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Abstract: Simulation tools for gravitational mass flows (e.g., avalanches, debris flows) are commonly
used for research and applications in hazard assessment or mitigation planning. As a basis
for a transparent and reproducible decision making process, associated uncertainties need to
be identified in order to quantify and eventually communicate the associated variabilities of the results.
Main sources of variabilities in the simulation results are associated with parameter variations arising
from observation and model uncertainties. These are connected to the measurement inaccuracies
or poor process understanding and the numerical model implementation. Probabilistic approaches
provide various theoretical concepts to treat these uncertainties, but their direct application is not
straightforward. To provide a comprehensive tool, introducing conditional runout probabilities for
the decision making process we (i) introduce a mathematical framework based on well-established
Bayesian concepts, (ii) develop a work flow that couples this framework to the existing simulation
tool r.avaflow, and (iii) apply the work flow to two case studies, highlighting its application potential
and limitations. The presented approach allows for back, forward and predictive calculations.
Back calculations are used to determine parameter distributions, identifying and mapping the model,
implementation and data uncertainties. These parameter distributions serve as a base for forward
and predictive calculations, embedded in the probabilistic framework. The result variability
is quantified in terms of conditional probabilities with respect to the observed data and the associated
simulation and data uncertainties. To communicate the result variability the conditional probabilities
are visualized, allowing to identify areas with large or small result variability. The conditional
probabilities are particularly interesting for predictive avalanche simulations at locations with no
prior information where visualization explicitly shows the result variabilities based on parameter
distributions derived through back calculations from locations with well-documented observations.

Keywords: Bayes’ theorem; Metropolis–Hastings algorithm; probabilistic simulation; avalanche
dynamics; r.avaflow

1. Introduction

Risk and uncertainty analyses are gaining increasing attention in civil engineering applications,
for example in the field of geology and geotechnics [1]. Their basis are probabilistic approaches,
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accounting for the distribution and uncertainty of input parameters, subsequently allowing to map
the resulting output variations.

For snow avalanches simulation tools are usually utilized in deterministic approaches describing
singular events, limiting, e.g., the quantification of the effectiveness of mitigation measures, advanced
hazard zoning or the application of risk-based mitigation planning [2]. Due to model simplifications
and the numerical implementation, process parameters that are essential for the simulation tools
are not directly measurable and remain conceptual. Therefore, these parameters have to be estimated
via back calculations, fitting simulation results to observed data, solving an inverse problem [3].
An important task is to understand the arising uncertainties in order to provide insight into the range
of plausible results.

Over the years, different probabilistic approaches have been established to deal with the uncertainties
involved in the optimization of process parameters and simulation procedure. A comprehensive
probabilistic model has been presented by Ancey et al. [3], who investigates both the release
probability and the Coulomb friction parameter of a one-dimensional process model. Eckert et al. [4]
connect statistical-topographical methods (velocity modeling, volume correlation) for the predictive
distribution of avalanche runout distances. The runout distance is also the target output of
the probabilistic framework of Eckert et al. [5]. They used a simplified one-dimensional sliding block
propagation model for the French avalanche database, choosing the friction proportional to release
characteristics and varying the starting position. Eckert et al. [6] adapted the method of Eckert et al. [5]
from a mass block model to a depth-averaged model by additionally considering the dynamic
evolution of the avalanche body. Furthermore, the method was extended taking into account the
variability of the starting position and velocity as well as the release depth and length. In this context
the non-exceedance probability of the runout distance and impact pressures have been related to
the return period. One common challenge in these concepts is a homogenized data availability
allowing to transfer knowledge from one to another avalanche event or path [7]. It is crucial to treat
uncertainties explicitly when the avalanche risk is evaluated [2]. Straub and Grêt-Regamey [8] set
new ground, combining process and data based simulation approaches, explicitly treating parameter
uncertainties through Bayesian inference. They compared the uncertainty of the avalanche release
process with respect to nine deterministic parameter scenarios for a Voellmy-like process model in
AVAL-2D, estimating annual probabilities of runout distances. Despite these efforts stochastic concepts
and specifically Bayesian inference are still insufficiently considered in the snow and avalanche field.
Particularly when operating with a state of the art process propagation model in three dimensional
terrain explicit uncertainty treatment and providing a direct interpretation of derived probabilities
remain unclear.

To tackle the problem of explicit uncertainty treatment and to relate these uncertainties to
conditional probabilities we propose a work flow to (i) incorporate uncertainties in the optimization
process of a two-dimensional open source avalanche simulation tool and derive parameter
distributions, which can (ii) be used for probabilistic forward simulation and prediction.

Thereby, the open source simulation software r.avaflow [9] is combined with a transformation
of the simulation results in an avalanche path dependent coordinate system [10,11] in order to
compare the simulation results with observed extreme avalanche events. The open and adaptable
features of r.avaflow provide a base for implementing single- or multiphase flow solvers in a python
environment, allowing for the direct coupling to the postprocessing and optimization framework.
The utilized single-phase process model in the avalanche simulation software includes the combination
of the conservation equations, their numerical implementation and their closures, such as bottom
friction relation or entrainment.

The basis of this work is back calculations of observed field data yobs, using measured input
data x and a process model f with parameters θ. The first target is to derive distributions π(θ)

of process model parameters, that allow one to approximate the observation avalanche data yobs
through the process model yobs = f (x, θ). A stochastic approach is used, which explicitly treats
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the arising uncertainties in the measurements as well as in the process model. Thereby, Bayes’ theorem
is employed to derive the unknown parameter distributions π(θ) through the back calculations.
The back calculation of a documented avalanche event allows one to estimate a parameter distribution
πpost(θ) that is associated with optimized simulation results with respect to the observations yobs.
At this place, it becomes obvious that the process parameters θ directly depend on the observation
data yobs and therefore may differ for different avalanche paths or respective events, further yielding
different conditional probabilities.

The subsequent step of this work is to perform forward and predictive calculations. In this
context predictive calculations correspond to class A predictions [12], i.e., a prediction without prior
knowledge of the event itself, based on other available observations. Class C1 predictions on the other
hand take into account the observations of the event itself and may therefore be compared to a
simulation of a documented avalanche event with the best fitted parameter set in a deterministic
sense. Avalanche observations are utilized to determine the parameter distributions π(θ) in the back
calculation. Based on this parameter distribution π(θ) the forward calculation provides simulation
results, that allow one to evaluate the correspondence to the avalanche observations utilized in the back
calculation. This corresponds to a C1 prediction, however, with additional statistical information
depicting the variability associated with the parameter distribution. The predictive calculation relies
on the back calculated parameter distribution of one event, which is applied to another event,
and thus this corresponds to a class A prediction for the other event. The predictive calculation
results allow to evaluate changes in the result variability and the availability of local observations
additionally allow to investigate the simulation result plausibility. Monte Carlo simulations allow one
to estimate the variability of the predictive simulation results ypred with given input data x. As a final,
practical outcome, a visualization of the resulting variability is presented. These visualizations show
conditional probabilities that a certain area is affected by the avalanche simulation, i.e., the probability
that the dynamic peak pressure results exceed a threshold value, considering the observation data.
The runout probability visualizations allow for an intuitive interpretation of predictive avalanche
simulation results and their associated uncertainties.

2. Simulation and Postprocessing

The input–output model y = f (x, θ) is a combination of the avalanche simulation tool
r.avaflow [9] and an evaluation of the simulation results in a path dependent coordinate system [10],
which allows one to define simple evaluation criteria. The tool r.avaflow includes different flow
models: a single-phase model for solid flows and a two-phase model additionally considering solid
fluid interactions. The friction relation in the latter is represented by a classical Voellmy friction [13,14]
or a modified approach to account for random kinetic energy [15]. In this work, we choose the
one-phase flow model with the Voellmy friction model defining the set of process model parameters
θ = {δ0, ξ}. The friction angle δ0 (or Coulomb friction coefficient µ = tan δ0) and the turbulent friction
coefficient ξ are the determining parameters of the basal shear stress τ(b), which depends on the
normal stress σ(b) and the velocity u, τ(b) = σ(b) tan δ0 +

g
ξ u2 , with the gravitational acceleration g.

The appropriate parameter ranges of each model parameter can be constrained by various approaches.
Physically relevant ranges [16] may be useful, but also experimental work [17], existing guidelines and
literature [14,18] or prior knowledge based on back calculations [19] can be utilized. Based on these
values and in order to avoid any a priori restrictions on the possible parameter combinations [11],
we choose the rather large intervals of the single parameters to be δ0 ∈ [0◦, 30◦], resp. µ ∈ [0, 0.577]
and ξ ∈ [500 m

s2 , 2500 m
s2 ].

The simulation input x, including the digital elevation model (DEM) and the release volume
Vrel, are directly derived from field measurements, documentation data and respective guidelines.
Uncertainties of the simulation input are not explicitly treated although it is known that they may also
influence the simulation results [20,21]. A simulation run is performed combining the fixed simulation
input and a set of variable process parameters θ. Therefore, the influence of the simulation input
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on the simulation results is implicitly associated to the uncertainties that arise from the model itself.
One challenge is to properly define the simulation output y that can be compared to observations yobs
since the direct results of depth averaged state of the art simulations tools are the evolution of flow
depths d(x, t) and velocities u(x, t) in space x and time t, which are usually not observed. Hence, it is
necessary to define evaluation criteria [9], which in our case are based on the peak (maximum over all
time steps) values of flow depths d(x, t), velocities u(x, t) and derived impact pressures ppeak(x) = ρ u2

(with the density ρ), that are transformed in a flow path relative coordinate system. In this coordinate
system, the scalar result variables run-out (r), true positive (tp, simulated area matching the observed
affected area, measured relative to the observed affected area Aobs), false positive ( f p, area that
is affected in simulations but not in the observations, measured to the observed affected area Aobs)
and maximal velocity (umax) are derived and collected in the output vector y = {r, tp, f p, umax} [11].
Defining optimization variables such as runout or impacted area in terms of impact pressures is in
accordance with avalanche hazard mitigation guidelines [10,22,23]. Therefore, the outline of the peak
pressure result is identified by ppeak > plim with a pressure limit of plim = 1 kPa (for ρ = 200 kg/m3

corresponding to u = 2.2 m/s). With this outline the runout r can be identified and by a comparison to
the documented affected area Aobs the measures true positive tp and false positive f p, are determined.
The maximum velocity umax is identified as the maximal velocity value over all time steps over the
whole simulation domain.

3. Avalanche Data

To highlight the applicability of the presented approach we arbitrarily chose two case studies
that are representative in terms of the typically available avalanche data. With this we ensure that
the same method can be applied to a larger set of case studies allowing for a more detailed analysis of
the resulting parameter distributions.

The case studies are from different regions in Austria with a similar quality of documented
avalanche events (approximate destructive size d4-5 [24]). High quality assessments of release area
and depth, as well as affected area exist for both events , but no additional information with respect
to dynamic data (velocity, impact pressures, ...) are available. The Kerngraben avalanche event
(Salzburg, AT, Vrel = 65,000 m3) is utilized to perform the back calculation, yielding optimized
parameter distributions for the process model parameters, covering the uncertainties associated with
the observations and the simulation itself. With these optimized parameter distributions we perform
forward and predictive calculations (i.e., Monte Carlo simulations) for the Kerngraben and the a
priori unknown Wolfsgruben avalanche (Tyrol, AT, Vrel = 275,000 m3). In order to further evaluate
the predictive simulations we compare the simulation results with the existing observations.

The DEMs at a resolution of 10 m are freely available [25]. Release area mappings and release depth
estimates exist for each of these avalanches. They have been obtained through expert assessments,
based on observational data supported by state of the art tools (slope and curvature [21,26–28]).

Direct observations of avalanches are rather sparse. Therefore, the available information is often
derived from historical documentation which usually includes the affected areas (see Table 1), which
allow one to determine the associated avalanche runout.

Observations on dynamic data, such as velocities, form an essential part of parameter optimization
for spatio-temporal propagation models but such data are rare [29]. While sparse radar measurements
allow detailed velocities evaluations with spatial reference [30], most velocity estimates rely on
measurements of travel times without any spatial reference. We use an empirical velocity estimate
to compensate for missing velocity observations, linking the maximum velocities of avalanches to
the total altitude difference along their avalanche path (umax ≈ 0.6

√
g ∆z, [31,32]).
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Table 1. Avalanche observation data yobs (runout r, observed affected area Aobs, maximum
velocity umax) and median (50% quantiles) values of the corresponding simulation results
y (r50, tp50, f p50, umax,50). True positive tp and false positive f p values for each simulation are noted in
% with respect to the observed affected area Aobs.

r [m] r50 [m] Aobs [ m2] tp50 [%] f p50 [%] umax [m/s] umax,50 [m/s]

Kerngraben avalanche 1741 1751 241,272 0.99 0.53 55 25
Wolfsgruben avalanche 2103 2071 550,992 0.97 0.32 58 35

4. Back Calculation

4.1. Mathematical Framework

The objective of the back calculation is to solve an inverse problem, i.e., to determine the model
parameters θ for given known input x and measured output yobs, mapping the uncertainties that are
associated with the simulation and data in a probabilistic distribution of process parameters. Therein

f (x, θ) = y (1)

is the input–output model, the vector x describes the simulation input, θ denotes the model parameters
and y is the resulting output.

The standard optimization approach to solving an inverse problem would be to find a parameter
combination θ̂ that minimizes the distance of the corresponding model output f (x, θ̂) to the observed
data yobs. However, for the purpose of modelling the uncertainty of the fitting parameters as well as for
the forward calculation and prediction in Section 5, the probability distribution of the parameters θ is
required. Here is where the Bayesian approach comes in, which allows one to derive such a probability
distribution from (a) prior knowledge about the parameters (in our case, physical restrictions on
their range), (b) the observed data yobs, and (c) assumptions about the distribution of the model error
and the measurement error.

Consequently, we treat the problem as a statistical inverse problem. All parameters θ included
in the model f and the observed data yobs, as well as their errors are considered as random variables
(denoted by capital letters and their realizations by lower case letters). The statistical inverse problem

f (X, Θ, E) = Y (2)

is solved for the unknown parameter vector Θ. X corresponds to the fixed simulation input such
as release volume and topography and Y to the documented data. The error term E should model
the arising uncertainties of the avalanche data Y (runout, velocity, affected area) and the model
and its numerical implementation, respectively. The error term E is considered to be a mean zero
random variable acting as additive noise, the probability density πE of which is assumed to be known.
These assumptions lead to

f (X, Θ, E) = Y ⇐⇒ f (X, Θ) + EY + E f = Y. (3)

where E f denotes the error from the implementation of the model, EY denotes the noise associated
with the the uncertainties of the measured data, summarized in Table 1, and E = EY + E f . The function
f describes the simulation procedure and the postprocessing of the simulation results. Note that we
do not take into account any error resulting from uncertainties in the simulation input X.

The goal of the Bayesian approach is to determine the probability distribution of the parameters θ,
given the observed data yobs, the so-called posterior distribution πpost(θ). The required ingredients are

• The prior probability density πprior(θ) encoding the prior knowledge about the model parameters;
• The likelihood function π(yobs|θ) expressing the probability of the observed data when the parameter

has a given value θ.



Geosciences 2020, 10, 191 6 of 17

The posterior distribution is determined by means of Bayes’ theorem

πpost(θ) = π(θ|yobs) =
πprior(θ)π(yobs|θ)

π(yobs)
. (4)

Bayes’ theorem is an extension of the the well-known formula

P(B|A) =
P(B)P(A|B)

P(A)

for conditional probabilities of events A, B to the case of random variables.
A subtlety in Formula (4) is that π(yobs) is unknown. However, this information is not needed,

because π(θ|yobs) is a probability distribution, so its integral over θ-space has to be equal to 1.
Thus π(yobs) turns out to be a normalizing constant which in principle can be evaluated as the
reciprocal of the integral over the known quantities πprior(θ)π(yobs|θ). This fact is often expressed by
the formula

π(θ|yobs) ∝ πprior(θ)π(yobs|θ) .

The specification of the likelihood function is commonly based on the probability distribution πE
of the error, that is,

π(yobs|θ) = πE(yobs − f (x, θ)) . (5)

At this point, a statistical assumption about the distribution of the error is needed. The natural
assumption is that the error has a normal distribution with zero mean and a certain variance or
covariance matrix ΣE in the multi-valued case, i.e., for multiple observation variables. The choice of
the error covariance matrix is usually based on the covariances of the observed data and should ensure
that all components scale equally. This leads to the likelihood function

π(yobs|θ) ∝ exp
(
−1

2
(
yobs − f (x, θ)

)TΣ−1
E
(
yobs − f (x, θ)

))
. (6)

To explore the posterior distribution we use the Markov chain Monte Carlo (MCMC) method,
i.e., we utilize the Metropolis–Hastings algorithm [33,34] to produce a sample of the posterior
distribution π(θ|yobs). The Metropolis–Hastings algorithm generates a Markov chain which converges
to π(θ|yobs) as its unique stationary distribution. Convergence of the algorithm is known to hold under
rather mild conditions (for more details see [35–38]). In principle, π(θ|yobs) could also be evaluated
directly which, however, would require computing the mentioned normalizing constant by a possibly
high-dimensional integration. The major advantage of the Metropolis–Hastings algorithm is that it
requires knowledge of the likelihood function and the prior distribution only up to a constant, as can
be seen from the iteration step which uses the ratio (7).

In addition to the prior density πprior(θ), the Metropolis–Hastings algorithm needs the specification
of a proposal distribution q(θ∗, θ), which we choose of the form q(θ∗ − θ) where q is a Gaussian
distribution with mean zero and covariance matrix Σprop. The Markov chain of parameters θt,
t = 0, 1, 2, 3, . . . is computed by the algorithm as follows. First, a starting value θ0 is drawn
(or simply selected) from the prior distribution πprior(θ). Having obtained the member θt of the
chain at step t, a candidate θ∗ for the next step is drawn from the proposal distribution q(θ∗, θt),
centered at θt. At this stage, the model output y = {r, tp, f p, umax} with given simulation input x,
candidate process parameters θ∗) is simulated and π(yobs|θ∗) = πerr(yobs − f (x, θ∗)) is computed.
Next, the ratios

α =
π(θ∗|yobs)

π(θt|yobs)
=

πprior(θ
∗)π(yobs|θ∗)

πprior(θt)π(yobs|θt)
(7)
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are formed. The fraction α is used to identify those parameter combinations which are suitable to be
added to the Markov chain. The candidate θ∗ is always accepted if α ≥ 1; otherwise, it is accepted
with probability α and rejected with probability 1− α. If the candidate is accepted, the parameter
combination θ∗ is set as new state (θ∗ 7→ θt+1); if the candidate is rejected, the actual state of the chain
is kept for the next iteration step (θt 7→ θt+1). Possibly after a burn-in phase, the generated tails of
the Markov chain may serve as a sample of the posterior distribution πpost(θ).

An important measure to assess the quality of the Markov chain is the acceptance rate, i.e.,
the fraction of proposed candidates which are accepted. An acceptance rate of about 25% is generally
considered appropriate for the multivariate case, see, e.g., [39,40]. Moreover, the mixing of the chain
is an indicator for whether the chain is exploring the whole parameter space. A good mixing is
desired, which means that the candidates move fast from one part of the state space to other parts.
One possibility, which we apply to test for sufficient mixing, is the visual interpretation of trace plots
(e.g., see Figure 1). The acceptance rate and mixing of the chain are influenced through the proposal
distribution. A proposal matrix with high variances leads to a high fluctuation of the parameters,
which in turn leads to small acceptance rates. On the other hand, for too small variances the parameter
chain is at risk to get stuck in regions with “good parameters” and not to explore the whole parameter
space, which leads to a too high density of accepted parameters.

Figure 1. Trace plots and histograms showing parameter values for the 2000 iterations and total
counts in the marginal posterior distribution θpost of the Markov chain. The trace plot indicates a good
mixing for both parameters, which is reflected by the acceptance rate of 0.48 (967 elements of 2000).
The candidates for δ0 mainly concentrate around the mean value δ̄0 = 11.3◦, while observed ξ values
span the entire parameter space around ξ̄ = 1714 m

s2 .

4.2. Application—Kerngraben Avalanche

To describe the investigated uncertainties, i.e., the error covariance matrix ΣE in the likelihood
function, we proceed as formulated in (3) and account separately for the data measurement error εy

and the process model error ε f , i.e., we use the error model

yobs − f (x, θ) = εy + ε f (8)
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which in turn leads to the covariance matrix in the likelihood function. The four components
arising from the measurement errors are assumed to be independent. They are summarized in
the diagonal covariance matrix ΣE,y. This assumption is reasonable, if measurement devices for
the respective observations, e.g., statistical estimates for velocities and field assessments for runout
distances, differ. We are aware of the fact that runout distances and affected areas are not independent
(e.g., that an increase in affected area is usually accompanied by an increase in runout). An explicit
autocorrelation treatment or an additional correlation analysis of the avalanche observations could
improve the results. On the other hand, the process model correlates the four output components of
the model and thus also the model errors cannot be independent. These correlations are explicitly
treated and estimated in combination with the variances of the model errors in the covariance
matrix ΣE, f . The estimates for data measurement errors are based on expert judgment (stdE,r = 25 m,
stdE,tp/ f p = 0.05 Aobs, stdE,umax = 10 m/s). While the diagonal elements of the covariance matrix for
the model errors may also be determined via expert estimates, this is not straightforward for their off
diagonal counterparts representing their correlations. In order to determine a model error covariance
matrix, which may also be applied to other case studies, we perform 15 Monte Carlo simulations
(each of sample size 500) of events with similar destructive avalanche size characteristics. The data
measurement and model errors are of the same order of magnitude and the covariance matrix reads as:

ΣE,y =


252 0 0 0
0 0.052 0 0
0 0 0.052 0
0 0 0 102

 , ΣE, f =


252 9.63 11.48 417.33
9.63 0.052 0.04 1.53

11.48 0.04 0.052 2.15
417.33 1.53 2.15 52

 . (9)

Assuming that the errors εy and ε f are independent and Gaussian, the sum is again Gaussian and
the covariance matrix is obtained by adding the individual covariance matrices

ΣE = ΣE,y + ΣE, f . (10)

For the prior distribution, no knowledge about the process model parameters apart from
physically relevant intervals is assumed (see [11,41]). This information is expressed by a continuous
uniform distribution of the respective parameter ranges, which can be expressed as δ0 ∈ [0◦, 30◦]
(µ ∈ [0, 0.577]), ξ ∈ [500 m

s2 , 2500 m
s2 ] for the prior density of θ = {δ0, ξ}.

An important task when applying the Metropolis–Hastings algorithm is to asses the convergence
behaviour. Accordingly, it is common to investigate different initial distributions as well as proposal
distributions. These choices influence how the chain moves through the parameter space. We vary the
initial distribution and the proposal distribution, respectively. A suitable choice for the proposal matrix

Σprop is a diagonal matrix with variances of (5◦)2 for δ0 and
(

500 m
s2

)2
for ξ, such that the acceptance

rate reaches about 50%. Given this, the choice of the starting value has no influence on the resulting
parameter distribution. Therefore, choosing θ(0) = {15◦, 1500 m

s2 } as starting values, located in
the center of the parameter space appears appropriate with respect to the initial distribution.

The outcomes of the Metropolis–Hastings algorithm, i.e., the resulting trace plot of the Markov
chain of length 2000 and the histogram of the stationary distribution for the parameters θ = {δ0, ξ}
are displayed in Figure 1. The candidates for δ0 are in the range δ0 ∈ [0◦, 20◦], whereas the distribution
of possible candidates of ξ is wider and covers the whole parameter space of the prior distribution.

Due to the fact that we cannot exactly determine when the chain has reached its equilibrium
distribution we decide to search for an appropriate proposal distribution and stop the algorithm
after 2000 iterations, such that the monitoring properties are sufficiently met. We take the resulting
Markov chain as a sample of the posterior distribution. The calculation time on a single core CPU
with 3.40 GHz for the back calculation task is about ≈18 h and is strongly dependent on the utilized
simulation tool.



Geosciences 2020, 10, 191 9 of 17

The acceptance rate, i.e., the fraction of accepted and proposed elements, of the investigated
scenario is 0.48. This means that 967 parameter combinations (candidates) were accepted and added
to the resulting distributions θpost (Figure 1). The mean values of the distributions are δ̄0 = 11.3◦

and ξ̄ = 1714 m
s2 , which fit in the range of corresponding values found in the literature (e.g., [14,42,43]).

5. Forward Calculation and Prediction

5.1. Mathematical Framework

The objectives of this task are (i) to use the posterior distribution πpost(θ) and perform
forward calculations or predictive simulations, leading to probabilities of simulation results ypred
(runout, velocities), and (ii) to assess explicit information about their variability, which is directly
linked to the back calculated posterior distribution. The main difference between forward calculations
and predictive simulations is that forward calculations utilize local avalanche observations, which
directly influence the back calculated posterior distribution, to perform forward calculations at
the same location (class C1 prediction). Predictive simulations are performed in case that the utilized
back calculated posterior distribution is independent of the local avalanche observations (class A
prediction). For both calculations the same Monte Carlo approach is applied: a sample of size N
of the model parameters following the posterior distribution is generated, simulations with these
parameter combinations θ1, . . . , θN are performed and the simulation results y1, . . . , yN are evaluated
statistically. Thus a sample following the posterior distribution θpost is generated, following the same
distribution as obtained from the Markov chain. There exists a variety of approaches to determine
a sample of the posterior distribution [44]. One common method to realize this is the application of
the component-wise inversion method, that is separately for each parameter. However, this method
cannot be used in a straightforward way because the parameters and thus the components of the chain
are correlated.

Another widespread approach requiring minimal artificial assumptions but ensuring a robust,
smooth estimate is to approximate the joint distribution by means of a copula, preserving the marginal
distributions and the linear correlation coefficients (estimated through the covariance matrix Cθ) of
the original multivariate distribution. A two-dimensional copula [45] is a function C(a, b) of two
variables a, b, both from the unit interval, which has the form of a two-dimensional distribution
function whose marginals are one-dimensional uniform distributions. The copula encodes the desired
correlation structure; given any two one-dimensional distribution functions F1, F2, the function
F = C(F1, F2) is a two-dimensional distribution function with marginals F1, F2 and the desired
correlation structure. The applied two-stage procedure consists of (i) the approximation of the marginal
distributions F1, F2 of δ

post
0 and ξpost with a kernel smoother and (ii) the generation of a joint distribution

by means of a copula reproducing the empirical correlation coefficients of δ
post
0 and ξpost.

This method of generating multivariate samples is applied, using a Gaussian copula, which is of
the form CR(a, b) = ΦR(Φ−1(a), Φ−1(b)), where R is a given correlation matrix, Φ is the cumulative
distribution function of a univariate standard Gaussian variable, and ΦR is the joint cumulative
distribution function of a bivariate Gaussian variable with mean zero and covariance matrix R. Using
CR as copula produces a joint distribution F(δ0, ξ) which has the (rank) correlation given by R.
Generating random numbers from a Gaussian copula is simply done by generating a bivariate Gaussian
variable (s, t) with correlation matrix R, setting a = Φ(s), b = Φ(t) and finally δ0 = F−1

1 (a), ξ = F−1
2 (b).

To obtain the lower bound for the sample size in order to get statistically meaningful results we use
Bikelis’ theorem (see [46]), which leads to an appropriate sample size of 500 simulations to estimate
the expectation value of the runout up to 3 m with a confidence level of 95%. This appears to be
appropriate as it is below the spatial resolution of the utilized DEM.

The simulation with a sample of the posterior distribution corresponds to a simple Monte Carlo
approach which gives a distribution of the estimator in each component of the result variable y.
With the obtained parameter sample θ

pred
post (see Figure 2) forward calculations for the Kerngraben
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and predictive simulations for the Wolfsgruben avalanche are performed. In each case this corresponds
to 500 simulation runs allowing for a quantitative, statistical evaluation of the avalanche simulation
results (runout, true positive, false positive, maximum velocity) ypred = (r, tp, f p, umax).

Figure 2. Scatterplots and histograms (counts are re-scaled to the maximum count for a better
visibility) for the Monte Carlo sample of the posterior distribution θ

pred
post with N = 500 elements.

Forward calculations for the Kerngraben and predictive simulations for the Wolfsgruben avalanche are
performed with these Monte Carlo samples.

5.2. Forward Calculation—Application to the Kerngraben Avalanche

Forward calculations are an appropriate instrument to test the accuracy of the simulation result
with respect to the parameter optimization and the avalanche observations. Table 1 summarizes the
observed avalanche data yobs and the corresponding simulation results y for the two case studies.

For the Kerngraben avalanche event the runout length derived from the observations corresponds
to r = 1741 m. The corresponding runout simulation results, which are summarized in Figure 3,
deviate on average ≈10 m from this observed value (median 1751 m), with 50% (75–25% quantiles) of
the simulated runout lengths ranging from 1731 to 1771 m and 90% (95–5% quantiles) ranging from
1701 to 1831 m. Large tp values show that the simulated affected area is in high correspondence with
the observed one Aobs (>99% for the 25–75% quantiles and 96–99% in the 5–95% quantiles). These high
values appear evident comparing the P(ppeak(x) > plim|yobs) = 95% (most simulation runs affect
this area) line with the observed affected area Aobs in Figure 4. This underlines the importance of
the false positive f p values in the apparent case where the overestimation by the simulation appears
more distinct than the correctly depicted affected area. Here the false positive ( f p) values show that
this high correspondence indicated by the high tp values, is accompanied by an overestimation of
the simulated affected area (96–99% for the 47–58% quantiles and 40–66% in the 5–95% quantiles,
always relative to the observed affected area). The estimated velocity of umax = 55 m/s cannot be
reproduced by the simulations runs: the calculated median is 25 m/s, ranging from 20 to 29 m/s
(5–95% quantiles).
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Figure 3. Runout statistics of the forward and predictive simulations with the Monte Carlo sample
(θpred

post , N = 500) for the Kerngraben (red) and Wolfsgruben (blue) avalanche with the observed runouts
(dashed black line). Solid lines (red, blue) depict the quantiles of the resulting runout distribution
and transparent bars the corresponding histograms. The observed runout for the Kerngraben avalanche
is r =1741 m, with the 95–5% quantiles ranging from 1701 to 1831 m and r = 2103 m for the Wolfsgruben
avalanche with a range of 1985 m to 2233 m for the 95–5% quantiles.

Figure 4. Visualization of the conditional probability P(ppeak(x) > plim|yobs) for the forward
calculations (left, Kerngraben avalanche) and predictive simulations (right, Wolfsgruben avalanche)
with the Monte Carlo sample θ

pred
post . The observed affected area Aobs is shown as reference for the true

positive (tp) and false positive f p values in the runout area (black shading, solid line). The color
map indicates the probability P(ppeak(x) > plim|yobs), that a respective area of the simulation raster
is affected by an avalanche, given the considered data. The P = 95% and P = 5% probability
isolines are highlighted (dotted and dashed-dotted lines), allowing to identify areas that exceed the
threshold peak pressure ppeak(x) > plim in most simulation runs (dark red) or outliers that appear with
probabilities P < 5% (light blue).

5.3. Prediction—Application to the Wolfsgruben Avalanche

Comparing the predictive simulations ypred to the observations yobs (see Table 1 and Figure 3)
one can see that the median value of the predicted run-out (2071 m) deviates about 32 m from the
documented run-out (2103 m), with 50% (75–25% quantile) of simulation runs ranging from 2038 m to
2114 m and 90% (95–5% quantile) ranging from 1985 m to 2233 m. On average the predicted affected
area covers 97% of the observed affected area Aobs (tp ranging from 94% to 100% for the 5% and 95%
quantiles). However, it has to be noticed that this high correspondence is accompanied with an area of
33% (24–44%, f p in relation to the affected area) that was affected in the simulations, but not observed
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(see also Figure 4). Similarly to the forward calculation we observe that the predicted maximum
velocities are in the range of 31–38 m/s (5% to 95% quantile), a value that appears significantly lower
than the estimated value of 58 m/s.

6. Conditional Runout Probabilities

6.1. Mathematical Framework

In order to evaluate the variability of the avalanche simulation results, which in turn indicates
the robustness of the employed simulation scenario, a visualization of the conditional runout
probabilities P(x|yobs) is introduced. The visualization displays the conditional probabilities to exceed a
certain peak pressure threshold at an arbitrary location ppeak(x) = ρ u2, (ρ = 200 kg/m3, see Section 2),
with the numerical cell j representing the discretization of the location x. Here we define the pressure
threshold with ppeak(x) > plim = 1 kPa, which is in accordance with the lower range of values that are
suggested in international hazard zoning guidelines [22].

To count the relative hitting frequency over the grid, define the indicator variable Ij at cell j as

Ij =

{
1, cell j is affected (ppeak(x) > plim = 1 kPa)
0, cell j is not affected (ppeak(x) < plim = 1 kPa)

(11)

Each Ij is a Bernoulli random variable, where the probability p for outcome 1 is the conditional
runout probability p = P(Ij = 1|yobs) that the peak pressure exceeds the threshold at cell j. Hence
the conditional runout probability that the peak pressure exceeds the threshold at a location x,
discretized by a numerical cell j, in a realization of the Monte Carlo simulation sample Ii

j , i = 1, . . . , N
can be evaluated as

P(ppeak(x) > plim|yobs) = P(Ij = 1|yobs) =
1
N

N

∑
i=1

Ii
j . (12)

For any location, the map displays the probability to be affected by the avalanche simulation,
conditional on the observed data yobs. The conditional runout probabilities differ from approaches in,
e.g., Straub and Grêt-Regamey [8], where the annual probability distribution of the run-out distance
is conditional on deterministic model parameters or probabilistic measures, such as impact indicator
index [47] with their direct dependence on the observational data.

6.2. Application to the Kerngraben and Wolfsgruben Avalanche

The runout probabilities of the forward calculations and predictive simulations with the Monte
Carlo sample θ

pred
post are shown in Figure 4.

The Kerngraben avalanche starts at an elevation 2175 m.a.s.l. and travels towards its runout
area, located at ≈1225 m.a.s.l. Areas with P(ppeak(x) > plim|yobs) > 5%, representing the majority
of the avalanche simulations (95–5% quantiles, correspond to runout variation of −40 m to +90 m,
compared to the observation) largely overlap with the documented affected area, which is also
reflected by the accompanying large tp values (see Section 5.2 and Table 1). The corresponding f p
values originate due to the affected areas on the west side of the runout area, where the simulations
exceed the observed affected areas. For areas with low runout probabilities P(x|yobs) the variation in
runout appears to increase, especially considering single simulation runs that distinctly follow the
topography along the valley bottom on the south-east side of the runout area.

The release zone of the Wolfgruben avalanche is located at about 2250 m.a.s.l. and the avalanche
runout areas at ≈1300 m.a.s.l. The variability of the results are low along the main avalanche
track, but increase towards the runout zone. Here we see that the variability for most of the
simulation runs is rather small (5–95% runout probability corresponding to −119 m to +130 m runout),
whereas in the runout area the variability of the result increases for low runout probabilities on
the north-west side towards the counter slope and the right side, where very few simulation runs
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(P(ppeak(x) > plim|yobs) < 5%) follow the river bed at ≈2250 m.a.s.l. It also appears evident that the
main flow direction in the simulations slightly differs from the observed one, which is also indicated
by the obtained runout difference of 32 m, due to the fact that the maximum of the runout observed is
rather located at the north side of the runout area.

7. Discussion

The results highlight the potential of the proposed framework, but also indicate its limitations.
The main drawback of the method is that uncertainties in the simulation input (DEM and releas volume)
are not explicitly treated. Although it is known that they have an influence on the simulation results,
previous studies [10] indicate that small variations of frictions parameters cover the result variation
range of large release volume variations. Accordingly, their expected variability is implicitly included
in the model and observation error but not explicitly modeled as random variable X, considering
the corresponding error in Equation (3). The explicit treatment would enhance the composition of
the error covariance matrix. Therefore, the errors due to uncertain input lead to parameter variability
and thus can not be distinguished from any model uncertainties. A proper analysis of the error
composition could improve the performance of the proposed method. However, a pseudo-accuracy
in the derived and acceptable error could hinder the method, since smaller errors would lead to
significantly different acceptance rates and mixing of the chain. Moreover, the utilized models still
are simplifications of the physical process and other influences, such as path variability, which may
have a significant effect on the posterior parameter distribution. Thus if model parameters are forced to
be exact, a combined optimization, i.e., a solution which fits for multiple avalanche paths, may not exist.
However, similarly to existing approaches [7] the presented framework could be also applied to a case
study including multiple avalanche paths or multiple avalanche events on one path. In this case the
interpretation of the conditional runout probabilities would change. The presented approach provides
a class A prediction including the variability associated with observation and model uncertainties
for a single event. This implicitly assumes that both events have a similar destructive avalanche size
characteristic. Although that might be true for two events, special care has to be taken to identify
and treat sources of variabilities due to differences in spatio temporal characteristics, avalanche sizes
or flow behaviour [48]. In the presented application the evaluation of the simulation results y and
the avalanche observations yobs shows good agreement for simulated runouts r and matched affected
areas (tp). A strength of the presented approach is that it reveals the accompanying overestimates of
affected areas ( f p), reflecting the conservative character of the obtained simulation results. For maximal
velocities umax the correspondence of simulated and estimated values appears to be rather low
and deserves further discussion. Sources for this mismatch are manifold. One source of result variations
are differences in the numerical solution and implementation of similar models (such as [9,49,50]),
which are expected to be small and can not be further addressed since only one simulation tool
was used. Other more obvious sources include the process model with the respective parameter
values and the estimated reference velocity. This appears evident comparing the results for the
two case studies. Similar total altitude differences lead to similar empirical estimates of maximum
velocities (umax ≈ 0.6

√
g ∆z = 55 m/s for the Kerngraben and 58 m/s for the Wolfsgruben avalanche).

Velocities derived from the depth-averaged simulation approach vary significantly. The median value
of the simulated velocity distributions are 25 m/s and 35 m/s respectively (see Table 1), covering a
wider range of 20–29 m/s and 31–38 m/s (5–95% quantiles). The significant differences between the
two test cases can be attributed to the fact, that the simulation approach takes the two-dimensional
topography with distinct terrain features into account, while the employed empirical model provides
a maximum velocity estimate solely based on the total altitude difference. The empirical approach
yields a valuable, rough estimate for an upper velocity bound, especially when no other information is
available, but its generalization may not apply for all types of avalanches paths. Velocities derived
from the depth-averaged simulation approach mainly depend on the employed process model and the
corresponding friction parameters. In case of the presented, classical Voellmy model an adaptation
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of the upper bound for the turbulent friction coefficient ξ could increase the maximum velocities but
has not been further investigated since a distinct peak already appeared in the parameter distribution.
A significant change in velocities may be achieved by modifying the process model by, e.g., including
entrainment [11] or considering a different friction relation [16,51]. It is also important to note that depth
averaged model approaches do not provide any vertical velocity information and are therefore unable
of reproducing turbulent structures resulting in large local velocity variations, that are particularly
interesting in the frontal region of the avalanche [52]. The challenge of properly considering velocities
in avalanche simulation evaluations has been previously debated yielding similar results [29,30] and
new, promising measurement [53] and evaluation approaches [54] are currently discussed.

8. Conclusions

A probabilistic back calculation approach is realized with the Metropolis–Hastings algorithm
to derive posterior distributions of the 2-dimensional process parameter θ = {δ0, ξ} for avalanche
simulations. These posterior distributions are used to perform Monte Carlo simulations as forward
and predictive avalanche simulations. We showed the different ingredients required to apply
a Metropolis–Hastings algorithm in the back calculation procedure. After 2000 iterations and a total
CPU-time of ≈18 h, a Markov chain consisting of 967 combinations of the process model parameters
was determined.

Forward and predictive simulations revealed how uncertainties in the avalanche data lead to
variations in the simulation results. The visualization of the conditional runout probabilities P(x|yobs)

in combination with the quantitative analysis of the forward and predictive avalanche simulation
results ypred appears as a useful tool to evaluate the variability of the results.

The simulations are used to assess the quality of the derived process model parameters and to
give, moreover, empirical distributions of the estimator of each result variable. The resulting
conditional probabilities allow one to derive runouts that are in the range of the documented
event. Although these results appear encouraging at first more simulations are necessary to
narrow the parameter distributions and achieve lower result variabilities. An important observation
is that large result variabilities can be associated with small probabilities or a small number of
corresponding simulations.

The presented workflow and concept of conditional runout probabilities are particularly useful
to evaluate the variability of simulation results. As an alternative to deterministic state of the art
approaches, this probabilistic approach explicitly considers uncertainties of the observed avalanche
data, providing an additional information on the accuracy of the simulation results that may appear
indispensable for risk based approaches. The visualization allows for an intuitive interpretation,
introducing probability thresholds (e.g., 95% and 5% quantiles), which are in accordance with
engineering design guidelines [1,55] and allow one to identify computational outliers. Consideration
and evaluation of uncertainties associated with avalanche simulations is imperative for researchers
and practitioners as rational basis for further risk based management strategies.
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