
geosciences

Article

Probabilistic-Based Assessment of
Liquefaction-Induced Damage with Analytical
Fragility Curves

Davide Forcellini

Civil and Environmental Engineering, University of Auckland, 20 Symonds Street,
Auckland 1010, New Zealand; dfor295@aucklanduni.ac.nz

Received: 21 July 2020; Accepted: 13 August 2020; Published: 15 August 2020
����������
�������

Abstract: Soil liquefaction may cause severe damages to structures mainly in terms of lateral
spread and settlements, as documented during historical earthquakes. Liquefaction-potential (LP)
estimation has become an important issue in seismic assessment, and this paper aims to propose a
new methodology based on fragility curves. LP curves were developed and applied to two case
studies performed with 3D numerical models applying Opensees. Nonlinear hysteretic materials and
advanced plasticity models were used to reproduce the high nonlinear mechanisms of liquefaction,
such as strong dilation tendency and cyclic shear behaviour. LP curves were applied to compare the
results of the performed free field (FF) and soil–structure interaction (SSI) case studies.

Keywords: liquefaction-potential (LP) curves; new methodology; liquefaction risk; numerical
simulations; Opensees

1. Introduction

Historical earthquakes (Niigata, Japan 1964, Dagupan City, Philippines 1990, Chi-Chi, Taiwan 1999,
Japan 2011, Kocaeli, Turkey 1999 and Christchurch, New Zealand, 2011) demonstrated the importance of
estimating liquefaction-induced damages, mainly in terms of permanent lateral spread and settlements.
In this regard, liquefaction potential assessment has been based on empirical data (e.g., [1–4]) and
many relationships between liquefaction resistance and soil parameters have been proposed [5–15].
Among them, Halder, A. [7] applied SPT results to a second-moment statistical analysis as a development
of the empirical procedure introduced by Robertson, P.K [12]. In the Italian background, Crespellani,
T. [16–18] proposed several approaches for the assessment of liquefaction potential. In this regard,
Di Ludovico, M. [19] developed empirical fragility curves to analyse liquefaction-induced effects
during the 2012 Emilia Romagna earthquake. Moreover, Kafali, C. [20] estimated the probability
of liquefaction as a function of earthquake load and SPT resistance by logistic regression analyses,
while other researchers proposed an advanced first-order second-moment (AFOSM) technique to
calculate the probability of failure, [9]. Juang, C.H. [8] performed an extensive series of sensitivity
analyses using the first-order reliability method associated with mapping functions to characterise the
uncertainties in the performance function.

However, as pointed out by Juang, C.H. [8], such methodologies aimed to assess ground and
foundation deformation but rarely to determine liquefaction effects on existing structures and the
subsequent liquefaction-induced structural damages. In this regard, the determination of liquefaction
potential has become a fundamental issue in the assessment of the induced damage to civil engineering
structures by applying several methodologies. A class of approaches was based on the use of artificial
neural networks (ANN) models [21–26] that may estimate the relationships between the soil and
earthquake characteristics with the liquefaction potential, requiring no prior knowledge of the form of
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the relationships. However, the main disadvantage of such approaches consists of the deterministic
definition of soil parameters that cannot consider many uncertainties. Recently, the development
of numerical simulations of nonlinear dynamic soil–structure-interaction (SSI) analyses provided
probabilistic-based insights into the liquefaction-induced effects (e.g., [27–38]).

Furthermore, damage prediction is essential for the assessment of economic losses, and fragility
curves are interesting representations of its cumulative distribution, providing helpful information on
the probability that specific levels of damage have risen or exceeded. Fragility curves have been applied
to estimate structural damages due to ground shaking (e.g., [39,40]) as a way of expressing the probability
of exceeding specific limit states. In this regard, probabilistic-based approaches based on analytical
fragility curves are widely developed in the literature for structures and infrastructures [41–46].
Recently, Liang, H. [47] proposed one of the most recent applications of fragility curves to study the
seismic vulnerability of a high concrete arch dam based on seismic instability and taking the friction
coefficients and cohesions as random parameters. In another contribution, Caverzan, A. [41] applied
analytical fragility curves to study the influence of dynamic SSI effects on the assessment of the seismic
vulnerability of buildings. In particular, Shinozuka, M. [48] developed a statistical procedure for
reliability analyses by applying two-parameter lognormal distribution functions to develop empirical
and analytical fragility curves for bridges. The Monte Carlo approach was also applied by Kafali, C.
and Hwang, H.M. [20,49].

Fragility curves may include many sources of uncertainties, such as the ones connected with
the soil characterisations and properties. For example, Hwang, H.M. [49] considered uncertainties,
such as viscous damping ratio, strength and stiffness of structural materials, Shinozuka, M. [48]
included variability in ground motions, and Popescu, R. [50] developed fragility curves that account
for the variability of soil properties during liquefaction. In this regard, the study of liquefaction effects
on structural fragility curves was the object of several contributions, such as Aygün, B. [51] who
performed a coupled 3D bridge-foundation system with 2D heterogeneous soil strata finite element
(FE) models to monitor multiple bridge failure mechanisms in the presence of 1D soil site amplifications
and liquefaction effects. Recently, Fotopoulou, S. [52] presented a numerical framework for the
vulnerability assessment of low-code Masonry Reinforced Conrcete (MRF RC) buildings subjected to
liquefaction-induced differential displacements.

In the previous contributions, fragility curves were used to include liquefaction to demonstrate its
role in the assessment of structural vulnerability. The novelty of the presented study instead consists
of proposing the application of fragility curves to estimate liquefaction potential and applying it to two
case studies. Analytical fragility curves are here developed to estimate the probability of liquefaction
in terms of lateral spread and settlement with 3D numerical models, first for free field (FF) conditions,
and then considering SSI effects.

2. Liquefaction-Potential Curves

The fragility curve has been proposed as a well-established approach in earthquake engineering
to consider uncertainties in demand and capacity. They represent graphical relationships between
the conditional probability of exceeding predefined damage states (DS) for given levels of EDP
(engineering demand parameters) and are used to estimate the amount of damage for a particular level
of shaking defined with intensity measures (IM). For example, fragility curves, based on HAZUS-MH
MR5: Technical Manual [43], consist of considering four states (slight, moderate, extensive, complete),
and they display the probability that the response of a system exceeds a given threshold limit given
a certain excitation level, as applied in Ranjbar, P.R.’s work [46]. Lateral spread displacements and
settlement at the surface were chosen as EDPs to assess the seismic effects of liquefaction on FF and
SSI systems and thus developing analytical fragility curves to define liquefaction-induced damage.
Peak Ground Acceleration (PGA) is selected as the IM, scaled to multiple levels from zero to 1.0 g with
steps of 0.1 g, following the well-credited approach of incremental dynamic analysis (IDA) proposed by
Hwang, H.M. [49]. Thus, a number of 10 × 7 IDA nonlinear analyses were performed (with Opensees
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PL) for each case study (total 140). The input motions (Figure 1 and Table 1) were selected from the
Pacific Earthquake Engineering Research (PEER) Center Next generation Attenuation (NGA) database
(http://peer.berkeley.edu/nga/), ([53,54] on the base of Eurocode prescriptions) to significantly affect
the dynamic characteristics of the system and was applied at the base of the models, along the x-axis
(longitudinal direction). In particular, IDA requires a series of nonlinear, dynamic time history analyses
for the selected ensemble of ground motions with increasing intensity levels to cover the entire range
of the response, from elastic behaviour through liquefaction condition. Therefore, the limit state
was chosen as the liquefaction condition (ru = 1). Pore pressure ratio (ru), defined previously in [5],
considers the pore pressure as a fraction of the vertical stress (including the weight of ponded water,
if the material is submerged) [32]. This study assumes that all uncertainties in the fragility curves can
be represented by lognormal distributions, and, thus, only two parameters were needed to plot the
curves, the logarithmic mean (µ) and standard deviation (β) of the lognormal seismic intensity measure
(PGA). In particular, there are several reasons that justify the use of lognormal distribution: (1) its
simplicity in approximating an uncertainty quantity that must take on a positive value, using only
an estimate of the central value and uncertainty, (2) the fact that it has been widely used for several
decades in earthquake engineering and (3) it is the distribution that assumes the least knowledge
(the only variables are the mean and logarithmic standard deviation). Therefore, IDA analysis results
were represented to build linear regression and define the mean and log-standard deviation values.
Moreover, the probability of liquefaction (ru = 1) for a specific intensity (PGA) was then calculated as

P[ru = 1|PGA] = φ

(
ln(PGA) − µ

β

)
(1)

where φ is the standard normal cumulative distribution function.
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Figure 1. Selected input motions.

Table 1. Input motions characteristics: Peak Ground Acceleration (PGA), Peak Ground Velocity (PGV),
Peak Ground Displacement (PGD).

Input Motion Station PGA(g) PGV (cm/s) PGD (cm)

n.1 Landers (1992) Lucerne Valley 0.72 147.45 265.14
n.2 Northridge (1994) Rinaldi Receiving 0.89 185.08 60.07
n.3 Northridge (1994) Sylmar Converter 0.70 135.82 58.20
n.4 Northridge (1994) Sylmar Hospital 0.87 139.54 50.37
n.5 Hyogo-ken (1995) Takatori 0.74 155.44 44.95

n.6 Erzincan (1992) Erzincan 0.44 125.80 53.30
n.7 El Centro (1940) Calthech Ha001 0.35 38.47 82.44

http://peer.berkeley.edu/nga/
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3. Finite Elements Models

Finite element models were performed by OpenSeesPL [23,35], from the Pacific Earthquake
Engineering Research (PEER) Center. 3D finite models were developed to capture many outputs (e.g., the
mechanism of excess pore pressure, accelerations, displacements, settlements, tilts, and inter-story
drifts) that are otherwise impossible to be assessed with 1D numerical simulations. The study here
proposed was divided into two steps (Table 2), while 3D numerical models are shown in Figures 2 and 3.

Table 2. Numerical analyses.

Numerical Analyses Mesh Type

Step 1 Figure 2 Free field (FF)
Step 2 Figure 3 Soil–structure interaction (SSI)
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Step 1. A 3D numerical model was developed to build liquefaction potential curves in FF
conditions. In particular, the soil performed in [33] was considered. The 3D soil models consisted
of a 100 × 100 × 20 m mesh, performed with 8000 20-node BrickUP elements and 9163 nodes to
simulate the dynamic response of solid-fluid fully coupled material [54,55]. Finite elements were
defined on the wavelengths of the seismic signal and the maximum frequency above which the
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spectral content of the input was considered negligible (15 Hz). The dimension of the elements
was increased from the structure to the lateral boundaries that were modelled to behave in pure
shear and located far away from the structures, as previously applied in [32,33]. For each BrickUP
element, 20 nodes described the solid translational degrees of freedom, while the eight nodes on the
corners represented the fluid pressure 4 degrees-of-freedom (DOF). For each node, DOFs 1, 2 and 3,
represent solid displacement (µ), and DOF 4 describes fluid pressure (p), which was recorded using
OpenSees Node Recorder [55,56] at the corresponding integration points. The soil model applied
the two-phase material µ -p formulation (where µ is the displacement of the soil skeleton and p is
pore pressure) and simulated with PressureDependMultiYield02 (PDMY02) model [55,56], based on
the multi-yield-surface plasticity framework and calibrated with centrifuge tests and consolidated
undrained cyclic triaxial tests (VELACS No. 40–58), more details in [32,33]. Table 3 shows the
adopted parameters, such as the low-strain shear modulus and friction angle, as well as parameters to
control the contraction (c1), dilatancy (d1 and d2) and the level of liquefaction-induced yield strain
(l1, l2 and l3), [55,56]. The backbone curve is shown in Figure 4. The penalty method was adopted
for modelling the boundary conditions (tolerance: of 10−4), chosen as a compromise to be large
enough to ensure strong constrain conditions but not too large to avoid problems associated with
conditioning of the system of equations. Base boundaries (20 m depth) were considered rigid in all
directions, and the input motions were applied at the base as acceleration time histories [32,33]. Vertical
direction (described by the 3rd DOF) was constrained in correspondence with all the boundaries
(at the base and lateral), while longitudinal and transversal directions were left unconstrained at lateral
boundaries to allow shear deformations. The definition of the mesh dimensions followed the approach
already adopted [32,33,53,54] and, to verify proper simulation of FF conditions at lateral boundaries,
accelerations at the top of the meshes were compared with the FF ones, that were found to be identical,
confirming the effective performance of the mesh.

Table 3. PressureDependMultiYield02 (PDMY02) model parameters.

Parameter Value

Mass density (kN/m3) 19.58
Reference shear modulus (Pa) 5.8·107

Reference bulk modulus (Pa) 7.9·107

Shear wave velocity (m/s) 170
Friction angle (◦) 30

Permeability (m/s) 10−8

Peak angle (◦) 30
c1 0.07
d1 0.4
d2 2
l1 10
l2 0.01
l3 1
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Step 2 consisted of considering a complete system (soil + foundation + structure), Figure 3.
The benchmark structure was calibrated to represent residential buildings and already applied in [33].
In this regard, a two-storey concrete structure was selected (floor height: 3.40 m, total heights: 6.80 m),
with a 4 × 2 column scheme (4 in the longitudinal direction (8 m spaced) and 2 in the transversal
direction (10 m spaced)). Some simplifications consisted of considering a shear-type behaviour
(with plan and vertical regularity) and concentrating the seismic masses at each floor level. Table 4
shows the dynamic characteristics of the structure, assumed to be linear elastic and modelled with
elastic-beam column elements (Table 5). A concrete shallow foundation (28.4 m × 34.4 m × 0.50 m) was
considered to represent recurrent typologies for residential buildings. The foundation was performed
as rigid by linking all the nodes at the base of the columns together and to boundaries, by applying the
equaldof [55,56]. The foundation was designed by calculating the eccentricity (the ratio between the
overturning bending moment at the foundation level and the vertical forces) in the most detrimental
condition of minimum vertical loads (gravity and seismic loads) and maximum bending moments.
The foundation was modelled with a Pressure Independent MultiYield [55,56] as an equivalent concrete
nonlinear hysteretic material with a Von Mises multi-surface kinematic plasticity model to simulate the
monotonic or cyclic response of materials whose shear behaviour was insensitive to the confinement
change, Table 6. The first 0.5 m of soil around the foundation was constructed of an infill layer defined
by PressureDependMultiYield, and Table 7 shows the adopted parameters. The number of yield
surface was equal to 20. Figure 5 shows the Backbone curve.

Table 4. Structural characteristics.

Structural Parameters Value

n floor 2
H (m) 6.80
H/B 0.92

Bearing Pressure (kPa) 135
T1x (s) 0.341 (91.77%)
T1y (s) 0.331 (86.67%)
T2x (s) -
T2y (s) 0.224 (3.48%)
T1x (s) 0.341 (91.77%)
T1y (s) 0.331 (86.67%)

Table 5. Material parameters (structure).

Material Parameters Value

Young modulus (kN/ m2) 3.5·107

Shear modulus (kN/ m2) 1.73·107

Cross section area (m2) 0.12
Inertial moment (m4) 9·10−4

Table 6. Material parameters (foundation).

Material Parameters Value

Mass density (kN/ m3) 24
Reference shear modulus (kPa) 1.25·107

Reference bulk modulus (kPa) 1.67·107
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Table 7. Material parameters (infill soil).

Material Parameters Value

Mass density (kN/ m3) 17.00
Reference shear modulus (Pa) 3.83·107

Reference bulk modulus (Pa) 1.50·107

Shear wave velocity (m/s) 150
Friction angle (◦) 5

Permeability (m/s) 10−7
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It is worth noting that due to the large amount of nonlinear dynamic analyses, the following
simplifications were introduced to improve the computation speed: (1) The foundations were modelled
as rigid slabs. (2) Deformations inside the foundation, weak soil, and intermediate nodes along
the height of the superstructure were calculated during the analyses but not saved and memorised
as results. (3) Concrete material was modelled as equivalent linear elastic. (4) The structure was
modelled as a shear-type building by introducing rigid diaphragms. (5) The soil was modelled
as an equivalent one-layered with constant shear wave velocity and (6) the base of the mesh was
considered fixed (with no absorbing boundaries). These assumptions allowed the maintenance of the
computation of response for the performed earthquake records in less than 72 h by using the parallel
computation procedure.

4. Liquefaction-Potential Curves for Free-Field

In this section, step 1 (FF conditions) is considered. 3D nonlinear dynamic analyses (total 70)
were performed, and the maximum longitudinal displacements (named lateral spread, LS) and vertical
displacements (named settlements, ST) were calculated for each. Figure 6 shows the results for input
motion 2 (100%). For each analysis, the LS and ST at the surface in correspondence with the centre of
the mesh were considered at with liquefaction condition (ru = 1) and defined on scaled PGA values
(Figures 7 and 8) to evaluate the variation of demand and capacity with ground motion characteristics.
In particular, standard deviation (β) defines the dispersion about the mean value, and it significantly
affects the slope of the curves. In particular, higher values of β increase the probabilities at low IMs
and, at the same time, they decrease the probability at high IMs. The mean value (µ) defines the
central tendency of the curves affecting the translation of them inside the range of values. Thus,
bigger values of the mean correspond to a higher probability of reaching or exceeding a particular
damage state. In particular, Table 8 shows the comparison between the values of β and µ that affect
the difference between the two liquefaction-potential (LP) curves. LP probabilities at low PGA were
bigger in correspondence with ST-FF (β = 0.624) than with LS-FF (β = 0.595). The mean values (µ)
also were significantly different. Figure 9 shows the LP (liquefaction potential) curves for both the
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considered parameters (LS and ST), showing that both the curves represented a severe increase in the
LP at a low value of PGA (low intensities). Comparing the two curves, it is worth noting that when
lateral spread was considered, there was a significant difference of LP in the range of PGA = 0.20–0.30 g.
For example, given an input PGA = 0.26 g, LP = 0.575 and 0.284 (around 50%), respectively, for ST-FF
and LS-FF. If other levels of PGA were considered, this difference decreased significantly (at least
to zero). In particular, the difference decreased gradually as the severity of the motion increased
until around 0.80–0.90 g, where the curves were almost equivalent. For PGA values less than 0.20 g,
referring to settlement was still more conservative than considering lateral spread. The reason for the
difference is due to the fact that settlements are more sensitive to inertial forces connected with the
vertical stresses (especially the weight) and start at a low value of PGA, while lateral spread needs a
higher level of intensity to occur since they are connected with shear mechanisms.
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Table 8. Free field (FF): lognormal parameters.

Parameter µ B

Lateral spread 0.382g 0.595
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5. LP Curves for SSI

Step 2 is shown in this section, and the role of the structure is discussed by calculating LS and ST
for the 70 3D nonlinear dynamic analyses. Figure 10 shows the results for input motion 2 (100%) to
give an example of the soil behaviour. LS and ST were calculated at the surface in correspondence with
the centre of the foundation that was demonstrated (see [47]) being mostly affected by the presence
of the structure (mainly in terms of vertical stresses). LS and ST were considered in correspondence
with liquefaction condition (ru = 1) and plotted in Figures 11 and 12. Table 9 shows the comparison
between the values of β and µ that affects the difference between the two LP curves. In particular,
LP probabilities at low PGA were significantly bigger in correspondence with ST-SSI (β = 0.653) than
with LS-SSI (β = 0.624). The mean values (µ) were significantly different. Figure 13 displays LP
curves for both the considered parameters (LS and ST) showing that ST-SSI curve represented a severe
increase in the LP at a low value of PGA (for earthquakes with low intensity). Comparing these two
curves, it is worth noting that when lateral spread was considered, there was a significant difference
of LP in the range of PGA = 0.10–0.25 g. For example, given an input PGA = 0.175 g, LP = 0.666
and 0.195 (around 30%), respectively, for ST-SSI and LS-SSI. If other levels of PGA were considered,
this difference decreased significantly (at least to zero). In particular, the difference decreased gradually
as the severity of the motion increased until around 0.70–0.90, where the curves were almost equivalent.
These curves show the role of the structure in aggravating the vertical stresses (due to the structural
weight). In particular, the low-rise structure was selected to consider the effect of a rigid and heavy
superstructure on the inertial interaction between the structure and the soil that is herein demonstrated
to be significantly detrimental in increasing LP values. These results confirm that the damage is mainly
governed by the rigid rotations and settlements, and liquefaction works as a natural isolation system
against the transmission of inertial seismic actions on the superstructure, as shown in [19].
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The comparison between FF and SSI cases are shown in Figures 14 and 15 that plot LP curves for
both the considered parameters (LS and ST). It is worth noting the detrimental effects of the presence
of the structure in both cases. The role of SSI was particularly significant when the settlement was
considered as a damage parameter with a severe increase in the LP values (for a range of PGA that was
around 0.10–0.20 g). For example, given an input PGA = 0.148 g, LP = 0.621 and 0.337 (around 54%),
respectively, for ST-SSI and ST-FF. These curves show that considering the settlement as a damage
parameter is more conservative in assessing the role of the SSI.
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6. Conclusions

The assessment of liquefaction potential was the object of this paper. Several elements of
novelty were proposed. First, a new methodology to assess liquefaction potential was described as
a development of the well-establish approach of fragility curves where the ru value was applied to
define liquefaction activation (ru = 1). Then, the paper investigated the role of two selected parameters
(the lateral spread and the settlement) by performing 140 IDA with Opensees PL in parallel computation.
The findings showed that settlements are more sensitive to inertial forces connected with the vertical
stresses leading to more conservative results in terms of LP (mainly for lower intensities). In addition,
the role of the structure in aggravating the risk connected with liquefaction was described by two case
studies performed with detailed 3D numerical models of both the soil and the structure. The findings
are limited to the considered soil conditions (one-layered, with constant shear wave velocity) and
numerical model assumptions (fixed base with no absorbing boundaries). In addition, the proposed
analytical fragility curves need to be compared with the ones developed from the empirical database
to have a full understanding of the mechanisms at the base of SSI during liquefaction events. Both of
these aspects will be the object of future work.
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acquisition, D.F. All authors have read and agreed to the published version of the manuscript.
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