth 2012, 5, 461–487. [CrossRef]

4. Kirkby, M.J.; Jones, R.J.; Irvine, B.; Gobin, A.; Govers, G.; Cerdan, O.; van Rompey, A.J.; Le Bissonnais, Y.;
Daroussin, J.; King, D. Pan-European Soil Erosion Risk Assessment: The PESERA Map Belgium: European
Communities. 2004. Available online: https://researchdirect.westernsydney.edu.au/islandora/object/uws:
12030 (accessed on 26 February 2020).

5. Rubio, J.L.; Molina, M.J.; Andreu, V.; Gimeno-Garcia, E.; Llinares, J.V. Controlled forest fire experiments: Pre
and postfire soil and vegetation patterns and processes. In Sustainable Use and Management of Soils in Arid and
Semiarid Regions; Cano, A.F., Silla, R.O., Mermut, A.R., Eds.; Catena Verlag: Reiskirchen, Germany, 2005;
pp. 313–328.

6. Cerdà, A.; Hooke, J.; Romero-Diaz, A.; Montanarella, L.; Lavee, H. Soil erosion on Mediterranean
Type-Ecosystems. Land Degrad. Dev. 2010. [CrossRef]

7. Zdruli, P. Land resources of the Mediterranean: Status, pressures, trends and impacts on future regional
development. Land Degrad. Dev. 2014, 25, 373–384. [CrossRef]

8. Piacentini, T.; Galli, A.; Marsala, V.; Miccadei, E. Analysis of Soil Erosion Induced by Heavy Rainfall: A Case
Study from the NE Abruzzo Hills Area in Central Italy. Water 2018, 10, 1314. [CrossRef]

9. OECD. Enevironmental Performance of Agriculture in OECD Countries Since 1990; OECD Publishing: Paris,
France, 2008.

10. Rendell, H.M. Soil Erosion and Land Degradation in Southern Italy. In Desertification in Europe; Springer:
Dordrecht, The Netherlands, 1986.

11. Dazzi, C.; Lo Papa, G. Soil threats. In The Soils of Italy; World Soil Book Series; Costantini, D., Ed.; Springer
Science+Business Media: Dordrecht, The Netherlands, 2013. [CrossRef]

12. APAT. Rapporto sulle frane in Italia. In II progetto IFFI. Rapporti APAT 78/2007; 2007; ISBN 978-88-448-0310-0.
Available online: http://www.isprambiente.gov.it/it/pubblicazioni/rapporti/Rapporto-sulle-frane-in-Italia
(accessed on 26 February 2020).

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.486.3962&rep=rep1&type=pdf
http://dx.doi.org/10.1016/j.envsci.2015.08.012
http://dx.doi.org/10.1080/17538947.2011.587897
https://researchdirect.westernsydney.edu.au/islandora/object/uws:12030
https://researchdirect.westernsydney.edu.au/islandora/object/uws:12030
http://dx.doi.org/10.1002/ldr.968
http://dx.doi.org/10.1002/ldr.2150
http://dx.doi.org/10.3390/w10101314
http://dx.doi.org/10.1007/978-94-007-5642-7_8
http://www.isprambiente.gov.it/it/pubblicazioni/rapporti/Rapporto-sulle-frane-in-Italia


Geosciences 2020, 10, 89 21 of 22

13. Zanchi, C. Soil loss and seasonal variation of erodibility in two soils with different texture in the Mugello
valley in Central Italy. Catena Suppl. 1988, 12, 167–174.

14. Van der Knijff, J.M.; Jones, R.J.A.; Montanarella, L. Soil erosion risk assessment in Italy (JRC Scientific and
Technical Report, EUR 19044 EN). Available online: https://esdac.jrc.ec.europa.eu/ESDB_Archive/serae/

GRIMM/italia/eritaly.pdf (accessed on 26 February 2020).
15. Vacca, A.; Loddo, S.; Ollesch, G.; Puddu, R.; Serra, G.; Tomasi, D.; Aru, A. Measurement of runoff and soil

erosion in three areas under different land use in Sardinia (Italy). Catena 2000, 40, 69–92. [CrossRef]
16. Van Rompaey, A.J.J.; Bazzoffi, P.; Jones, R.J.A.; Montanerella, L.; Govers, G. Validation of soil erosion risk

assessments in Italy. In European Soil Bureau Research Report No. 12, EUR 20676 EN; Office for Official
Publications of the European Communities: Luxembourg, 2003; p. 25.

17. Bagarello, V.; Ferro, V. Analysis of soil loss data from plots of differing length for the Sparacia experimental
area, Sicily, Italy. Biosyst. Eng. 2010, 105, 411–422. [CrossRef]

18. Märker, M.; Angeli, L.; Bottai, L.; Costantini, R.; Ferrari, R.; Innocenti, L.; Siciliano, G. Assessment of land
degradation susceptibility by scenario analysis: A case study in Southern Tuscany, Italy. Geomorphology 2008,
93, 120–129. [CrossRef]

19. Borselli, L.; Cassi, P.; Torri, D. Prolegomena to sediment and flow connectivity in the landscape: A GIS and
field numerical assessment. Catena 2008, 75, 268–277. [CrossRef]

20. Della Seta, M.; Del Monte, M.; Fredi, P.; Lupia Palmieri, E. Space–time variability of denudation rates at the
catchment and hillslope scales on the Tyrrhenian side of Central Italy. Geomorphology 2009, 107, 161–177.
[CrossRef]

21. Terranova, O.; Antronico, L.; Coscarelli, R.; Iaquinta, P. Soil erosion risk scenarios in the Mediterranean
environment using RUSLE and GIS: An application model for Calabria (southern Italy). Geomorphology 2009,
112, 228–245. [CrossRef]

22. Torri, D.; Santi, E.; Marignani, M.; Rossi, M.; Borselli, L.; Maccherini, S. The recurring cycles of biancana
badlands: Erosion, vegetation and human impact. Catena 2013, 106, 22–30. [CrossRef]

23. Grimm, M.; Jones, R.J.A.; Rusco, E.; Montanarella, L. Soil erosion risk in Italy: A review USLE approach.
In European Soil Bureau Research Report No. 11, EUR 20677 EN; Office for Official Publications of the European
Communities: Luxembourg, 2003; p. 28.

24. Costantini, E.A.; Lorenzetti, R. Soil degradation processes in the Italian agricultural and forest ecosystems.
Ital. J. Agron. 2013, 8, e28. [CrossRef]

25. Zdruli, P.; Karydas, C.G.; Dedaj, K.; Salillari, I.; Cela, F.; Lushaj, S.; Panagos, P. High resolution spatiotemporal
analysis of erosion risk per land cover category in Korçe region, Albania. Earth Sci. Inform. 2016, 9, 481–495.
[CrossRef]

26. Karydas, C.G.; Panagos, P. The G2 erosion model: An algorithm for month-time step assessments. Environ. Res.
2018, 161, 256–267. [CrossRef]

27. Wischmeier, W.H.; Smith, D.D. Predicting rainfall erosion losses-a guide to conservation planning. In Predicting
Rainfall Erosion Losses-A Guide to Conservation Planning; Purdue University: West Lafayette, IN, USA, 1978.

28. Renard, K.G.; Foster, G.R.; Weesies, G.A.; McCool, D.K.; Yoder, D.C. Predicting Soil Erosion by Water: A Guide
to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE); United States Department of
Agriculture: Washington, DC, USA, 1997.

29. Ferro, V. Deducing the USLE mathematical structure by dimensional analysis and self-similarity theory.
Biosyst. Eng. 2010, 106, 216–220. [CrossRef]

30. CORDIS. Geoland2 -Towards An Operational GMES Land Monitoring Core Service (2008–2012). Available
online: https://cordis.europa.eu/project/id/218795 (accessed on 20 August 2019).

31. Karydas, C.G.; Panagos, P. Modelling monthly soil losses and sediment yields in Cyprus. Int. J. Digit. Earth
2016, 9, 766–787. [CrossRef]

32. Halecki, W.; Kruk, E.; Ryczek, M. Evaluation of water erosion at a mountain catchment in Poland using the
G2 model. Catena 2018, 164, 116–124. [CrossRef]

33. European Soil Data Centre (ESDAC) of the Joint Research Centre (JRC). Available online: https://esdac.jrc.ec.
europa.eu/themes/g2-model (accessed on 20 August 2019).

34. Land Copernicus, BIOPAR products. Available online: http//land.copernicus.eu/global/products (accessed
on 20 August 2019).

https://esdac.jrc.ec.europa.eu/ESDB_Archive/serae/GRIMM/italia/eritaly.pdf
https://esdac.jrc.ec.europa.eu/ESDB_Archive/serae/GRIMM/italia/eritaly.pdf
http://dx.doi.org/10.1016/S0341-8162(00)00088-6
http://dx.doi.org/10.1016/j.biosystemseng.2009.12.015
http://dx.doi.org/10.1016/j.geomorph.2006.12.020
http://dx.doi.org/10.1016/j.catena.2008.07.006
http://dx.doi.org/10.1016/j.geomorph.2008.12.004
http://dx.doi.org/10.1016/j.geomorph.2009.06.009
http://dx.doi.org/10.1016/j.catena.2012.07.001
http://dx.doi.org/10.4081/ija.2013.e28
http://dx.doi.org/10.1007/s12145-016-0269-z
http://dx.doi.org/10.1016/j.envres.2017.11.010
http://dx.doi.org/10.1016/j.biosystemseng.2010.03.006
https://cordis.europa.eu/project/id/218795
http://dx.doi.org/10.1080/17538947.2016.1156776
http://dx.doi.org/10.1016/j.catena.2018.01.014
https://esdac.jrc.ec.europa.eu/themes/g2-model
https://esdac.jrc.ec.europa.eu/themes/g2-model
http//land.copernicus.eu/global/products


Geosciences 2020, 10, 89 22 of 22

35. Torma, M.; Hatunen, S.; Harma, P.; Jarvenpaa, E. Sentinel2 Images and Finnish CORINE Land Cover
Classification. In Proceedings of the First Sentinel2 Preparatory Symposium, Frascati, Italy, 23–27 April 2012.

36. European Space Agency (ESA). (2012, 2018). Available online: https://www.esa.int/ESA (accessed on
20 August 2019).

37. Lo Presti, R.; Barca, E.; Passarella, G. A methodology for treating missing data applied to daily rainfall data
in the Candelaro River Basin (Italy). Environ. Monit. Assess. 2010, 160, 1–22. [CrossRef]

38. Steduto, P.; Todorovic, M. The agro-ecological characterization of Apulia region (Italy): Methodology and
experience. In Soil Resources of Southern and Eastern Mediterranean Countries Options Méditerranéennes, SERIE
B: Studies and Research, No. 34; Zdruli, P., Steduto, P., Lacirignola, C., Montanarella, L., Eds.; CIHEAM: Paris,
France, 2001; pp. 143–158.

39. De Girolamo, A.M.; Lo Porto, A.; Pappagallo, G.; Tzoraki, O.; Gallart, F. The Hydrological Status Concept:
Application at a Temporary River (Candelaro, Italy). River Res. Appl. 2015, 31, 892–903. [CrossRef]

40. Caliandro, A.; Lamaddalena, N.; Stelluti, M.; Steduto, P. Progetto ACLA2 Caratterizzazione agroecologica
della Regione Puglia in funzione della potenzialità produttiva. In Technical Report, P.O.P. Puglia 94–99;
Mediterranean Agronomic Institute of Bari and the University of Bari: Bari, Italy, 2005.

41. Copernicus, Scientific Hub, Sentinel2. Available online: https://scihub.copernicus.eu/dhus/#/home (accessed
on 20 August 2019).

42. Copernicus, CORINE Land Use. Available online: http://land.copernicus.eu/pan-european/corine-land-cover
(accessed on 20 August 2019).

43. Jetten, V.; De Roo, A.D.; Favis-Mortlock, D. Evaluation of field-scale and catchment-scale soil erosion models.
Catena 1999, 37, 521–541. [CrossRef]

44. Longley, P.A.; Goodchild, M.F.; Maguire, D.J.; Rhind, D.W. Geographic Information Systems and Science;
John Wiley & Sons: Hoboken, NJ, USA, 2004.

45. Brown, L.C.; Foster, G.R. Storm erosivity using idealized intensity distributions. Trans. ASAE 1987, 30,
379–386. [CrossRef]

46. Baret, F.; Weiss, M.; Lacaze, R.; Camacho, F.; Makhmara, H.; Pacholcyzk, P.; Smets, B. GEOV1: LAI and
FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part1:
Principles of development and production. Remote Sens. Environ. 2013, 137, 299–309. [CrossRef]

47. Karydas, C.G.; Gitas, I.Z.; Koutsogiannaki, E.; Lydakis-Simantiris, N.; Silleos, G.N. Evaluation of spatial
interpolation techniques for mapping agricultural topsoil properties in Crete. EARSeL eProceedings 2009,
8, 26–39.

48. Moore, I.D.; Burch, G.J. Physical basis of the length-slope factor in the universal soil loss equation 1. Soil Sci.
Soc. Am. J. 1986, 50, 1294–1298. [CrossRef]

49. Moore, I.D.; Wilson, J.P. Length-slope factors for the Revised Universal Soil Loss Equation: Simplified method
of estimation. J. Soil Water Conserv. 1992, 47, 423–428.

50. Desmet, P.; Govers, G. A GIS procedure for automatically calculating the USLE LS factor on topographically
complex landscape units. J. Soil Water Conserv. 1996, 51, 427–433.

51. Panagos, P.; Karydas, C.; Ballabio, C.; Gitas, I. Seasonal monitoring of soil erosion at regional scale:
An application of the G2 model in Crete focusing on agricultural land uses. Int. J. Appl. Earth Obs. Geoinf.
2014, 27, 147–155. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://www.esa.int/ESA
http://dx.doi.org/10.1007/s10661-008-0653-3
http://dx.doi.org/10.1002/rra.2786
https://scihub.copernicus.eu/dhus/#/home
http://land.copernicus.eu/pan-european/corine-land-cover
http://dx.doi.org/10.1016/S0341-8162(99)00037-5
http://dx.doi.org/10.13031/2013.31957
http://dx.doi.org/10.1016/j.rse.2012.12.027
http://dx.doi.org/10.2136/sssaj1986.03615995005000050042x
http://dx.doi.org/10.1016/j.jag.2013.09.012
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Objectives 
	Erosion in Italy 
	The G2 Model 

	Study Area and Dataset 
	Study Area 
	Dataset Description 

	Methodology 
	Overview 
	R-Factor 
	V-Factor 
	S-Factor 
	T-Factor 
	L-Factor 

	Results 
	Discussion 
	Conclusions 
	References

