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Abstract: The 1963 Vajont landslide is a reference example of large rockslides involving clay interbeds
emplaced in sedimentary rock masses in correspondence with the basal rupture zone (thinly stratified
cherty limestone of the Fonzaso Formation dated to Middle–Upper Jurassic). The basal shear
zone of the 1963 Vajont landslide was made up of a chaotic assemblage of displaced rock masses,
limestone angular gravel, and spread clay lenses. The mineralogical investigations showed that the
clays are characterized by complex assemblages of illite/smectite mixed layers (36–96%) admixed with
variable amounts of calcite (4–64%) and quartz (0–6%). The clay layers show highly variable plasticity
properties and shear strength characteristics. The samples with a large prevalence of clay mineral
content (CM) (CM > 79%) are characterized by low values of the residual friction angle (6.7–14.9◦),
whereas clay materials characterized by a higher content of granular minerals (calcite and quartz)
clearly show greater friction angle values (19.5–26.7◦). The high permeability of the limestone angular
gravel, which caused a rapid reservoir-induced inflow (1960–1963), together with the low friction
angle of the clay layers were responsible for the overall shear strength reduction in correspondence
with the basal rupture zone, thus favoring the huge sliding on 9 October 1963.

Keywords: Vajont landslide; large rockslide; shear zone; Fonzaso Formation; clay; illite/smectite
mixed layer; shear strength; friction angle

1. Introduction

Many large rockslides and large-scale slow-moving rock slopes, in both massive and closely
stratified rock masses, are characterized by the occurrence of a deep-seated basal rupture zone where
deformation and damage caused by shear stresses are concentrated. The thickness and extent of a basal
shear zone are strongly influenced by a number of geological and mechanical factors, including size
and geometry of the unstable rock mass, confining pressure, attitude of stratification, schistosity or
foliation, bed thickness, massive or multilayer structure, occurrence of clay layers or soft joint infill,
rock mass anisotropy, and competence contrast [1]. The variation in the stability condition of an
unstable rock slope as well as its pre-failure and post-failure mechanical behaviors are mainly governed
by the mechanical properties of the materials involved in the formation of the basal shear zone.
In some circumstances, shear zones at the base of large rockslides or slow-moving rock slopes include
fine-grained or clay materials [2–7]. These materials can have a different origin or formation process.
In most cases, clay materials within basal rupture zones have a mechanical origin and occur as a
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result of strong rock comminution and pulverization caused by shear stresses [7–12] or are caused
by weathering and alteration of the rock [4,13–17], even if a combination of both rock disruption
and weathering is also possible. In addition to the aforementioned processes, in sedimentary rock
masses, clay materials can occur as interbeds within the lithostratigraphic sequence involved in the
basal rupture [6,18]. Clay interbeds included in sedimentary rock sequences can also have a volcanic
origin [19,20].

Clay materials occurring within basal shear zones were identified thanks to detailed field surveys
of failure scars of some rockslides [3,10,14,20] or by means of drilling or exploration adits performed
on large unstable rock slopes [7,9,11,12,15]. Mineralogical investigations on clay materials collected
from basal shear zones revealed the occurrence of clay minerals that, in most cases, derived from the
parent rock involved in the basal disruption [7,9–12,17]. In these cases, typical clay minerals found in
the soil mixtures are illite and chlorite deriving from gneissic rocks [7,17], greenstones [12], sandstones,
and mudstones [10]. Smectite was identified in clay materials resulting from crushing of tuff [2] and
shale [11,12], or can derive from physical and chemical alteration under saturated conditions of the
primary rocks [4,14–17], even as a result of circulation of sulfuric acid [13]. Smectite is also commonly
included in clay interbeds of volcanic origin [19,20]. Laboratory investigations on the shear strength
of clay materials involved in basal rupture zones demonstrate that lower values of the friction angle
(ϕ = 7–12◦) are commonly related to the presence of smectite [16,19,20], whereas higher values of the
friction angle (ϕ = 18–35◦) were found for fine-grained materials that include illite, chlorite, and other
non-swelling clay minerals [5,7,9].

The Vajont landslide that occurred on 9 October 1963 is a reference example of a large slope
failure characterized by the presence of clay interbeds included in the sedimentary rock mass that was
involved in the basal rupture (thinly stratified cherty and marly limestone of the Fonzaso Formation
dated to Middle–Upper Jurassic). The existence of clay layers at the base of the Vajont landslide
is universally recognized and is considered a determining factor in the occurrence of the slope
failure [21–24]. As a result, most of the geotechnical models of the 1963 Vajont landslide simply
consider a single, discrete failure surface at the base of the slide whose shear resistance is assumed to be
related to the shear strength of the clay layers [21,25,26]. Previous laboratory investigations on the clay
materials involved in the Vajont landslide were aimed at determining their mineralogical composition
and shear strength properties [21,27–29]. Diffractometric analyses pointed out the presence of a
large amount of clay minerals (50–80%), including montmorillonite [21,27] or illite/smectite mixed
layers [29]. One of the most interesting, and perhaps surprising, characteristics of the Vajont clays
is the low value of their friction angle (ϕ = 5–16◦, prevailingly), which contributed to the decrease
in the overall shear resistance in correspondence with the basal rupture zone and, consequently,
favored the huge sliding. However, the actual influence of the specific mineralogical composition on
the shear strength characteristics of the Vajont clays has not been comprehensively analyzed or fully
understood. To address this issue, we present in this work the results of a geochemical, mineralogical,
and geotechnical investigation performed on several clay samples collected from the Vajont landslide
and from a comparable in situ Jurassic–Cretaceous sequence occurring in the surrounding area.

2. The 1963 Vajont Landslide

On 9 October 1963, in the Vajont valley (NE Italy, Municipality of Erto and Casso), an enormous
mass of rocks and debris (270–300 million m3) detached from the northern slope of Mt. Toc and slid
into the adjacent reservoir created by a concrete double-curvature arch dam (Figure 1). The large
mass movement triggered a huge wave that inundated the Vajont valley and, after overtopping the
dam, flooded into the underlying Piave valley, destroying the town of Longarone and the nearby
villages and killing about 2000 people. This event represents a reference case history for scientists and
researchers dealing with large landslides and/or reservoir-induced slope failures and is considered a
milestone in the general development of rock and soil mechanics [30,31]. This famous landslide has
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attracted a lot of scientific interest over time, owing to its complexity and the need to understand the
underlying mechanisms that caused the slope failure [21,23,26,32–40].Geosciences 2020, 10, x 3 of 17 
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Figure 1. Orthophoto of the final stretch of the Vajont valley showing the detachment surface and the
failed rock mass of the 1963 Vajont landslide. The location of the clay samples analyzed in the present
study and the trace of the geological cross-section are also shown.

The 1963 Vajont landslide mobilized a rock mass made up of a complex cherty and marly limestone
sequence dating from Middle–Upper Jurassic to Upper Cretaceous, including the following geological
Formations (Fm.), from the bottom to the top (Figure 2a):

• Fonzaso (FOZ);
• Ammonitico Rosso Veronese Superiore (ARV3);
• Maiolica (MAI); and
• Scaglia Variegata Alpina (lower member VAA1 and upper member VAA2).

The basal failure surface of the slide formed within the Fonzaso Fm., about 10–15 m above the
lithostratigraphic contact with the underlying Calcare del Vajont (OOV) Fm. (Figure 2a). The Fonzaso
Fm. is characterized by a thinly stratified sequence (average thickness: 5–10 cm) of cherty and marly
limestone with frequent clay interbeds of variable thickness, from 0.2 cm to 6 cm, in most cases
(Figure 2b). Some occasional thicker clay lenses occur, even reaching 20 cm of thickness. Clay interbeds
do not occur diffusely within the Fonzaso Fm., but multiple and overlying clay lenses concentrate in
some specific rock strata sequences of low thickness (1–2 m thick).

The 1963 landslide was the reactivation of a prehistoric rockslide and was characterized by an
en-block motion of a rigid overlying rock mass (100–130 m thick, on average) that moved downslope
sliding onto a very thick shear zone (40–50 m thick, on average) made up of a chaotic assemblage of
displaced rock masses, limestone angular gravel, and spread clay lenses [1,22]. The geometry and
structure of the northern slope of Mt. Toc before 9 October 1963 (Figure 3a) were the result of the
landslide accumulation related to the ancient, multistage, and retrogressive slope failure that probably
occurred in the late Pleistocene-early Holocene period [1,22,23]. The debris materials forming the
basal shear zone were mainly created by the disruption of the primary rock mass at the base of the
slide during the ancient propagation. The prehistoric dynamic stage caused the shearing-off of rock
masses, the strong fracturing of limestone layers, and the heavily comminution of the rock (Figure 3b,c).
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The en-block motion that affected the large assembled block mobilized during the 1963 reactivation
was caused by the interposed ductile shear zone that acted as a debris cushion.Geosciences 2020, 10, x 4 of 17 
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Figure 2. (a) Lithostratigraphic column involved in the 1963 Vajont landslide. The location and code
of the clay samples are shown. (b) In situ cherty and marly limestone sequence (top of the Fonzaso
Formation) outcropping near the village of Casso (for the outcrop location, see Figure 1).
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Figure 3. (a) Geological cross-section of the Vajont slide before 9 October 1963 displaying the thick
shear zone interposed between the upper rock mass and the underlying bedrock. (b,c) The failure
surface involved different materials within the basal shear zone (modified figure from [24]).
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The major field evidence for the presence of loose materials at the base of the Vajont landslide
lies in the identification of a number of remnants of the primary shear zone still exposed on the large
failure scar created by the 1963 slide (Figure 4a). The maximum thickness of the remnants of the shear
zone can be estimated at about 10–12 m, and the sheared materials mainly belong to FOZ. The shear
zone material is made up of limestone angular gravel that is strictly associated with large blocks of
strongly fractured and folded rock masses still preserving the stratification (Figure 4b,c).
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Figure 4. (a) Failure scar of the 1963 Vajont landslide, showing widespread presence of remnants of the
basal shear zone. The location and code of some clay samples are also shown. (b) Basal contact between
the main rupture surface and the overlying debris of the shear zone. (c) Displaced and stratified rock
mass “wrapped” by a layer made up of angular gravel.

The field survey of the failure scar ascertained the presence of a large amount of clay materials in
different geological contexts (Figure 5). Clay layers occur in correspondence with the basal failure
surface (Figure 5a), within the displaced stratified rock masses (Figure 5b), or are mixed with angular
gravel (Figure 5c). Clay materials are made up, as a rule, of interbeds or lenses (thickness: from
0.2–0.5 cm to 5–6 cm, in most cases) delimited by limestone layers (stratified rock masses) or thicker beds
of limestone gravel. Over widespread areas of the detachment surface, the presence of isolated lenses of
yellowish, green, and gray clay can be noted (Figure 5). Most clay lenses have low continuity (1–15 m).
Sometimes the clay layers appear strongly deformed and create folded lenses (Figure 5d). As ascertained
for the in situ lithostratigraphic sequence (Figure 2b), multiple clay lenses are concentrated in some
specific rock strata sequences (sheared-off rock masses) or debris strips of low thickness (1–2 m).
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Figure 5. (a) Clay layers (cm thick) sampled from the detachment surface of the 1963 Vajont landslide.
On the field, the clays mainly appear as yellow, (b) green, (c) or gray (d) lenses that can also be
heavily folded.

3. Field Sampling and Laboratory Testing

A field survey was carried out for this work in order to identify, localize, and sample clay materials
occurring within the lithostratigraphic sequence that was involved in the 1963 Vajont landslide.
The survey was performed on the large failure scar of the slide as well as on the opposite valley side
near the village of Casso, where the in situ Jurassic–Cretaceous sequence is better exposed (Figure 1).
During the field survey of the detachment surface, eight clay samples were collected from the basal
shear zone resting on both the western and eastern limestone slabs (Figures 1 and 4a). For comparison
purposes, two additional clay samples were collected from the in situ lithostratigraphic sequence that
outcrops on the opposite valley side (Figures 1 and 2b).

The outcrops of clay materials were accurately prepared before the sampling procedure,
removing the surface debris and the soil cover and pointing out the main stratigraphical contacts
(Figure 2b). In some outcrops, multiple clay layers occur, thus more samples were acquired from the same
location (for instance, VA09-1A, B). The clay samples collected from the field were subsequently analyzed
in the laboratory to investigate their geochemical, mineralogical, and geotechnical characteristics.

X-ray fluorescence (XRF) analyses were performed via a WDS sequential Philips PW2400
spectrometer, operating under vacuum conditions and equipped with a 3 kW Rh X-ray tube, 5 analyzing
crystals (lithium fluoride LiF220, LiF200, Germanium Ge, pentaerythritol PE, and thallium(I) hydrogen
phthalate TIAP), 2 detectors (flow counter and scintillator), 3 collimators (150 µm, 300 µm, and 700 µm),
and 4 filters (Al 200 µm, Brass 100 µm, Pb 1000 µm, and Brass 300 µm). The analyses were performed
on glass bead samples (1:10 ratio with flux Li2B4O7), whereas the FeO content was determined via
permanganometry. The X-ray fluorescence analyses were carried out at the Department of Geosciences
of the University of Padua (Padua, Italy).
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With the only exception of sample VA07-6, all clay samples were analyzed for mineralogical
characterization by X-ray powder diffraction (XRPD) method. The analyses were performed at the
Department of Earth and Geoenvironmental Sciences of the University of Bari A. Moro (Bari, Italy)
using a PANalytical Empyrean diffractometer equipped with a Real Time Multiple Strip (RTMS)
PIXcel3D detector and Cu-Kα radiation. Analytical conditions were as follows: 40 mA and 40 kV;
0.125◦ divergence slit, 0.25◦ antiscattering slit and soller slit (0.02 rad) on the incident beam; Ni filter,
soller slit (0.02 rad) and antiscatter blade (7.5 mm) on the diffracted beam. Both qualitative and
semi-quantitative mineralogical analyses were performed on the selected samples.

Qualitative analyses were carried out on bulk samples and on clay fractions separated by settling
according to Stokes’ law. Oriented mounts of all the samples (clay fraction < 2 µm) were prepared
and XRPD measurements were performed on air-dried, ethylene glycol-saturated, and heated (550 ◦C)
oriented samples in order to identify clay minerals [41]. Bulk XRPD data were collected from carefully
ground powders in the angular range of 3–70◦ (2θ) with a virtual step scan of 0.026◦ and a counting
time of 360.0 s/step and using side-loaded sample holders. XRPD data were processed using X’Pert
High Score 3.0e software, which includes the ICSD database and a profile fitting tool for accurate peak
position and peak area determination.

Semi-quantitative mineralogical determination of clay and non-clay minerals in bulk samples was
carried out by measuring peak areas in the diffractograms of random preparations according to the
procedure described in [42]. The strongest reflection at 3.03 Å was used for calcite, whereas for the
quantification of quartz the line at 4.26 Å was used instead of the strongest one at 3.34 Å, in order to
avoid superimposition effects with 10 Å-minerals and illite/smectite (I/S) mixed layer series. The total
clay mineral content (CM) was estimated measuring the 4.5 Å peak area.

Finally, all soil samples collected from the field were prepared and quartered for geotechnical
analyses, determining the following: grain-size distribution, Atterberg limits, plasticity and activity
indexes, and residual shear strength properties. The geotechnical analyses were performed at the
Polytechnic Department of Engineering and Architecture at the University of Udine (Udine, Italy).
The sub-samples submitted to the grain size analyses were washed and sieved to separate the
coarse-grained part (retained on the American Society for Testing and Materials (ASTM) No. 200 sieve)
from the fine fraction. The coarse-grained soils were subsequently oven-dried at about 105 ◦C and their
grain-size distribution was determined through mechanical sieving with a complete set of ASTM sieves
(from 3” to No. 200). The fine fraction was analyzed through sedimentation employing a hydrometer
and performing readings up to four days.

The sub-samples submitted to plasticity and residual shear strength analyses were air-dried so as
not to alter their mineralogical characteristics and subsequently sieved to obtain the fraction passing the
ASTM No. 40 sieve. Plasticity properties of the soil samples were determined according to the standard
procedures described in ASTM D4318. The liquid limit was determined using the multipoint method
and the Casagrande cup, whereas the plastic limit was assessed following the hand-rolling procedure.

The residual shear tests were carried out on seven selected clay samples using a ring shear machine
Bromhead WF 25850 and considering three different confining pressures, namely 200 kPa, 400 kPa,
and 600 kPa. The tested materials were previously saturated with distilled water to reach a water
content equal to the corresponding limit liquid. The tested ring specimens had an outer diameter
of 100 mm, an inner diameter of 70 mm, and a thickness of 5 mm. Because of the high initial water
content of the remolded samples, multistage consolidations were slowly performed until the desired
normal stresses were reached in order to minimize the leak of material and to control the vertical
displacements. The drained residual shear strength of the tested materials was assessed employing a
very low displacement rate, equal to 0.024 mm/min, in order to avoid the development of pore water
overpressures. The shear stage was prolonged until stable residual strength conditions were reached
at large deformations, which usually corresponds with pluri-centimetric displacements.
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4. Results

4.1. Geochemistry and Mineralogy

The analyzed samples are characterized by high values of loss on ignition (LOI) in the range of
14–33 wt.% (Table 1). When considering anhydrous chemical analyses (normalized to 100, excluding
LOI), the most abundant oxides are SiO2 in the range of 30–60 wt.% (avg. 52 wt.%; Std. Dev. 9),
CaO in the range of 5–52 wt.% (avg. 21 wt.%; Std. Dev. 14), and Al2O3 in the range of 10–20 wt.%
(avg. 16 wt.%; Std. Dev. 4). Among the other oxides, FeOtot, K2O, and MgO comprise between 1 and
6 wt.% (avg. 2.6–4.7 wt.%). All the other oxides are below 0.5 wt.% (Table 1).

Table 1. Anhydrous weight percentage of oxides from X-ray fluorescence (XRF) analysis of clay samples
from Vajont and Loss On Ignition (LOI) content.

Sample
Oxides (wt.%) LOI

(%)SiO2 TiO2 Al2O3 Fe2Otot MnO MgO CaO Na2O K2O P2O5 Total

VA07-3A 50.70 0.18 16.76 2.68 0.04 5.47 22.07 0.08 2.24 0.03 100.25 24.81
VA07-3B 46.83 0.11 11.52 1.88 0.05 3.60 34.11 0.10 1.17 0.04 99.41 28.24
VA07-5A 29.98 0.15 9.94 2.34 0.13 2.61 51.74 0.01 2.30 0.17 99.37 32.70
VA07-6 54.50 0.53 18.19 2.84 0.02 5.12 16.16 0.03 2.53 0.05 99.97 22.76
VA07-8 52.22 0.14 11.00 2.00 0.06 3.49 28.47 0.07 1.79 0.08 99.32 25.09

VA07-11A 58.41 0.50 17.98 3.64 0.02 5.58 9.03 0.08 4.57 0.05 99.86 17.12
VA07-13C 54.91 0.27 16.59 2.49 0.03 4.59 17.79 0.05 3.11 0.05 99.88 22.02
VA07-14 59.61 0.53 20.02 2.57 0.01 6.00 4.84 0.04 5.77 0.05 99.44 13.70
VA09-1A 54.76 0.48 17.53 3.33 0.06 5.08 15.22 0.04 3.19 0.10 99.79 23.25
VA09-1B 56.75 0.16 18.48 2.47 0.03 5.36 13.70 0.05 2.60 0.03 99.63 22.09

XRPD analyses showed the occurrence of significant contents of clay minerals (from 36% to 96%)
in all the investigated samples (Table 2), in addition to variable amounts of calcite (from 4% to 64%)
and minor quartz (up to 6%). Clay minerals exclusively consist of highly disordered illite/smectite (I/S)
interstratifications with complex admixtures of R0 and R1 (Reichweite (R)) stacking orders (see [41]) and
illite content ranging generally from 50% to 85% (Table 2). Very small diffraction peaks of K-feldspar,
kaolinite, illite, and chlorite were occasionally observed in the diffractograms, but the amount of these
minerals was not determined as they are present only as traces (below 1%).

Table 2. Mineralogical composition of clay samples from Vajont.

Sample Sampling
Location

Reichweite Illite Percentage Clay Minerals Calcite Quartz
(wt.%) (wt.%) (wt.%)

VA07-3A a Failure scar, West R0, R1 50–60%, 60–70% 83 17 <1
VA07-3B Failure scar, West R0, R1 n.d. 59 39 3

VA07-5A b Failure scar, West R1, R0 60–70% and 80–85%, 50% 36 64 <1
VA07-8 a Failure scar, West R0, R1 50–60%, 70–80% 60 34 6

VA07-11A Failure scar, East R1, R0 60–70%, 50% 90 9 1
VA07-13C Failure scar, East R1 70–80% 79 17 4
VA07-14 c Failure scar, East R1 70–80% 96 4 0
VA09-1A Casso R0, R1 50–60%, 80–85% 79 19 2
VA09-1B Casso R0, R1 50–60%, 80–85% 89 10 1

a Kaolinite and illite as traces (not determined); b Kaolinite as traces (not determined); c Feldspars as traces (not
determined); n.d.: not determined

According to semi-quantitative mineralogical estimations (Table 2), samples can be divided into
two groups on the basis of the relative proportions of clay minerals and calcite. The first group (samples
VA07-3A, VA07-11A, VA07-13C, VA07-14, VA09-1A, and VA09-1B) is in fact characterized by higher
amounts of clay minerals (from 79% to 96%; Figure 6a), whereas the second group (samples VA07-3B,
VA07-5A, and VA07-8) shows a higher calcite content (from 34% to 64%; Figure 6b).
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Figure 6. X-ray powder diffraction patterns of two representative samples from Vajont: (a) clay-rich
sample VA07-14 and (b) calcite-rich sample VA07-5A.

4.2. Geotechnical Characterization

The geotechnical index properties of the clay materials sampled from Vajont are listed in Table 3.
According to the grain-size distribution analysis, the soil samples include both silty clays and clayey
sandy silts (Figure 7). Interestingly, the samples collected from the eastern detachment plane of the slide
(samples VA07-11A, VA07-13C, and VA07-14) have higher values of clay fraction (CF), ranging between
52% and 63%. The samples coming from the western part of the detachment surface as well as those
collected from the in situ lithostratigraphic sequence outcropping on the opposite valley side have a
clay fraction included in the range CF = 18–31% (Table 3). The Atterberg limits of the clayey soils are
rather variable (Table 3)—the liquid limit (LL) varies considerably, with values ranging from 38% to
89%, whereas the plastic limit (PL) varies in the range of 17–43%. As a result, the plasticity index (PI) is
highly variable, ranging between 21% and 59%. The plasticity chart of Figure 8a reflects the significant
variability in the plasticity properties of the Vajont clays. However, most of the samples fall in the field
included between the A-line [43] and the U-line [44]. Most of the fine-grained samples from Vajont
are classified as normal or active clays (Figure 8b), whereas only one sample (VA07-14) is classified as
inactive clay, despite its largest content in clay fraction (Table 3).

Table 3. Geotechnical index properties and residual friction angles of clay samples from Vajont.

Sample Sampling Location
Grain-Size Distribution Liquid

Limit
Plastic
Limit

Plasticity
Index

Activity
Index

Residual
Friction Angle

G (%) S (%) M (%) CF (%) LL (%) PL (%) PI (%) AI (-) ϕres (◦)

VA07-3A Failure scar, West 15 11 49 25 52 22 30 1.2 11.1–14.9
VA07-3B Failure scar, West 15 15 43 27 62 37 25 0.9 –
VA07-5A Failure scar, West 15 28 38 18 38 17 21 1.2 25.1–26.7
VA07-6 Failure scar, West 18 19 37 25 67 31 36 1.4 8.9–10.8
VA07-8 Failure scar, West 29 28 20 23 62 24 38 1.7 19.5–22.5

VA07-11A Failure scar, East 2 13 26 59 82 28 54 0.9 6.8–8.5
VA07-13C Failure scar, East 9 19 20 52 89 30 59 1.2 7.5–9.1
VA07-14 Failure scar, East 3 8 26 63 62 31 31 0.5 –
VA09-1A Casso 3 40 26 31 77 39 38 1.2 6.7–9.7
VA09-1B Casso 1 35 39 25 71 43 28 1.1 –

Legend: G = gravel; S = sand; M = silt; CF = clay fraction.
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Figure 7. Grain-size distribution curves of soil samples collected from the basal shear zone of the
Vajont slide.

The results of the residual shear tests that were performed on seven Vajont clay samples are
shown in Figure 9, where the values of the normalized residual shear strength (τr/σ’) determined for
the three reference values of the effective normal stress (σ’) are displayed. The tested samples clearly
show highly variable values of the residual shear strength, ranging from τr = 70 kPa to τr = 280 kPa for
an effective normal stress of 600 kPa. An overall nonlinear decrease of τr/σ’ as σ’ increases is clearly
shown. However, the normalized residual shear strength tends to a constant value for higher normal
stresses (Figure 9). The shear tests also allowed for the estimation of the residual friction angle values
of the tested samples (Table 3). On the basis of the estimated values of ϕres, two main groups of clay
materials can be identified. The first group of clays (samples VA07-3A, VA07-6, VA07-11A, VA07-13C,
and VA09-1A) is characterized by lower values of ϕres, varying in the range of 6.7–14.9◦, whereas the
second group of clays (samples VA07-5A and VA07-8) exhibits higher values of ϕres, varying in the
range of 19.5–26.7◦ (Table 3).
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5. Discussion

The mineralogical analyses of the clay layers involved in the 1963 Vajont landslide presented here
revealed the presence of a large amount of clay minerals exclusively consisting of I/S mixed layers.
This evidence is consistent with the analyses performed by [29], who proved for the first time the
existence of I/S mixed layers in the clay mineral mixtures occurring within the rock mass involved in the
slope rupture. Previous authors [21,27] recognized the simultaneous presence of montmorillonite and
illite, even if in apparent discrete form. It must be pointed out that in the past, from a terminological
point of view, authors often referred to “montmorillonite” to indicate undistinguished clay minerals
belonging to the smectite group. According to these studies, the content of montmorillonite in the
mineral mixture of the Vajont clays ranged between 25% and 75%, whereas the overall content of
clay minerals is 50–80%. Our study revealed a slightly broader range in the clay mineral content
of the analyzed samples (36–96%). This difference can be justified by the larger number of samples
investigated in the present work (nine) when compared to the number of samples analyzed by other
authors (maximum three), thus reflecting a significant, previously undetected, variability in the
mineralogical assemblages of the Vajont clays.

In fact, I/S mixed layer minerals are associated with highly variable amounts of calcite that
ranges from low (4–10%) to high percentages (64%) (Table 2). The variable mixture of sheet
minerals and calcareous fine-grained crystals produced different mineralogical assemblages that
can be clearly recognized on examining the geochemical and mineralogical features of the analyzed
clays (Figure 10). In the first group, clay minerals predominate (Group 1), whereas in the second group,
calcite-rich sediments prevail (Group 2). Group 1 is characterized by lower values of CaO (5–22%) and
LOI (14–25%) (Figure 10a) and shows higher percentages of clay minerals (79–96%) associated with
considerable amounts of K2O (2.60–5.77%, in most cases), which reflect an abundance of illite in the I/S
mixed layers (Figure 10b). On the contrary, Group 2 shows lower percentages of interstratified I/S
minerals (36–60%), with the lowest values of K2O (1.17–2.30%) as well as the highest values of CaO
(28–52%) and LOI (25–33%) (Figure 10).
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The Atterberg limits of the clay materials determined in this work are consistent with other
laboratory measurements carried out in the past by other authors [21,27,28]. The highest values of the
liquid limit are in the range of 80–90%, but greater values of LL were also reported, some samples
reaching peak values of 106% [27,28]. When considering shear strength properties, the weakest clay
materials investigated in this study have characteristic values of the residual friction angle ranging
from ϕres = 6.7◦ to ϕres = 14.9◦ (Table 3). These values of ϕres are very much in line with previous
laboratory determinations that are included in the range of 5–16◦ [21,27–29]. Nonetheless, the residual
shear tests carried out for this work also proved the existence of clay materials having greater values of
the residual friction angle (ϕres = 19.5–26.7◦).

The ascertained great variability in the geotechnical index properties and shear resistance
characteristics of the Vajont clays could tentatively be explained by comparing the geotechnical and
mineralogical features of the clay interbeds. However, it must be pointed out that there is a strong
difference, from both conceptual and practical points of view, between clay mineral content (CM) and
clay fraction (CF). From a geotechnical point of view, clay fraction refers to fine-grained soils with a
particle size lower than 2 µm, including clay minerals as well as other minerals of different nature
and structure (e.g., calcite and quartz). This means that the percentages of minerals that have been
determined for each sample through XRPD analyses (I/S mixed layers, calcite, and quartz) have to be
reported to the corresponding clay fraction, thus CF and CM values cannot directly be correlated.

Most of the samples with a high content of clay minerals (CM > 79%) are also characterized
by higher plasticity properties (LL > 71%, PI > 38%; see Figure 8a). In contrast, samples with a
lower content of clay minerals (CM < 60%) show lower plasticity properties (LL < 62%, PI < 38%).
Nevertheless, two samples with a considerable content of clay minerals (CM = 83% for sample VA07-3A
and CM = 96% for sample VA07-14) have rather low plasticity properties (Figure 8a). Thus, the highest
contents of clay minerals do not strictly correlate with the highest values of LL and PI. As a result,
the amount of I/S mixed layers of the clay samples only marginally influences their plasticity properties.

Clay samples characterized by lower values of the residual friction angle (samples VA07-3A,
VA07-6, VA07-11A, VA07-13C, and VA09-1A) exhibit highly variable values of CF (25–59%), LL (52–89%),
and PI (30–59%). According to the results of some torsional ring shear tests on cohesive soil samples [45],
the increase in LL and CF results in a decrease in the drained residual shear strength. This correlation
is nonlinear, especially for cohesive soils having CF greater than 50% and LL between 60% and 220%.
Most of the Vajont clays show an evident nonlinear decrease in the residual friction angle as the liquid
limit increases (Figure 11a). Nevertheless, sample VA07-8, which is characterized by a higher residual
friction angle, has values of CF, LL, and PI that are greater than corresponding values of other samples
included in the group of low-strength clays (Table 3). The considerable variability in the residual
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friction angle of the Vajont clays is more evidently explained by their mineralogical composition, i.e.,
by the relative amount of the occurring clay minerals (Figure 11b). In fact, low-strength clays are
dominated by high contents of clay minerals (CM > 79%), whereas samples with higher values of the
residual friction angle include a prevailing mixture of granular minerals (calcite and quartz).
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On the whole, the different mineralogical assemblages characterizing the Vajont clays and the
relative amount of clay minerals seem to have a clear influence on the residual shear strength
characteristics, but only partially affect their plasticity properties.

Field evidence ascertained that clay interbeds diffusely occur over the large detachment surface
and within the remnants of the basal shear zone and that multiple thin clay layers concentrate in
some specific rock strata sequences within the Fonzaso Fm., 1–2 m thick. This explains how the basal
rupture surface of the slide did not form along a single, clay-rich level. On the contrary, the basal
failure mechanism was driven by the presence of multiple and overlying clay layers, starting from the
deepest interbeds of the Fonzaso Fm. occurring about 15–20 m above the lithostratigraphic contact
with the underlying Calcare del Vajont Fm. As a result, the basal failure surface of the Vajont landslide
has a complex stepped shape, involving several distinct clay-rich layers.

The characteristic stepped geometry of the basal failure surface of the slide demonstrates that
the geotechnical models that consider a single, continuous, “critical” low-resistance clay layer at
the base of the Vajont landslide e.g., [21,25,26] are not consistent with field observations. This is
true especially when considering the maximum thickness (15–20 cm) and the maximum ascertained
continuity (10–15 m) of the clay lenses compared with the total extension of the failure surface that
amounts to about 2 km2. On the contrary, the basal failure mechanism of the 1963 Vajont slide was
complex and involved various geological materials, namely thin clay layers of variable shear strength,
rock joints, cherty limestone beds, and angular gravel (Figure 3c). This means that the shear strength of
the basal rupture zone cannot only be related to the residual shear resistance of the weakest materials,
i.e., of the clays with a higher content of clay minerals; the shear strengths of the other materials
involved in the basal rupture have also to be considered (Figure 12). The shear strength characteristics
of these very heterogeneous materials are highly variable. Typical values of the friction angle for
well-graded gravels and sandy gravels vary between 38◦ and 46◦ [46]. According to some triaxial shear
tests on rockfill materials mainly consisting of angular to sub-angular particles, the friction angle varies
between 41◦ and 45◦ [47]. In addition, values of the basic friction angle of flat unweathered limestone
joints obtained through residual shear tests range between 27◦ and 37◦ [48].
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When considering previous slope stability analyses of the 1963 Vajont landslide,
typical two-dimensional back-calculated values of the friction angle ϕm range essentially from
17◦ to 27◦ [21,24,26,27,33,36,49,50]. The latter are averaged values that simply reflect the notable
heterogeneity of the strength properties of the different materials involved in the rupture. This finally
explains the marked difference between the friction angles measured by means of different shear tests
on various Vajont clay samples (ϕ = 5–16◦, prevailingly) and the typical back-calculated mean values
at failure (ϕm = 17–27◦) (Figure 12). Moreover, the particular dynamic features of the 1963 paroxysmal
event and the remarkable velocity of the final collapse (about 20–30 m/s) cannot only be explained
considering mechanical and/or thermal processes involving one or few clay layers located at the basal
contact with the underlying bedrock.

6. Conclusions

The mineralogical investigations carried out for this study showed that the clay interbeds occurring
within the Fonzaso Fm. and involved in the 1963 Vajont landslide are characterized by complex
assemblages of illite/smectite (I/S) mixed layers admixed with variable amounts of calcite and quartz.
The abundance of illite in the mixed-layer assemblages is confirmed by the high percentage of potassium
as revealed by the geochemical analyses of the sampled clays. On the whole, the investigated clay
samples are characterized by highly variable contents of clay minerals (36–96%), calcite (4–64%),
and quartz (0–6%).

The clay layers involved in the basal rupture of the 1963 slide show highly variable plasticity
properties and shear strength characteristics. This evidence is explained by the close relationship
between the mineralogical composition and shear strength properties of the Vajont clays. In fact,
the samples with a large prevalence of clay minerals (CM > 79%) are characterized by low values of
ϕres (6.7–14.9◦). These friction angle values are consistent with previous laboratory investigations
conducted on Vajont clay samples to identify the weakest materials involved in the basal rupture
(ϕ = 5–16◦, essentially). However, this study emphasizes the conclusion that other types of clay
layers, with different mineralogical composition and geotechnical properties, were also involved in the
formation of the basal rupture zone. These clay materials clearly show greater values ofϕres (19.5–26.7◦)
that are caused by a higher content of granular minerals (calcite and quartz). The coexistence of clay
interbeds with highly variable shear resistance properties within the rock mass involved in the 1963
slope failure is pointed out for the first time by this study.
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The presence of the prehistoric shear zone interposed between the upper rock mass and the
underlying bedrock had a strong influence on both the hydrogeological and mechanical behaviors of
the slope. The high permeability of the limestone angular gravel (k = 5 × 10−4 m/s; [24,36]) caused
a rapid reservoir-induced inflow during the filling-drawdown operations performed in the years
1960–1963, thus originating a near-horizontal groundwater table that penetrated deeply into the slope
(Figure 3a). The increase in the pore water pressure induced by the rising of the reservoir together
with the low friction angle of the clay interbeds (ϕ = 7–27◦) were responsible for the overall shear
strength reduction in correspondence with the basal rupture zone, thus favoring the huge sliding.
However, most of the geotechnical models of the 1963 Vajont landslide assumed a single clay layer at
the base of the unstable rock mass. This simplification does not correspond to reality. On the contrary,
because of the presence of different materials in the basal shear zone of the Vajont landslide, the final
rupture surface of the 1963 slide is related to the combined shear strength properties of discontinuous
clay lenses, limestone stratification joints, angular gravel, and localized intact rock parts. This evidence
should be kept in mind when assessing the geotechnical model of the 1963 slide and when performing
slope stability back-analyses.

The 1963 Vajont landslide is a reference example of large rockslides involving clayey soils
emplaced in sedimentary rock masses in correspondence with the basal rupture zone. The existence of
low-strength materials at the base of large rockslides can result in an overall shear resistance decrease in
correspondence with the rupture zone. However, the degree to which the strength decreases is mainly
correlated to the strength properties of all the materials involved in the basal rupture, which may also
include materials having different resistance properties than clays. To correctly evaluate the mechanical
behavior and stability condition of large unstable rock slopes, a comprehensive understanding of
the specific geological and geomechanical contexts is required. Very often, the geotechnical analysis
of rockslides or unstable rock slopes is performed considering the mechanical properties of the
involved geological materials (rocks and soils) in detail, but the same attention is rarely paid to the
geological context, including the sedimentological, lithostratigraphical, and mineralogical features
of the rock mass under investigation. This fact obviously depends on the various specializations
involved in the specific research (geotechnical engineers, engineering geologists, geomorphologists,
sedimentary geologists, mineralogists, etc.), but the consequence is a partial understanding of the
studied phenomenon, if not even a misinterpretation of the geological factors leading to the slope
rupture. The Vajont case history is an enlightening and very useful example to understanding the
importance of the interdisciplinary studies connecting the typical geological–mineralogical approach
with the geomechanical investigation of unstable rock slopes.
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