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Abstract: In the northern South China Sea, pockmarks are widely distributed on the seabed offshore
on the southwestern Xisha Uplift. The mineralogy and geochemistry of the clay minerals and surface
sediments from the pockmark field were identified using X-ray diffraction (XRD) analysis and X-ray
fluorescence (XRF) analysis to trace the provenance, weathering, and sediment transportation system
in the area. The clay minerals are primarily comprised of illite, smectite, kaolinite, and chlorite,
showing a distribution of average weight percentages of 35%, 35%, 18%, and 13%, respectively. Based
on the surrounding fluvial drainage basins and various transport mechanisms (current or monsoon),
illite and chlorite primarily originate from rivers in Taiwan and the Mekong and Red Rivers. Kaolinite
primarily originates from the Pearl River, and smectite derived from the Luzon arc system is primarily
transported by surface currents with significant influence from the Kuroshio intrusion.

Keywords: surface sediments; clay minerals; sediment provenance; sediment transport; Xisha Uplift

1. Introduction

Understanding processes involved in modern sedimentary environments is a prereq-
uisite in paleo-oceanographic reconstruction [1–3]. Climatic conditions and lithology of the
source rock are the key factors generally controlling the geo-chemical and the mineralogical
fingerprints of the surface sediments. Clay minerals, which are widely distributed in the
marine sediments, are vital contents, as well as the content assemblages and concentration
of chemical elements, which provide useful tools for deciphering provenance, weathering
intensity, transport patterns, and paleo-climatic changes (e.g., [4–14]).

Clay minerals, such as illite and chlorite, are common weathering products of igneous
and metamorphic rocks. These minerals are typically found in high-latitude marine
sediments after mobilization by physical weathering. Kaolinite forms under warm and
humid conditions by the intensive chemical weathering of feldspar in tropical soils and
is often denoted as a low-latitude mineral [15,16]. The alteration of volcanic rock-derived
smectite can be a good indicator of volcanic sediment sources.

Terrigenous sediment loads are received into the northern South China Sea (SCS)
annually, from the Red River (130 metric tons (Mt)) into the northwest, Pearl River (69 Mt)
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into the north, rivers in Taiwan (187.5Mt) into the northeast, and some rivers on Luzon
Island (>8.2 Mt) into the east [5,17]. However, the detrital sediments in the region have an
unknown provenance due to this complexity in the source of the detrital sediments and
circulation patterns in the northern SCS. In previous studies, especially in the northeastern
region of the SCS, the Pearl River and volcanoes were considered as the primary sedi-
mentary sources [18–21]. Nevertheless, recent investigations on elemental geochemistry
and clay mineralogy have focused on three major origins: Taiwan, the Pearl River, and
Luzon, where the contribution to the northern slope of the SCS was semi-quantitatively
assessed [22,23].

A number of sedimentological and geochemical approaches have been used to analyze
of the source of SCS sediments, such as measurements of grain size distribution [24–26],
the occurrence of clay and heavy minerals (e.g., [5,22,23,27]) strontium and neodymium
isotopes (e.g., [10,28,29]), and major and trace element geochemistry [5].

The SCS is a semi-enclosed basin and known as one of the largest marginal seas in
the world, and is located between the Pacific Ocean and the Asian continent. Previous
studies mainly focused on the northeastern region of the SCS, due to the complexity of
the origin of detrital sediment in the SCS, the interaction and patterns of sea surface
currents in combination with the East Asian monsoon winds, and the subsurface intrusion
of Kuroshio and deep waters through the Luzon Strait from the western Pacific [22,30–32].
There is a lack of studies on the provenance and geochemistry of sediments on the Xisha
Uplift. The aim of this study is to adequatelycorrelate the distribution characteristics of
the clay minerals, major elements, and element geochemistry of surface sediment with
the relationships between provenance and the sediment transportation in the Xisha Uplift,
southwestern SCS.

2. Geological Setting

The study area is located in the southwestern Xisha Uplift between the Guangle
Uplift and Zhongjian Island, northern SCS (Figure 1), where the water depth ranges from
800–1300m. The evolution of the sedimentary filling can be categorized into the Eocene–
Oligocene rift and a Neocene–Quaternary post-rift subsidence. The deposition of the
total thickness of the sedimentary layers occurred during the Eocene–Oligocene rift stage,
which could be the major high-quality source rocks in this study area. The Neocene–
Quaternary post-rift subsidence stage can be further categorized into thermal subsidence
and accelerated subsidence sub-stages. The study is characterized by high sedimentation
rates (up to 1.2 mm/yr) and high geothermal gradients (39–41 ◦C/km) [33–35]. A high
percentage of the pockmarks within the study area are classified as mega pockmarks
(1000–2500 min diameter and 60–140 min depth). The distribution of these pockmarks is
linked with the underlying fluid migration structures, such as gas chimneys, polygonal
faults, faults, unconformities, and paleo-channels [36] Moreover, the phase boundaries
between free gas and solid gas hydrate for this area have been described with the distinct
bottom-simulating reflectors (BSRs) [37]. Furthermore, compelling evidence on gas hydrate
dissociation, such as decreased chlorinity and increased pore water δ18O, has been reported
(in core C14) in the pockmark field [38,39]. Meanwhile, high geothermal gradients in the
region accelerated the maturity of the source rock, and drifted towards the seabed, which
refers to the composition change of the sediments.
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Figure 1. Map of the study area and sampling sites (modified from Sun et al., 2011).

3. Materials and Methods

A total number of 8 surface sediment samples were collected using a box sampler
from the southwestern region of the Xisha Uplift, northern region of SCS, cruised by the
South China Sea Institute of Oceanology, CAS on the Shiyan-1 in May 2012. The samples
were collected either from or near the giant pockmarks in the southern region of the
Qiongdongnan (QDN) basin (details are shown in Figure 1). The characterization of the
sediments was done by grayish-green foraminiferous silty clay.

The X-ray powder diffraction (XRD) method was used for the measurement of the
mineralogical composition in the bulk sediments. For each sample, 5 g of sediment sample
were taken and oven-dried for 24 h at 45 ◦C, and ground to ≤200 mesh size in an agate
mortar. For the XRD analysis, approximately 1 g of powder was used. The results were
semi-quantitatively elucidated using Jade 6.0 software, based on the relationships between
the mineral diffraction peak heights and integral area.

Precisely weighed 4g of powder were subsequently added into the center of a poly-
oxyethylene abrasive apparatus and made into circular samples (4 cm diameter and 8 mm
thickness) with the apparatus pressurized for 20 s at 30 tm−2 pressure. Major oxides
and a few trace elements were determined by a Philips Panalytical Magix PW2403 X-ray
fluorescence (XRF) spectrometer (Holland) at standard room temperature and pressure
(approximately 20 ◦C, 85 kPa).

Carbonate and organic matter were removed using 10% H2O2 and 0.5N HCl, respec-
tively. Then clay minerals (<2 µm) were separated into 1000 mL glassware, according to
Stoke’s settling velocity principle [40]. XRD runs were performed three times, followed
by air-drying, ethylene glycol (55 ◦C for 9 h), and heating at 550 ◦C for 2 h. Based on
Liu et al. [5], clay mineral abundances were semi-quantitatively calculated.

The Axios X-ray fluorescence spectrometer (XRF) was used for measuring of the
percentages of the major elements, including Al2O3, SiO2, Fe2O3, MgO, CaO, K2O, MnO,
Na2O, P2O5, and TiO2. Loss on ignition (LOI) was determined by referring to a method
proposed by Heiri et al. [41].

Normalization of the concentration of selected elements was done by considering
the standard concentration of elements in the upper continental crust (UCC; [42,43]). The
chemical index of alteration (CIA) was used for the estimation of the intensity of chemical
weathering [44]:
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CIA = Al2O3/ (Al2O3 + Na2O + K2O + CaO∗) × 100

where CaO∗ is only found in silicates.
In this study, there were two correction methods used, because precise correction

of CaO bound in carbonate and phosphate minerals is difficult [45]. The CIA index was
calculated from chemical analyses following acid treatment to remove carbonates and
phosphates.

4. Results
4.1. Principal Mineral Composition in Surface Sediments/Mineralogy

The studied samples were mostly silt, with abundant foraminifera. XRD analysis
of bulk sediment revealed that minerals, including clay minerals (34.8–42.9%), calcite
(20.2–24.1%), quartz (15.9–18.4%), minor plagioclase, dolomite, siderite and pyroxene,
pyrite, gypsum, anhydrite, k-feldspar, and amphiboles were also detected in the samples
(Figure 2, Table 1).
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Figure 2. X-ray diffraction diagram of surface sediments in the Xisha Uplift (s9). M: muscovite, Il:
illite, Cli: clinopyroxenite, Gy: gypsum, Q: quartz, C: calcite, Sid: siderite, Dolo: dolomite, Ha: halite,
Py: pyrite.

Table 1. Mineralogical assemblages in bulk sediments of the southwestern Xisha Uplift, South China Sea (SCS).

Samples Water Depth Quartz K-Feldspar Plagioclase Calcite Dolomite Siderite Pyrite Amphiboles

s10 854 17.2 0.7 5 24.1 4 4.8 1.1 0.2
s11 806 18.4 2.4 5.1 23.2 2.6 1.3 0.5
s15 918 15.9 0.5 4 22.4 7.3 6.1
s18 999 16 0.5 4.6 21.3 7.4 5.8 1 0.3
s13 864 16.9 0.3 4.4 23.4 7.2 5.7
s9 811 17.5 0.6 5.2 23.6 4 1.3 0.8 0.3

s19 1099 16.2 0.6 4.4 20.2 5.6 5.5 0.8 0.2
s20 1307 18 0.8 5 20.2 4.3 1.5 1.5

Samples Water Depth Gypsum Anhydrite Pyroxene Clay minerals Smectite Illite Kaolinite Chlorite

s10 854 2.6 3.8 36.5 33 36 12 19
s11 806 0.2 2 3.5 40.8 32 37 13 18
s15 918 3.6 3.9 36.3 24 41 13 22
s18 999 2.6 3.3 37.2 23 40 16 21
s13 864 0.1 3.3 3.9 34.8 38 34 11 17
s9 811 0.1 2.7 4 39.9 42 37 9 12

s19 1099 2.9 3.9 39.7 44 29 11 16
s20 1307 2.2 3.6 42.9 41 28 15 16
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Clay minerals in sediments carried by rivers and small mountainous rivers comprised
~80% of total SCS surface sediments [46,47]. Biogenic carbonates with negligible biogenic
silicates and volcanic materials are primarily observed as other components of the sedi-
ments. In this study, the clay mineral components of eight samples are characterized by
moderate smectite (24–44%, average 35%) and illite (29–40%, average 35%), with a lesser
abundance of chlorite (16–22%, average 18%) and kaolinite (8–16%, average 13%) (Table 1;
Figure 3).
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4.2. Geochemistry

The composition of the major elements in the bulk sediments are characterized by
high SiO2, CaO, and Al2O3 (total average content is 66%) and low K2O, Fe2O3, Na2O, MgO,
P2O5, TiO2, and MnO (total average content is 11%) (Table 2). Major elements increase
when SiO2 increases, however, Ca decreases with SiO2, except for Na and Mn (Figure 3).
Xisha sediments enriched in CaO and depleted in Si, Na, Al, Fe, Mg, and K correspond to
the UCC standard.

Table 2. Major element composition (%) and chemical index of alteration (CIA) of surface sediment
samples in the southwestern Xisha Uplift, SCS.

TFe2O3 K2O MgO MnO Na2O P2O5 SiO2 TiO2 Al2O3 CaO LOI CIA

s9 4.24 2.08 1.95 0.35 2.27 0.13 37.29 0.52 11.49 18.08 21.25 54
s10 4.06 1.97 1.90 0.12 2.47 0.12 35.02 0.48 10.65 20.26 22.97 51
s11 2.91 1.33 1.37 0.22 1.83 0.09 23.51 0.32 7.24 31.61 29.94 49
s13 4.15 2.02 1.96 0.09 2.53 0.12 36.71 0.51 10.81 18.91 22.51 51
s15 4.41 2.14 2.09 0.17 2.86 0.13 39.16 0.55 11.58 16.48 20.71 50
s18 3.49 1.75 1.73 0.29 2.52 0.11 29.85 0.41 9.41 24.45 26.37 48
s19 4.33 2.17 1.97 1.04 1.95 0.13 37.96 0.52 11.81 16.78 20.71 57
s20 4.86 2.46 2.29 0.96 2.97 0.13 44.34 0.62 13.32 10.91 17.41 52

5. Discussion
5.1. Sediment Provenance

Previous studies have indicated that different sediment sources may originate different
clay minerals in the SCS. Terrigenous sediments transported to the northern SCS, through
by fluvial input from southern China, and loaded by the large Pearl River and Taiwan and
Luzon Islands via small mountainous rivers [5,21,23,24,48]. Smectite in marine sediments,
related to volcanic materials, volcanic activity, or the alteration of volcanic materials by
hydrothermal, weathering, or halmyrotic processes [21,49,50]. There are three areas with
high smectite content, considered as significant sources in the SCS. The first is around the
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Philippines (west of Luzon Island), where 15–50% account for volcanic materials in the silt
fraction of sediments [4]. The second area is the east of the Indochina Peninsula, where
smectite originates from the Mekong Basin [51] and/or the Red River [52]. The third area
is adjacent to the Wan’an Shoal, enriched with volcanic glass [53]. In the surface sediments
of the studied area, smectite is the dominant clay minerals, with the average contents of
34%, which means the three high-smectite sources are possible.

Illite and chlorite in marine sediments are some major components which are derived
from the continent [48].The six predominant areas of high illite content in the SCS may be
the possible sources for the Xisha Uplift: rivers in Taiwan (48–66%, average 56%), Pearl
River (21–51%, average 35%), Red River (31–58%, average 44%), Mekong River (33–42%,
average 37%), north Borneo (44–75%, 56%) and north Palawan (38–52%, average 42%) [27].

The formation of kaolinite is mainly considered in tropical conditions from well-
developed ferrallitic soils in a plain environment with active hydrolysis processes [54,55].
The Pearl River, Hainan Island, and the southern Sunda Shelf are the kaolinite-rich ar-
eas. Liu [1] analyzed the drainage basin surface sediments of the Pearl River, the results
indicated that kaolinite is common in clay mineral assemblages, while chlorite and illite
are less abundant, and smectite is scarce. Possible sources for kaolinite and smectite on
the Indonesian and Malaysian islands are abundant andesitic volcanic rocks and older
granitic intrusives [48,56–58]. Sediments from the Taiwanese rivers primarily consist of
illite and cholorite, with scarce smectite and kaolinite [5]. According to previous studies,
the Taiwan-sourced sediments can be transported westward via the Kuroshio Current
along the northern slope [58].

Luzon sediments, which are combined with weathering of volcanic materials, are
generally characterized by a high percent value (average 46%) of smectite, which gener-
ally transports to the northwest of the island via the Kuroshio Current. Taiwan-sourced
sediments are characterized by high percentages of illite (69%) and chlorite (30%) due to a
relatively higher rate of physical weathering and relatively moderate chemical weathering
processes [59] and, moreover, sediments which are characterized by a high percentage
value of kaolinite in the Pearl River [1].

We carried out a cluster analysis and developed a ternary diagram of smectite–
(illite+chlorite)–kaolinite in the studied area and the adjacent regions, to better constrain
the provenance of clay minerals sampled from the Xisha Uplift. The distributions of the
clay mineral assemblages in the surface sediments of the Xisha Uplift are shown in Figure 4.
Clay minerals in the sediments plotted and fell between the data from the Luzon River
and the Mekong River. Further, the clay mineral assemblages showed higher smectite and
illite values. Results of the data show that the clay mineral components acquired greater
contributions from the Red River and rivers in Taiwan than from the Pearl River. Therefore,
illite is primarily supplied to this region by the Red River and rivers in Taiwan, however,
the study should extend towards a further analysis in the future.
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Data of Taiwan rivers [22] and Pearl, Red, and Mekong Rivers [1], Luzon rivers [52],
north Borneo rivers [58], and Hainan rivers [27] are plotted for comparison.

Recent studies indicated that weathered materials of both the Mekong and Red Rivers
are directly involved in forming illite in the southwestern Xisha Uplift sediments, and
smectite is primarily derived from the Luzon River [22]. Similar trends of the variation can
be seen in analogous minerals like illite and chlorite and these are depleted in correlation
with smectite composition (Figure 5), suggesting that the Red River and Mekong River
are not the principal source of illite and chlorite. We concluded that the illite originates
primarily from Taiwan.
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5.2. Quantifying Weathering Intensity in the Xisha Uplift

Clay minerals appeared as the weathered products of parent rocks on the Earth’s
surface. The composition of the clay minerals provide important information regard-
ing weathering types and intensity, which are primarily determined by various climatic
conditions (rainfall, temperature), rock composition, and tectonic activities [54,57,60–64].
Chemical weathering through the hydrolysis of minerals alters the parent rock composition.
This process involves the production of typical weathering products like kaolinite and
smectite. Generally, kaolinite is found in monosialitic soils, which are characterized by the
complete removal of mobile cations and an extreme hydrolysis process. Furthermore, this
is primarily controlled by the continental hydrolysis of the parent aluminosilicate rocks in
warm and humid climatic conditions [60]. Kaolinite is abundant around the Pearl River,
the Malay Peninsula, and Hainan [27,58,63], which suggested a warm and humid climate.
Smectite is conventionally related to the chemical weathering of volcanic rocks under hot
and humid climatic conditions [65,66]. A rapid rate of volcanic rock weathering is often
associated with a high abundance of smectite, which easily forms on basic materials, such
as Fe-Mg species [60]. For instance, volcanic rocks are predominant in Luzon and in the
Mekong River areas with abundant smectite. Both illite and chlorite are primary minerals,
which are strongly correlated with the physical erosion of bedrocks, with relatively dry
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and cold climatic conditions. To identify and evaluate the weathering intensity, we use
the CIA and the elemental ratios calculated with respect to the least mobile element Al,
which according to the mobile elements (e.g., K, Na, and Ca), was depleted in the parent
rocks, but the least mobile elements (e.g., Al, Fe, and Ti) were enriched in the weathering
products during chemical weathering [44].

The sediments are derived from heterogeneous sources, and the state of chemical
weathering of the rocks is quantified by the CIA values with reference to the loss of
mobile elements, such as Na, Ca, and K. The results demonstrate that CIA values for bulk
sediments are 48–57, which indicates low chemical weathering intensity, compared with
the terrestrial materials from the South China coast. Comparing previously published CIA
values with this study showed that chemical weathering occurred at the same intensity.

Here, the elemental ratios were calculated with respect to Al, and used to identify
and assess the mobility of major elements. The content ratio of element X and Al2O3 in
river samples divided by the ratio of the elemental content of UCC provides the following
elemental ratio [67]: elemental ratio (X) = (X/Al2O3)rivers/(X/Al2O3)UCC. Hence, the
elemental ratio indicates the relative enrichment or depletion of the element, i.e., >1
indicates enrichment, <1 indicates depletion, and 1 indicates no change in the relative
abundance of the element. The elemental ratios calculated from average major element
concentrations normalized to UCC are shown in Figure 6.
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With the predominance of smectite clay minerals are formed by chemical weathering,
which is carried out by the leaching of Na and K and later of Fe and Mn. The combination
of both results of the CIA and elemental ratios showed a low–moderate degree of chemical
weathering of surface sediments in all analyzed sections of the Xisha Uplift.

5.3. Transport Mechanism of Clay Minerals in the Northern SCS

Recent research works focused on the clay minerals of surface sediments and core
sediments to discover the sources, transport pathways, and paleo-environmental condi-
tions (e.g., [4,20–23,26,55,68–73]). The dispersal and transport mechanisms of the clay
minerals were deduced from the provenance supply and ocean circulation patterns. Most
ocean circulation studies indicated that sediment transport in the SCS is controlled by
both the surface and deep water currents (DWC) [27,48]. For this study, the distribution
of clay minerals is closely related with the current patterns. The relatively high smectite
contents prevail in the Xisha Uplift, highly correlated with the flow shift from the west-
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ward SCS Kuroshio branch to the northeastward SCS warm current [27], which generates
numerous mesoscale westward propagating eddies to transport the smectite from the
Luzon Strait westward to the Xisha Uplift, before the deposition on the slope and outer
shelf [63].Therefore, the surface currents may be primarily involved in the transportation
of smectite. The high illite and chlorite content in the Xisha Uplift indicates the provenance
from the Red River, the Mekong River, and rivers in Taiwan. The illite content in both
Red and Mekong Rivers is higher or equal to that in the Xisha Uplift [1]. Moreover, in the
Red and Mekong River basins, humid and cold climatic conditions increase the physical
erosion and decrease the hydrolytic weathering processes of metamorphic and granitic
parent rocks. This weathering process is associated with the production of a high illite
content [1]. The high physical weathering rate in Taiwan is consistent with the present illite
chemistry index and illite crystallinity data with complete Fe–Mg-rich illite.

6. Conclusions

Surface sediments from the Xisha Uplift in the SCS were measured for clay minerals,
primary elements and minerals for tracing sediment provenances, weathering intensity,
and transport. Our results emphasize that the clay mineral assemblages of the study areas
primarily consist of smectite (24–44%, average 35%) and illite (29–40%, average 35%), with
a lesser abundance of chlorite (16–22%, average 18%) and scarce kaolinite (8–16%, average
13%). In conclusion, sediments in the study areas are derived primarily from large rivers
in the northern SCS (the Mekong and Red Rivers and Luzon River). We suggest that the
DWC and surface monsoon circulation are the primary transport dynamics for sediments
in the Xisha Uplift by combining the clay mineral compositions of the surrounding basins
and surface sediments in the northern SCS.
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