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Abstract: During the past 25 ka, southern Ethiopia has undergone tremendous climatic changes,
from dry and relatively cold during the Last Glacial Maximum (LGM, 25–18 ka) to the African
Humid Period (AHP, 15–5 ka), and back to present-day dry conditions. As a contribution to better
understand the effects of climate change on vegetation and lakes, we here present a new Predictive
Vegetation Model that is linked with a Lake Balance Model and available vegetation-proxy records
from southern Ethiopia including a new phytolith record from the Chew Bahir basin. We constructed
a detailed paleo-landcover map of southern Ethiopia during the LGM, AHP (with and without
influence of the Congo Air Boundary) and the modern-day potential natural landcover. Compared
to today, we observe a 15–20% reduction in moisture availability during the LGM with widespread
open landscapes and only few remaining forest refugia. We identify 25–40% increased moisture
availability during the AHP with prevailing forests in the mid-altitudes and indications that modern
anthropogenic landcover change has affected the water balance. In comparison with existing archae-
ological records, we find that human occupations tend to correspond with open landscapes during
the late Pleistocene and Holocene in southern Ethiopia.

Keywords: predictive vegetation model; boosted regression trees; lake balance model; East African
rift system; Ethiopia; Chew Bahir; phytoliths; African humid period; last glacial maximum
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1. Introduction

The formation of the East African Rift System (EARS) led to large topographical
contrasts in southern Ethiopia [1] and is thus responsible for an extreme precipitation
gradient between the dry lowlands of the Omo-Turkana and Chew Bahir basins and the
moist Southwestern Ethiopian Highlands [2] (Figure 1). Due to this topography and its
position within the global atmospheric circulation system, the prevailing vegetation is
partitioned into a complex mosaic of forests, bushlands and grasslands [3]. In the past
several centuries, intensified agriculture, de- and reforestation pronouncedly reorganised
the biosphere in Ethiopia [3]. Such human induced landcover change may have affected
ecosystem climatic boundary conditions with subsequent effects on the hydrosphere and
potential consequences for the local economy and food security.
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Figure 1. Overview of the study area with sites mentioned in the text, investigated lakes, overflow dynamics and modern-
day potential vegetation. (A) Catchment of the Omo River, lakes Abaya and Chamo and paleo-lake Chew Bahir with lake’s
overflow locations. Hill-shaded potential vegetation is based on Friis, et al. [3]. (B) Legend of potential vegetation arranged
by altitude with (a to c) monthly temperature means in ◦C and precipitation in mm per month (IRI, last accessed 12/2020).
The locations of the photographs of representative vegetation regimes (d to g, photos from Annett Junginger) are marked on
the catchment map. (C) Cross-section from Lake Abaya to Lake Turkana showing the overflow direction and lake ladder
with their prevailing potential vegetation (numbers correspond to the potential vegetation types marked on A and B).

Highly variable water availability in the EARS during the Pleistocene and Holocene
must have caused a significant reorganization-pressure on plant habitats and subsequent
adaptation of habitat preferences of early humans [4,5]. During the past 25,000 calibrated
years before present (herein ka), the region has been characterized by high amplitude
climatic change, including the drier and colder episode during the Last Glacial Maximum
(LGM, 25–18 ka) [6,7], the African Humid Period (AHP, 15–5 ka) [8,9] and present-day dry
conditions. These climatic fluctuations caused tremendous changes in lake water levels in
eastern Africa [10–13], river flow [8,14] and vegetation composition and patterns [15–18].
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The human preference for certain landscape types remains a recurring question. Ac-
cording to the savanna hypothesis [19,20], humans originated within a savanna landscape,
and the perception of the savanna as an ideal habitat was evolutionarily imprinted onto
humans [21]. Another hypothesis by Tveit, et al. [22] resulted in a more variable notion
about human landscape preferences. The archaeological record shows that over time,
humans lived in a wide range of landscapes.

Forested and humid landscapes were supposedly preferred habitats in Tiemassas in
western Africa 44 ka [23]. In eastern Africa at Panga ya Saidi, humans lived in a forest-
grassland landscape at the coast during the transition from the Middle to the Later Stone
Age around 67 ka [24–26]. Other studies indicate that humans survived in a grassland
environment along the shores of Lake Victoria during the Late Pleistocene Middle Stone
Age 40–60 ka [27] and, at 105 ka, they lived in a relatively humid Kalahari far away from
the coast [28]. It has been shown that humans were able to adapt to alpine conditions with
gallery forests in small valleys and collected raw materials along mountain glaciers above
4000 m a.s.l. at Fincha Habera, Ethiopia from 47 to 31 ka [29]. On top of the Dendi caldera,
Ethiopia (3000 m a.s.l) humans created handaxes [30]. Thus, based on the Upper Pleistocene
and Holocene archaeological record, humans seem not to have shown a preference for a
specific single landscape type, but rather occupied complex landscapes and developed
flexible strategies to respond to a transforming environment [4,5,31,32]. For southern
Ethiopia, a comparison of occupation frequencies between the lowlands and hypothesised
refuge areas in, e.g., the SW Ethiopian Highlands suggested that during short-term dry
spells puncturing the AHP the humid highlands could have been the sink area for vertical
migration of highly mobile hunter-gatherer groups [33]. However, paleo-vegetation and
paleoclimatic data covering the entire southern Ethiopian region, particularly during the
LGM, the AHP and the late Holocene are scarce, yet they play a key part in understanding
the potential constraints of natural resources for humans.

In an effort to address this lack of environmental context Fischer, et al. [10] have
recently developed a Lake Balance Model (LBM) to reconstruct paleo-lake Chew Bahir’s
response to moisture changes during the AHP. The LBM identified the importance of tem-
porarily interconnected lake catchments during major humid periods. The LBM suggested
a precipitation increase of +6.5% to compensate for increased open water evaporation.
Furthermore, an additional +7% increase was calculated to account for the increased ET on
land due to a change in rainfall seasonality. Some studies suggest that increased precipita-
tion during the AHP in the EARS was due to an eastward-shift of the Congo Air Boundary
(CAB) [34,35]. However, the magnitude of vegetation changes was not a well-constrained
parameter in our LBM, due to the lack of reliable information on regional vegetation.
Instead, Fischer, et al. [10] used estimations from a Kenyan LBM study, that suggested
an +7–15% precipitation increase to compensate for the biosphere-hydrosphere feedback
during the AHP [36]. Hence, the LBM reconstructs a total precipitation increase of +20 to
30% during the AHP to explain maximum observed lake levels for paleo-lake Chew Bahir.

Since specific information about the paleo-vegetation and its effect on the hydrosphere
is missing for southern Ethiopia, we present here the results of a Predictive Habitat or
Predictive Vegetation Modelling (PVM). PVM is a common approach used to understand
habitat suitability and possible habitat shifts due to changes in the environmental conditions
(predictors) such as elevation and precipitation [37–39]. PVMs are widely used to model
the impact of modern-day climate change on landcover and vegetation. If there is a strong
relationship between the environmental predictors and the vegetation, the models can
be used to forecast future scenarios using projected data. For this purpose, numerous
techniques have been proposed in the past such as Generalized Linear Models [37,40],
Generalized Additive Models [40,41], Bioclimatic Envelopes [42] and Bayesian statistics [43].
Recently, machine learning approaches have been used more frequently in this research
field, such as Support Vector Machines [44,45], Neural Networks [46], Random Forest [45]
and Boosted Regression Trees (BRT), also called Stochastic Gradient Boosting [37,45,47,48].
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In order to understand the effect of the precipitation and the temperature on the paleo
vegetation and subsequently the paleo-hydrosphere during the climatic extremes of the
past 25 ka and to provide a profound discussion about human landscape preferences in
southern Ethiopia, we link a PVM (based on BRTs) with the previously established LBM by
Fischer, et al. [10]. BRTs combine the strength of regression or classification trees with the
boosting algorithm to combine multiple weak models for improved predictive performance.
BRTs work for different predictor variables with different scales and are robust against
outliers [47]. The resulting model is subsequently tested using a new phytolith proxy
record from the Chew Bahir basin. The combination provides independent catchment-
scale estimates of paleo-precipitation during the LGM and the AHP, as well as detailed
maps of the prevailing vegetation mosaic covering the orographic gradient of the EARS in
southern Ethiopia.

2. Regional Setting
2.1. Geology, Hydrology and Climate

The 115,613 km2 study area covers the southwestern Ethiopian highlands, which
is the source region of the Omo River and the catchment of lakes Abaya, Chamo and
paleo-lake Chew Bahir (Figure 1). The Omo River is the main tributary of Lake Turkana
with a catchment of 75,000 km2. Lake Turkana and paleo-lake Chew Bahir (20,650 km2) are
both part of the Broadly Rifted Zone (BRZ) with rift floor elevations of ~500 m a.s.l. The
Lake Abaya catchment (16,200 km2) and the Lake Chamo catchment (1800 km2) are part
of the Southern Main Ethiopian Rift. Lake Abaya and Lake Chamo are located at around
1000 m a.s.l. [10]. The southwestern Ethiopian highlands consists of 500 to 1500 m thick
(up to 3000 m thick in places) basalts and intercalated silicic volcanics of Eocene to Late
Oligocene age [1,49]. The rift floor between the Ethiopian and Somalian Plateaus is filled
with Late Miocene to Quaternary sediments. In the Broadly Rifted Zone, Precambrian
basement is exposed at the rift shoulders, particularly at the Hammar range.

During major humid periods, such as the AHP, a cascading lake system developed,
with Lake Abaya (+18 m) and Lake Chamo (+14 m), overspilling into paleo-lake Chew Bahir
(+45 m; 2500 km2), which in turn was overspilling into Lake Turkana [10]. Despite increased
moisture availability during the AHP, intense lake level fluctuations have been recorded.
Since the recent past, paleo-lake Chew Bahir is a desiccated playa with a seasonally flooded
wetland [11]. Lake Turkana is the world’s largest permanent desert lake with a modern-day
extent of 7000 km2 and a catchment area of 148,000 km2 [12,50]. During the AHP, the Lake
Turkana water table was +100 m higher due to increased precipitation and inflow from
paleo-lake Chew Bahir (and lakes Abaya and Chamo) as well as lakes Nakuru-Elementeita,
Baringo-Bogoria and Suguta from the Kenyan plateau [13].

Today’s climate in the BRZ lowlands of paleo-lake Chew Bahir and Lake Turkana
can be classified as hot semiarid (Koeppen climate classification), with precipitation (P)
below evapotranspiration (ET). In contrast, the majority of the southwestern Ethiopian
highlands and the catchments of lakes Abaya and Chamo receive higher P with a bi-modal
precipitation pattern, despite intervening intense dry seasons. The most elevated parts are
humid with P > ET and a unimodal P pattern of up to 2000 mm per year [51].

2.2. Vegetation

The prevailing vegetation is a complex mosaic with desert shrubland along Lake
Turkana’s shore, woodlands and wooded grasslands in the Omo River lowlands and the
paleo-lake Chew Bahir catchment, afro-montane forests of the Ethiopian highlands, and
afro-alpine vegetation in most elevated parts (Figure 1) [3,52]. Friis, et al. [3] summarized
and mapped distinguishable vegetation classes based on characteristic species in the “Atlas
of the potential vegetation in Ethiopia” as follows:

The desert and semi-desert shrubland in Ethiopia, according to Friis, et al. [3], is
located below 400 m a.s.l. and characterized as scarcely vegetated with highly drought
tolerant species such as Poaceae (grasses) with mainly Dactyloctenium aegyptium, and rela-
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tively fewer perennials, such as Panicum turgidum. The Acacia-Commiphora woodland and
bushland covers vast parts of the dry lowlands in eastern and southern Ethiopia and is
located between 400 to 900 and 1600 to 1900 m a.s.l. with a high physiognomical diversity.
It overlaps with the desert and semi-desert shrubland, as well as the Combretum-Terminalia
woodland and wooded grassland. Species within the Acacia-Commiphora unit are typically
drought resistant trees and shrubs with, either deciduous or small, evergreen leaves. The
western boundary of the Combretum-Terminalia unit is not sharply defined, due to the
shift from a bimodal to primarily unimodal precipitation pattern. Partly, on steep slopes
and areas with tall grasses on deep, loamy soils, fire regimes lead to the dominance of
Combretum-Terminalia, whereas flat and sandy soils are dominated by Acacia-Commiphora.
Typical for the Combretum-Terminalia strata are small to moderate trees with rather large
deciduous leaves of the name inherent genera Combretum and Terminalia. The ground layer
is comprised of dense grass vegetation, primarily from the genera Hyparrhenia, Panicum
and Pennisetum, and productivity (biomass) is strongly correlated with the seasonality of
precipitation [3]. This Combretum-Terminalia vegetation unit is dominant in the lowlands of
western Ethiopia and penetrates into the Ethiopian highlands through the river valleys.
The elevational range of this unit is 400 to 1800 m a.s.l. [3].

Currently, the dry evergreen afro-montane forest and grassland between 1800 and
up to 3000 m a.s.l. is a complex mosaic due to agricultural intensification since the late
Holocene that led to soil erosion and various succession stages from grasslands to forests.
Juniperus procera and Podocarpus falcatus are characteristic, while Podocarpus falcatus is also
present in the drier parts of the moist evergreen afro-montane forest. Pouteria adolfi-friederici
is typical of the moist forests, which are closed forests with tree heights up to 30–40 m,
separated from dry forests by a mean annual precipitation >700 mm per year. This unit
ranges from 1500 to 3000 m a.s.l. The Ericaceous belt is a common high-elevation vegetation
type throughout eastern Africa and ranges from 3000 to 3200 m a.s.l., with local variations.
The afro-alpine vegetation unit, characterised by the giant herb Lobelia rhynchopetalum,
covers the highest elevations of Ethiopia [3,53].

The aquatic vegetation unit is separated into freshwater and salt-water species. Below
1000 ppm dissolved salt, open freshwater Lemnaceae are typical. Floodplain and lake
shore vegetation is characteristically dominated by sedges of the genus Cyperus (primarily
C3 [54]), and the characteristic grass species Leersia hexandra (C3) and Panicum hygrocharis
(C3 C3/C4 [55]). The salt-lake vegetation unit is highly dependent on salinity and mostly
characterized by salt tolerant taxa Suaeda monoica, Atriplex spp. and Salicornia spp. [3].

2.3. Overview of Archaeological Records of the Last 25 ka in Ethiopia

At several archaeological sites in Ethiopia, cultural sequences end just before the Last
Glacial Maximum and continue after a distinct hiatus starting around 14 ka or even later in
the Holocene. No human activity is visible in the cultural stratigraphy of Goda Buticha
from ~25–8 ka [56–58]. In the stratigraphy of Mochena Borago, a gap in human activity is
reported from ~36–10 ka [33,59,60]. Combining the different sites in the Ziway-Shala Basin,
it appears that humans were not active in the area from ~22–14 ka [33,61]. The youngest
date at Fincha Habera is ~31 ka [29]. The youngest radiocarbon dates from Porc Epic
are ~35 ka [62,63]. All these archaeological records point towards the absence of human
activities at the investigated sites during the LGM [57,64].

In addition to the absence of humans, other scenarios might have caused this gap,
such as erosion of sediments with artefacts and research bias [56,65]. Indications for such
bias come from Sodicho Cave 40 km away from Mochena Borago [64]. Here, the lowermost
cultural layers are dated to ~27–15 ka before a gap occurs that corresponds to the AHP [64].
After the AHP, indications for human activity starts again at ~4.8 ka [64]. So far, only
Sodicho Cave indicates human activity in southern Ethiopia during the LGM [64].

Signs of human activity during the AHP remain, however, scarce in southern Ethiopia.
The age-depth model from Sodicho Cave and manganese concentrations indicate a decline
of human activities at ~15 ka [64]. Younger radiocarbon dates at 13.5 ka stem from sieve



Geosciences 2021, 11, 418 6 of 31

finds and were therefore not included in the age-depth model [64]. The only other site
with a similar age in the study area so far is the Harurona Cave record, dated to 14 ka [66].
Outside of the study area, human activity at Aladi Springs is dated to around 13 ka [67,68],
at Laga Oda to ~12 ka [69] and at the Ziway-Shala sites to ~14 ka, ~13 ka and ~11 ka [61].
Another possible gap at Ziway-Shala corresponds to the Younger Dryas that also marks
the end of the Pleistocene and the beginning of the Holocene [11,33,61]. Other Ethiopian
sites with archaeological records originating from the beginning of the Holocene are Baahti
Nebait [70] and Dibé Rockshelter, both dated to 11 ka [71]. During the later stages of the
AHP, human activity is dated to ~10 ka at Mochena Borago [60]. Examples are three caves
in the Gamo highlands [72] and six caves or rockshelters in the Kaffa region [73] (Figure 1).
The Dendi Lake Rockshelter is one example of humans using high-altitude landscapes
during the Middle and Late Holocene [74].

3. Materials and Methods

To understand the interrelation of precipitation and vegetation we developed a new
PVM in R (available at Github: https://github.com/MLFischer/Paleo-Vegetation-Model
(accessed 1 October 2021) and linked it to the previously published LBM of the southern
Main Ethiopian Rift [10]. The four major steps of this study are summarized in Figure 2.
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Figure 2. Summary of methods in this study. (A) Dataset collection: Modern Global Precipitation Measurement
(GPM), Shuttle Radar Topography Mission (SRTM) elevation data, Moderate Resolution Imaging Spectroradiometer
(MODIS) vegetation and landcover data. Dataset preparation included time series aggregation from 2001 to 2018 with
human influence masked using Open Street Maps, and Boosted Regression Tree model training. (B) Vegetation and LBM
link using precipitation as input to predict landcover, resulting surface parameters and ET based on [75], the resulting
lake balance of lakes Abaya, Chamo and paleo-lake Chew Bahir and, hence, the lake surface elevation of paleo-lake Chew
Bahir. (C) Three different environmental scenarios are applied in this study: Pre-Industrial time with modern-day climate,
reduced or eliminated human influence and to be modelled potential landcover, and AHP and LGM time based with major
assumption for this model. All three scenarios are visible in the Potassium record in the lacustrine sediments of paleo-lake
Chew Bahir [33]. (D) Comparison with global paleo reconstructions (macro scale) and catchment (small scale) proxy-based
reconstructions including the phytoliths from the current study.

https://github.com/MLFischer/Paleo-Vegetation-Model
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3.1. Training and Prediction Data

A multi-source and multi-annual (2001 to 2018) dataset of the Omo River and lakes
Abaya, Chamo and paleo-lake Chew Bahir catchments was created, containing modern-day
elevation of the Shuttle Radar Topography Mission (SRTM) [76], monthly precipitation
derived from Global Precipitation Measurement (GPM) [77], landcover (LC) [78] and
Vegetation Continuous Fields (VCF) [79], as well as the monthly Enhanced Vegetation
Index (EVI) [80] (Table 1). The input datasets were processed in R [81] with the packages
raster [82] and rgdal [83]. The boundary of the study area was determined by catchment
delineation in ArcGIS 10.4.1 using the SRTM elevation. To minimize the direct human
impact on the modern environmental parameters, Open Street Map [84] based streets,
buildings and industrial areas were delineated with a 500 m buffer to mask these areas
from further analysis. In addition, all areas represented by a LC property [85] that is neither
evergreen broadleaf forest (>60% woody cover, >2 m height), open shrubland (shrub cover
10–60%, <2 m height), savanna (forest cover 10–30%, >2 m height) nor grassland (tree
cover < 10%) in at least one of the years from 2001 to 2018 were excluded. To produce a
consistent LC dataset, the remaining multi-annual layers have been temporally aggregated
by applying a majority decision. The aggregation of the monthly EVI (vegetation greenness)
and the annual VCF (tree, non-tree and barren soil distribution) was achieved with an
arithmetic mean function. Out of the monthly EVI, the annual average EVI was calculated.
The average monthly precipitation from the years 2001 to 2018 was accessed and calculated
using the Giovanni online data system [86]. To link the spatial domain of these datasets,
all layers (bilinear resampling for continuous and natural neighbour for discrete data)
have been resampled to a spatial resolution of 926 m, which is the native resolution of the
EVI dataset. One raster-stack was created for training (data_tr) composed of elevation,
precipitation, LC and vegetation data, that was excluded using the Open Street Map and
LC mask. Another raster-stack of the entire study area for prediction (data_pr) was created,
containing the elevation and monthly precipitation only.

Table 1. Summary of input dataset.

Data Specification Temporal Resolution Spatial Resolution

Elevation Shuttle Radar Topography Mission - ~90 m
Precipitation Global Precipitation Measurement Monthly 0.1◦

Landcover MODIS, MCD12Q1, UMD Annual ~500 m
Greenness MODIS, MOD13A3, EVI Monthly ~1000 m

Vegetation Cover MODIS, MOD44B, VCF Annual ~250 m

3.2. Model Training and Validation

For the prediction of LC, VCF and annual EVI based on the elevation and monthly
precipitation, Boosted Regression Trees were used [37,47], which combine classification and
regression trees with the gradient boosting algorithm [87] using the R package gbm [88].
Individual models for each target were trained (LC-BRT, EVI-BRT and VCF-BRT) based
on the data_tr dataset. To predict LC, a multinomial loss function, a training fraction of
75%, a five-fold cross validation and a maximum of 1000 trees was chosen. Subsequently,
the bag fraction, the learning rate and the interaction depth were hyper-tuned and a
weighting coefficient were set to achieve the best multiclass ROC (Receiver Operating
Characteristic, R package pROC, [89]) and an optimized confusion matrix based on the R
package caret [90]. To avoid overfitting, we used the number of trees with the minimized
loss in the 25% validation fraction. To validate the model performance, we separately
calculated the confusion matrix and the resulting accuracy, Cohen’s Kappa and ROC for
wildlife reserves, national parks and controlled hunting areas within the study area and
further tested the model on protected areas outside of the study area (test dataset) using
the balanced accuracy for each class. To predict annual EVI, a Gaussian loss function and
a training fraction of 75% has been used. The model has been hyper-tuned in the same
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manner, but without the weighting coefficient, to optimize the resulting determination
coefficient between predicted and observed annual EVI. To predict VCF, separate models
were built for the tree cover (TC), non-tree cover (NTC) and non-vegetation cover (NVC)
and optimized the same way. For both EVI and VCF, the determination coefficient and
the average residuum of observation and prediction were calculated separately for each
protected area type.

3.3. Model Link and Scenarios

To reconstruct the biosphere-hydrosphere interaction from the LGM onwards, three
scenarios are defined to be modelled: (1) the hypothetical pre-industrial scenario (PI), with
the potential LC (reduced human influence) based on the same precipitation amount and
temperature as modern-day, (2a) the AHP with an increased precipitation amount that is
distributed equally as modern day, (2b) the AHP with an CAB-based precipitation increase,
assuming that the precipitation increase is happening between the months of June and
September, as the increased precipitation was due to an eastward-shift of the Congo Air
Boundary (CAB) [13,35] and (3) the LGM with a decreased temperature and a presumably
decreased precipitation amount.

To assess the effect of paleo-precipitation changes on paleo-vegetation for each sce-
nario, the central concept is to link this new PVM to the existing LBM from our precursor
study [10]. This model link is divided into three stages: The first one is to calculate the effect
of an expected range of precipitation change on the vegetation as compared to modern-day
precipitation and to compute the resulting vegetation distribution in the catchments of
lakes Abaya, Chamo and paleo-lake Chew Bahir. The second stage is the application of an
established parametrization approach [36,75,91] to calculate the resulting ET on land as a
function of the precipitation-vegetation distribution for each lake’s catchment, separately.
In the final, third stage, this precipitation-vegetation derived ET is used as input for the ex-
isting LBM of lakes Abaya, Chamo and paleo-lake Chew Bahir to model the new threshold
of appearance (AHP and AHP-CAB) and disappearance (LGM) of paleo-lake Chew Bahir.

3.3.1. Stage 1—Precipitation to Vegetation

For each scenario, the data_pr dataset and the LC-BRT were used to predict the
LC. For the PI scenario, the original data_pr dataset was utilised. The output of the
multinomial LC-BRT is applied to classify each datapoint according to its most likely
class. For the AHP scenario, the precipitation amount of each month and data point was
changed by multiplying it with the percentage of the precipitation change (e.g., 1.3 for
130% precipitation amount as compared to modern-day conditions) starting from 100
to 150% with increments of 1%. For each precipitation amount within each scenario,
the LC distribution in the catchments (Abaya, Chamo and Chew Bahir) is retained in a
scenario specific spreadsheet for the next analysis step. For the AHP-CAB scenario, the
absolute annual difference for each percentage change is calculated as an absolute value
for each datapoint and converted to a percentage change in the months from June to
September, covering the same precipitation range. For the LGM scenario, the significant
temperature difference from modern-day conditions is considered by using the GDGT
based temperature reconstructions [7,92]. For this purpose, the modern-day elevation (E)
was converted into an elevation equivalent (EE) using the modern-day lapse rate (MDLR)
over eastern Africa of −5.8 ◦C km−1, the LGM calculated lapse rate of −6.7 ◦C km−1 [7],
their difference of 0.9 ◦C km−1 (LRD) and a base cooling (BC) between 3 and 4 ◦C [92].
Afterwards, EE is calculated according to equation 1. With this EE, the paleo-vegetation
is predicted, covering the precipitation range from 50 to 100% with increments of 1%
compared to the modern-day amount. For the LGM LC-BRT model, a condition was added
to classify each datapoint as afro-alpine vegetation if the EE exceeds 3000 m a.s.l. [3]. For the
modern-day elevation and temperature gradient, the ratio of areas within the modelled area
that have elevations higher than this threshold is negligible. Based on Fischer, et al. [10],
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we here use the assumption of similar temperatures during the AHP as today to simplify
the approach.

EE = E + (LRD ∗ E + BC)/(MDLR) (1)

3.3.2. Stage 2—Vegetation to ET

A parametrization approach was applied to calculate ET by a vegetation-precipitation
dependent albedo, emissivity, soil moisture availability and surface drag coefficient [36,75,91].
The parameters have been calibrated meticulously (Table 2) to acquire the same results as
calculated by Fischer, et al. [10] and to account for the closed basin balanced water budget
for the modern-day vegetation coverage, maintaining the parameter gradients in between
the classes. ET calculation is based on the surface-drag coefficient, the wind speed, the
soil moisture availability, the gas constant for dry air, the surface and air temperatures,
the relative humidity and the saturation vapor pressure as a function of surface and
air temperature [10]. The resulting ET for the scenario specific precipitation-vegetation
distribution (AHP, AHP-CAB, LGM) has been calculated separately. Furthermore, the
average temperature decrease for each catchment and lake in the LGM scenario was
calculated based on the GDGT temperature reconstructions [7,92], which also resulted in
an updated lake evaporation for lakes Abaya, Chamo and paleo-lake Chew Bahir.

Table 2. Summary of input parameters used for each LC with UMD, name, albedo, emissivity, Soil
Moisture Availability (SMA) and roughness length (cm).

UMD Name Albedo Emissivity SMA Roughness
Length (cm)

0 Water Bodies 0.06 0.99 1 0.01
2 Evergreen Broadleaf Forest 0.07 0.96 0.5 50
6 Closed Shrubland 0.085 0.96 0.5 50
7 Open Shrubland 0.2 0.8 0.075 15
8 Woody Savanna 0.095 0.96 0.5 40
9 Savanna 0.13 0.96 0.18 25

10 Grassland 0.14 0.98 0.14 20
11 Permanent Wetland 0.055 1 0.8 0.01

12,14 Cropland 0.1 0.95 0.5 50
13 Urban or Built-Up 0.275 0.75 0.02 1
15 Non vegetated 0.25 0.75 0.02 1
16 Afro-alpine 0.125 0.97 0.5 27.5

3.3.3. Stage 3—ET to Lake Levels and Paleo-Precipitation

In the third stage, precipitation and the precipitation-dependent ET of each scenario
was used as input for the LBM. The model used a change in precipitation of 100 to 150% for
the AHP and AHP-CAB scenario and of 50 to 100% for the LGM (the upper and lower limit
are set generously to cover definitely the expected precipitation amount for each scenario).
For any amount of precipitation, the lake’s reaction was simulated over 500 years, which is
sufficient time for the system to reach its ET-precipitation equilibrium [10]. For simulation
of each scenario, we analysed the resulting equilibrium lake level of paleo-lake Chew Bahir,
the water fluxes between the catchments (Lake Abaya—Lake Chamo—paleo-lake Chew
Bahir—Lake Turkana) and the relative importance of the extended catchment (lakes Abaya
and Chamo) for the water balance of paleo-lake Chew Bahir. The precipitation threshold of
the transition of lake appearance (to go from “no lake” conditions to a “flooded basin”)
in the AHP and AHP-CAB scenario is used as a precipitation estimate for the final LC
prediction. The precipitation interval (comparison of 3 to 4 ◦C base cooling during LGM)
of lake disappearance (to go from “flooded basin” conditions to a “no lake”) is used as
precipitation estimate in the LGM scenario.



Geosciences 2021, 11, 418 10 of 31

3.3.4. Paleo-Vegetation Maps

Using the precipitation estimate from the prior step as input for the BRT model for
LC, VCF and EVI, the vegetation distribution (LC, VCF and EVI) for each scenario from
the LGM onwards until the modern-day conditions was modelled, presenting the most
likely spatial distribution of vegetation type and density.

3.4. Phytolith Proxy

To infer and test the modelling results with proxies of past vegetation, lacustrine
sediment samples covering the past 25 ka from the paleo-lake Chew Bahir basin CB-03
short-core were used [11,33,93,94]. Pollen is a well-known proxy for paleo-vegetation
reconstruction but are not preserved in the Chew Bahir lacustrine sediments. Instead, phy-
toliths were used to gain information about paleo-vegetation, as phytoliths are particularly
valuable for the identification of grass type composition [95]. Phytoliths are microscopic
opal silica infillings of plant cells [95,96]. With sheet-wash, fluvial or aeolian transport
distances typically up to 10 km from the sample (core) location, phytoliths reflect a mixed
signal of the landscape mosaic [95,97].

We analysed 27 samples using a wet-oxidation and heavy-liquid density separation
method described in Yost, et al. [95]. Phytoliths were identified using a modern compara-
tive collection from C. Yost and the descriptive phytolith references listed in Yost, et al. [95].
Phytoliths were classified according to the International Code for Phytolith Nomenclature
(ICPN 1.0; [98]) and only grass short-cell phytolith morphotypes were assigned to C4
mesophytic, C4 xerophytic and C3 grass functional type (GFT) categories for percentage
calculations following Table 1 from Yost, et al. [95] and the results of a modern phytoscape
approach from the adjacent Turkana Basin [99]. The Iph aridity index, also used to dis-
criminate short-grass xerophytic (Sahelian) savanna from tall-grass mesophytic (Sudanian)
savanna [100], was calculated as described in Bremond, et al. [101]. The 95% confidence
intervals in GFT percentages and Iph index values were calculated using the nonparametric
bootstrap resampling method described in Yost, et al. [95]. Phytolith preservation was
assessed using the criteria discussed in Yost, et al. [95] and was ranked on a numerical
scale from good to poor to none. Phytolith concentrations were calculated by counting a Ly-
copodium spike added to each sample at the end of the phytolith extraction steps. Phytolith
relative abundance was calculated based on the total grass short-cell phytolith count for
each sample. These efforts led to a time series of phytolith preservation and C4 mesic, C4
xeric and C3 grass phytolith relative abundance. Additionally, diatoms, sponge spicules,
burned phytoliths and microcharcoal were counted but are not discussed in this study.

4. Results
4.1. Dataset Exploration and Description

The data_tr dataset contains 65,052 datapoints, the data_pr dataset 135,368 datapoints.
The elevation ranges from 360 to 3593 m a.s.l. with a mean of 1450 m a.s.l. as shown
in Figure 3A. The precipitation ranges from 410 mm a−1 to 1740 mm a−1 with a mean
of 1120 mm a−1. The highest precipitation is recorded in the Southwestern Highlands
(located in the north-western part of the study area, Figure 1), while the lowest annual
amount is close to the shores of Lake Turkana and the southern Chew Bahir basin. The
seasonality is unimodal with a strong peak during northern hemisphere summer in the
forest classified areas and less intense in the savanna classified areas (Figure 3B,C). The
precipitation seasonality for grassland and open shrubland classified areas is bimodal with
peaks during northern hemisphere spring and autumn, with the latter’s rainy season being
less intense. Roughly 45% of the study area is classified as grassland, 47% as savanna, 3%
as open shrubland and around 5% as forest. EVI varies from 0.06 to 0.55 with a mean of
0.29. TC ranges from 0 to 82% with a median of 17%. Forest has the highest TC with a
median of 71%, followed by savanna (18%) and grassland with a median of 8%, as shown
in Figure 3B. The area with NTC comprises 0 to 87% with a median of 16%. Grasslands
and savanna have a similar NTC median of 70%, in contrast to forests (27.5%) and open



Geosciences 2021, 11, 418 11 of 31

shrubland (22.5%). The NVC spans from 0 to 100% and has a median of 18%. The highest
NVC median of 77% is encountered within the open shrubland areas. Grasslands have a
higher median NVC (19%) than savanna classified areas (10%) and forest areas (2%).Geosciences 2021, 11, x FOR PEER REVIEW 12 of 32 
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Figure 3. Dataset exploration used for training and prediction: (A) Maps of the datasets used in
this study with SRTM based elevation, annual precipitation and LC with protected areas. Plots of the
datasets used in this study with (B) monthly EVI interquartile range for each landcover class, (C)
monthly GPM precipitation (mm) interquartile range for each class and (D) boxplots of the TC, NTC,
NVC and elevation for each class.

4.2. Model Training and Validation

For the LC-BRT, the best fit to the data was achieved with a ROC of 0.79, 298 trees, a
bag fraction of 0.5, an interaction depth of 1 and a learning rate of 0.05 (Table 3). The most
important predictors are the September rains (24%), the elevation (20%), the precipitation in
June (13%) and the precipitation in May (11%). The overall accuracy based on the confusion
matrix (Table 4) for the multiclass prediction is 0.73 and the overall Cohen’s Kappa is 0.57.
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For wildlife reserves (Figure 3A), the accuracy is 0.81, kappa is 0.61 and the ROC is 0.76.
In national parks, the accuracy is 0.86, kappa is 0.73 and the ROC is 0.87. In controlled
hunting areas, the accuracy is 0.87, kappa is 0.5 and the ROC is 0.78. In the test dataset,
containing protected areas outside the study area, we achieved a balanced accuracy for
evergreen broadleaf forests (0.9), open shrublands (0.51), savanna (0.76) and grasslands
(0.58). The ROC for the test dataset is 0.72. The spatial distribution of the model prediction
agrees well with the training data in most of the study area (Figure 4), but disagrees in the
transition areas, especially in the surroundings of forests and open shrubland areas.

Table 3. Summary of BRT hyper parameters and performance.

BRT Distribution Interaction Depth Shrinkage Bag Fraction Trees ROC/R2

LC multinomial 1 0.05 0.5 298 0.79
EVI gaussian 1 0.05 0.75 3096 0.8
TC gaussian 3 0.05 0.5 1771 0.8

NTC gaussian 5 0.05 0.5 3408 0.49
NVC gaussian 3 0.05 0.5 2671 0.55

Table 4. Confusion matrix for landcover classification.

Forest Open Shrubland Savanna Grassland

Forest 2784 0 4313 1024
Open Shrubland 0 1198 4 4260

Savanna 237 1 23,289 4015
Grassland 14 839 2757 20,317

The determination coefficient (R2) for EVI prediction is 0.8. The most important
predictors are the precipitation in February (26%), May (21%), September (13%) and the
elevation (11%). The R2 for wildlife reserves within the study area is 0.58 and the EVI
is overestimated by 5.6%. The determination coefficient for national parks is 0.64 and
the EVI is underestimated by 1.4%. In controlled hunting areas, the R2 is 0.59 and EVI
is overestimated by 2.9%. In the test dataset outside the study area, the determination
coefficient is 0.68 and EVI is overestimated by 14% on average.

For TC prediction, R2 is 0.8. The most important predictors are the September rains
(17%), the elevation (14%), December rains (10%) and precipitation in August (10%). The
R2 in wildlife reserves is 0.53 and TC is underestimated by around 1% in average. For
national parks, the R2 is 0.51 and the residuum is−0.28% on average. In controlled hunting
areas, R2 is 0.78 and the average residuum is −1.4%. In the test areas, the determination
coefficient is 0.76 and the average residuum is −2.5%.

Even after fine-tuning the hyperparameters for the NTC, the coefficient of determina-
tion is only 0.49, indicating an insufficient correlation between the observed and predicted
NTC. In the test area, R2 is even lower with only 0.34, which makes a further use of the NTC-
BRT unfeasible. For the NVC, the determination coefficient is 0.55 within the study area
and only 0.4 in the test areas, making an application of the NVC-BRT also impracticable.
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4.3. Model Link and Scenarios
4.3.1. Modern-Day and Pre-Industrial LC and ET

The modern-day and supposed PI LC distribution of lakes Abaya, Chamo and paleo-
lake Chew Bahir is summarized in Table 5. The most significant changes in the catchments
of lakes Abaya and Chamo are the decrease of agricultural areas from 19% (Abaya) and
10.8% (Chamo) to 0% and the increase of savanna covered areas by 14% (Abaya) and 24%
(Chamo). In the catchment of paleo-lake Chew Bahir, the model suggests a precipitation-
elevation based difference of open shrubland covered areas by around 14%. The forest
covered areas are increasing moderately (0.4 to 4.1%) throughout all the catchments.

Based on the parametrizations of the LCs, we calculated a modern-day ET of
1072 mm a−1 for the catchment of Lake Abaya, which differs by −51 mm a−1 from the
previously calculated value of Fischer, et al. [10]. In the Lake Chamo catchment, ET is
28 mm a−1 higher relative to the previous study, resulting in an annual ET of
1088 mm a−1. In the paleo-lake Chew Bahir catchment, the MD ET is 939 mm a−1 compared
to 892 mm a−1 of Fischer, et al. [10].

The PI (scenario 1) leads to a decreased estimated ET (PI ET of 845 mm a−1) in the
Lake Abaya catchment, due to a decrease of agricultural area. This decrease results in a
positive water budget within the catchment of Lake Abaya, which would then overflow to
Lake Chamo and, hence, to the Chew Bahir basin. The estimated PI ET for the Lake Chamo
catchment is 1026 mm a−1, while it is 872 mm a−1 for the paleo-lake Chew Bahir catchment.
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Table 5. Modern-day (MD) and pre-industrial (PI) landcover distribution (%) in the catchments of lakes Abaya, Chamo and
paleo-lake Chew Bahir.

Lake Abaya Catchment Lake Chamo Catchment Chew Bahir Catchment

MD PI MD PI MD PI

Water 6.1 6.1 15 15 0 0
Forest 1.2 1.8 0.1 4.5 0.2 0.6

Open Shrubland 0.1 0 0 0 0.6 14.5
Savanna 34 48 26.8 50.1 16.8 18.8

Grassland 37.3 44 44.9 30 75.2 62.2
Cropland 19 0 10.8 0 3.3 0

Sparsely Vegetated 0.5 0.5 0.4 0.4 3.9 3.9

4.3.2. Scenario 2a—AHP, no CAB

The simulation of the precipitation dependent vegetation-ET for the 2a scenario (AHP,
no CAB) is shown in Figure 5A. The forest coverage in the Lake Abaya catchment is
increasing almost linearly to the 120% precipitation threshold and is then stabilizing,
whereas the grassland coverage is decreasing, starting from around 45% and reaching
5% at around 125% precipitation. This forces a positive water budget at the modern-day
precipitation amount and a decrease of the water surplus until the forest saturation point
at around 120%. The grassland coverage of the Lake Chamo catchment is decreasing
rapidly, being replaced by savanna, whereas the forest coverage is increasing slowly until
~120% precipitation, after which it begins to decrease. The water budget is slightly positive
within the simulated precipitation increase and ET is following the precipitation amount,
starting to increase after the forest saturation point at ~120%. In the paleo-lake Chew Bahir
catchment, the model shows a positive water budget for the modern-day precipitation
amount. The open shrubland coverage is decreasing to almost zero, whereas the forest
coverage is increasing slightly with increasing precipitation. The main process in the
paleo-lake Chew Bahir catchment is the replacement of grassland by savanna.

4.3.3. Scenario 2b—AHP, with CAB

In the CAB scenario 2b, the precipitation dependent vegetation-ET interrelation for
each catchment is summarized in Figure 5B. The potential increase of forest coverage
with increasing precipitation is higher compared to the 2a scenario and remains linear in
the Lake Abaya catchment until a threshold at ~140% precipitation. In the Lake Chamo
catchment, forest coverage reacts at a greater precipitation increase and reaches 20% at
~120% precipitation. In both mid-altitude catchments (Abaya and Chamo), grassland is
replaced quickly by savanna due to increased precipitation. In the catchment of paleo-lake
Chew Bahir, the 2b scenario leads to the same vegetation reaction to precipitation increase
as in the 2a scenario, with a more pronounced increase of the forest coverage and a less
pronounced decrease in grasslands.

4.3.4. Scenario 3—LGM

The simulation of scenario 3 (LGM) shows a ~20% temperature-driven coverage of
the Lake Abaya catchment with afro-alpine vegetation, which is independent from the
precipitation amount (Figure 5C). Within all catchments, the forest coverage is zero and
the savanna is replaced by grassland, due to the decreased precipitation amount. In the
paleo-lake Chew Bahir catchment, the savanna coverage is reaching almost zero at ~80%
precipitation. The grassland coverage decreased and is replaced by open shrubland with
a stable plateau at ~80% precipitation. In all catchments, ET is decreasing with a decline
in precipitation. Water balance is positive for precipitation levels above ~80% (paleo-lake
Chew Bahir) and 70% (Lake Abaya) of modern levels.
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Figure 5. Model Results for Scenario 2a AHP (A), 2b AHP with CAB (B) and 3 LGM (C): modelled annual ET on land for
each catchment (lakes Abaya, Chamo and paleo-lake Chew Bahir) for the given precipitation from 100 to 150%, respectively,
50 to 100%; LBM resulting lake levels of lakes Abaya, Chamo and paleo-lake Chew Bahir and vegetation model result
with changing LC for each catchment. Scenario 3 ET has an upper and lower boundary due to the modelled temperature
decrease range (3–4 ◦C).
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4.3.5. PVM and LBM Model Link

The combined LBM for the 2a AHP scenario with no change in the seasonality of
the precipitation shows a lake occurrence of paleo-lake Chew Bahir under modern-day
precipitation conditions. With increasing precipitation from 15 to 20%, the model shows
initially no lake, which changes as soon as the threshold of 25% precipitation is reached
and a lake is (re)established. In the 2b scenario, as a theoretical contrast scenario with
additional precipitation in June to September, the threshold for lake appearance is at ~41%
more precipitation compared to today. For scenario 3, the modelled LGM environmental
conditions, caused the lakes to disappear below 80–85% of the modern-day precipitation.
We used these thresholds (2a—125%, 2b—141%, 3—82.5%) as minimum (AHP) and maxi-
mum (LGM) precipitation thresholds and as input parameters for the spatial reconstruction
of the vegetation mosaic during these time periods by combining the LC-BRT, the EVI-BRT
and the TC-BRT (Figure 6). We added the maximum lake extents of lakes Abaya, Chamo
and paleo-lake Chew Bahir [10], as well as Lake Turkana [12] for the AHP scenarios. Dur-
ing the LGM, the model suggests that a desiccation of lakes Abaya and Chamo would
have required 10% further reduction in precipitation than required for the desiccation of
paleo-lake Chew Bahir (Figure 5C).
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Figure 6. Model result map for scenario 2a, 2b and 3: (A) Scenario 2a AHP with spatial application of the LC-BRT, EVI-BRT
and TC-BRT using modern-day elevation and 125% precipitation (threshold for lake appearance for scenario 2a). (B)
Scenario 2b AHP (with CAB) with spatial application of the LC-BRT, EVI-BRT and TC-BRT using modern-day elevation and
141% increased precipitation (threshold for lake appearance for scenario 2b). (C) Scenario 3 LGM with spatial application of
the LC-BRT, EVI-BRT and TC-BRT using elevation equivalent due to cooler temperatures and 82.5% precipitation (threshold
for lake disappearance for scenario 3).

4.4. Phytolith Proxy

Phytolith counts ranged from 0 to 252 per sample, with 16 (59%) yielding no phy-
toliths (Table 6). Almost no phytoliths were preserved before ~12 ka in the studied Chew
Bahir Lake sediment record, except for a few that date to ~24 ka (Figure 7). During the
AHP, preservation of phytoliths peaked at ~8 ka and decreased to almost zero at around
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5 ka. Phytolith preservation remained low after the AHP. Hence, classification of the
surrounding vegetation in the area is limited in this study to the AHP. With the exception
of sample 524, uncertainties in the GFT percentages were on average ±9% (C3 grasses),
±10% (C4 mesic grasses) and ±7% (C4 xeric grasses). Even though the sample 524 GFT
percentage was plotted in Figure 7, it should be noted that only three phytoliths were
used in the GFT calculation. Likewise, the youngest sample from a depth of 4 m yielded
only 20 short-cell phytoliths and exhibited evidence of poor preservation, so the calculated
GFT percentages have a high level of uncertainty (±20% for C3 and C4 mesic grasses) and
are not used directly in our interpretations. The GFT distribution is showing the highest
relative abundance of C4 mesophytic grasses with a linear positive trend until the end of
the AHP. C4 xerophytic grasses are highest around 12 ka and are decreasing to zero at the
end of the AHP. C3 grasses have a comparatively low abundance but reach their highest
values at 11 ka and 8 ka. With the exception of sample 464, Iph aridity index values during
the AHP were all well below the 27.8 threshold at the 95% confidence level, indicating the
presence of mesophytic tall-grass Sudanian savanna or mesic edaphic grasslands associ-
ated with paleo-lake Chew Bahir (Table 5). Even though no globular granulate phytolith
morphotypes diagnostic of woody plants (trees and shrubs) were observed, during the
AHP, ~8% of the total phytolith count at this time was comprised of morphotypes typically
derived from woody plants.

Table 6. Phytolith counts and calculated results. 1 depth (m), 2 Lycopodium counts, 3 Lycopodium spike, 4 dry weight (1g +/−),
5 Trapeziform sinuate: Pooideae, 6 Rondel-keeled, 7 Rondel-angular keel: Phalaris, 8 Rondel > 15 microns, 9 Rondel: Bambosoideae,
10 Saddle-long: Bambusoideae, 11 Bilobate-scooped: Ehrhartoideae, 12 total C3, 13 Saddle: Chloridoideae, 14 Saddle-tall: Chloridoideae,
15 total Saddles: C4 Xeric, 16 Saddle-plateau: Sporobolus-type, 17 Cross-3-lobed, 18 Cross, 19 Polylobate: Panicoideae, 20 Bilobate:
Panicoideae, 21 total Bilobates, 22 total Crosses, 23 total C4 Mesic, 24 Rondel < 15 microns, 25 Grass epidermis, 26 Bulliform, 27 Stomatal
cell, 28 Dendriform, 29 total various grasses, 30 Trichome, 31 Elongate-psilate, 32 Elongate-echinate, 33 Blocky-grass/sedge type,
34 total grass/sedge types, 35 thin w/ridges: Cyperaceae (stem), 36 Irreg w/tubular proj: Cyperaceae (root), 37 Cone cell: Cyperus-type,
38 Cone cell: Carex-type, 39 total Cyperaceae, 40 total Graminoid, 41 Sclereid-branched, 42 Sclereid-elongate, 43 Sclereid-pitted,
44 Elongate-facetate, 45 Blocky-facetate, 46 Blocky-irregular, 47 Globular-decorated, 48 Globular granulate, 49 Globular-facetate, 50
Globular-psilate, 51 Annonaceae-type, 52 Anticlinal-deciduous leaves, 53 Ellipsoid-echinate, 54 Nodular, 55 Granular, 56 Blocky clavate:
Celtis-type, 57 total semi-deciduous, 58 Globular-echinate, 59 Conical echinate: Borassus-type, 60 total Arecaceae, 61 Podostemaceae, 62
Commelina-type, 63 Tradescantia sp., 64 Murdannia simplex, 65 Cyanotis sp., 66 Opaque perf plate: Asteraceae, 67 total Herbaceaous, 68
unknown, 69 total phytoliths counted, 70 Sponge spicules, 71 Sponge spherasters, 72 Diatoms, 73 Charcoal < 50 microns, 74 Charcoal >
50 microns, 75 Burned phytoliths, 76 % C3, 77 % C3 confidence interval (+/−) in percent, 78 % C4 Mesic, 79 % C4 Mesic confidence
interval (+/−) in percent, 80 % C4 Xeric, 81% C4 Xeric confidence interval (+/−) in percent, 82 Iph Index, 83 Iph confidence interval
(−), 84 Iph confidence interval (+).

1 4 24 64 104 124 164 196 224 264 304 344 386 464 524 564 624 684 704 744 784 864 944 998 1004 1024 1064 1098

2 98 242 200 336 329 141 155 51 7 19 17 34 18 227 150 346 355 43 298 295 267 203 272 294 289 273 286
3 9666 9666 9666 9666 9666 9666 9666 9666 9666 9666 9666 9666 9666 9666 9666 9666 9666 9666 9666 9666 9666 9666 9666 9666 9666 9666 9666
4 0.011 0.01 0.027 0.005 0.035 0.010 0.008 0.005 0.009 0.011 0.006 0.003 0.007 0.026 0.012 0.011 0.011 −0.040.004 0.001 0 0.001 0.005 0.006 0.042 0.004 0.003
5 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 10 0 0 0 0 0 0 0 0 0 10 1 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 10 0 0 0 0 0 0 0 0 4 10 1 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 2 0 0 0 0 0 0 0 2 4 9 7 9 1 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 2 0 0 0 0 0 0 0 2 4 9 7 9 1 0 0 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 17 0 33 10 9 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18 6 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
19 0 0 0 0 0 0 0 0 0 4 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 2 0 0 0 0 1 0 30 19 54 58 51 5 2 0 0 0 0 0 0 0 1 0 0 0 0 0
21 2 0 0 0 0 1 0 30 19 58 58 52 5 2 0 0 0 0 0 0 0 1 0 0 0 0 0
22 6 0 0 0 0 0 0 17 7 33 10 9 8 0 0 0 0 0 0 0 0 1 0 0 0 0 0
23 8 0 0 0 0 1 0 47 26 91 68 61 13 2 0 0 0 0 0 0 0 2 0 0 0 0 0
24 0 0 0 0 0 0 0 17 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Table 6. Cont.

1 4 24 64 104 124 164 196 224 264 304 344 386 464 524 564 624 684 704 744 784 864 944 998 1004 1024 1064 1098

26 0 0 0 0 0 0 0 26 1 0 5 0 4 0 0 0 0 1 0 0 0 2 0 0 0 0 0
27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
29 0 0 0 0 0 0 0 43 1 0 5 1 4 0 0 0 0 1 0 0 0 2 0 0 0 0 0
30 0 0 0 0 0 1 0 60 8 42 38 95 36 3 0 0 0 0 0 0 0 2 0 0 0 0 0
31 0 0 0 0 0 0 0 13 6 30 58 39 58 3 0 0 0 4 0 0 0 1 0 0 0 0 0
32 0 0 0 0 0 0 0 9 2 13 34 15 34 1 0 0 0 0 0 0 0 0 0 0 0 0 0
33 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
34 0 0 0 0 0 1 0 82 16 85 130 155 128 7 0 0 0 4 0 0 0 3 0 0 0 0 0
35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
40 20 0 0 0 0 2 0 172 45 184 222 225 163 10 0 0 0 5 0 0 0 7 0 0 0 0 0
41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
42 0 0 0 0 0 0 0 0 0 0 15 12 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0
43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
46 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
48 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
50 0 0 0 0 0 0 0 0 0 8 10 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0
51 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
53 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
55 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0
56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
57 0 0 0 0 0 0 0 0 4 8 25 12 24 0 0 0 0 0 0 0 0 2 0 0 0 0 0
58 0 0 0 0 0 0 0 0 0 17 5 2 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0
59 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
60 0 0 0 0 0 0 0 0 0 17 5 2 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0
61 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
62 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
63 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
65 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
66 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
68 0 0 0 0 0 0 0 34.3 2 46.5 29 8.5 29 5 0 0 0 1 0 0 0 0 0 0 0 0 0
69 20 0 0 0 0 2 0 172 49 209 252 239 192 11 0 0 0 5 0 0 0 9 0 0 0 0 0
70 0 0 0 0 0 0 0 4 6 0 0 0 0 17 0 0 0 6 0 0 0 15 6 0 0 5 0
71 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
72 0 0 0 0 0 0 3 632 0 796 9019 852 9019 112 0 0 0 19 0 0 0 62 0 0 0 0 0
73 0 0 0 0 0 0 0 34.3 6 9 0 41 0 21 0 0 0 7 0 0 0 1 4 0 0 3 0
74 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
75 0 0 0 0 0 0 0 0 4 0 0 1.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
76 50 0 0 0 4.0 11.5 1.4 29.0 0 0
77 20 0 0 0 3 7 0 16 0 0
78 40 100 100 92.9 91.9 78.2 88.4 41.9 66.7 100
79 20 0 0 11.0 6.0 9.0 9.0 16.0 67.0 0
80 10 0 0 7.1 4.0 10.3 10.1 29.0 33.3 0
81 5 0 0 4 4 7 7 16 33 0
82 20 0 0.0 7.1 4.2 11.7 10.3 40.9 33.3 0
83 20 0 0.0 7.1 4.2 7.8 7.4 22.7 19.9 0
84 20 0 4.2 7.1 3.2 6.5 5.9 18.2 14.5 0
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overflow sill at 543 m a.s.l., whereby +7–15% of the increase is due to vegetation feedback. 

However, the quantification of the vegetation feedback was previously used from a study 

at Lake Naivasha in Kenya by Bergner, et al. [36], where paleo-vegetation was 

Figure 7. Proxy time series and model results: (A) Phytolith preservation. (B) Iph index. (C) Phytolith type distribution.
(D) Potassium proxy record of CB-03 [33]. (E) Archaeological record with dated (confirmed) occupation (black) [59,60,64]
and presumed occupation (grey). (F) Orographic strata model results with LC. (G) Lake Dendi pollen record summary [16].

5. Discussion
5.1. Results Synthesis

Our biosphere-hydrosphere modelling approach for southern Ethiopia from the LGM
times to the present shows: (a) during the LGM, an annual precipitation decrease of at
least 15 to 20%, along with decreased temperatures. This would explain the lake regression
and would have resulted in extensive grassland cover and sparse vegetation in the lower
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elevations and widespread afro-alpine vegetation above approximately 2000 m a.s.l. (b) A
precipitation increase of at least 25% during the AHP, which would explain the observed
high lake level of paleo-lake Chew Bahir reaching the overflow sill. This precipitation
increase would produce dense forest cover in the high altitudes (above 2000 m a.s.l.) and
dense vegetation cover in the vicinity of northern Lake Turkana, as well as along the shores
of paleo-lake Chew Bahir. (c) In the CAB scenario, it would require at least 41% more
precipitation than modern levels to sustain the observed lake changes and would produce
less dense vegetation in the high altitudes and favour forest coverage at the mid-altitudes
(between 1000 and 2000 m a.s.l.). (d) The modern-day land-use has about a fourth of the
forest coverage (10%) at high-altitudes compared to the pre-industrial potential LC (44%)
and reduced forest coverage at mid altitudes from 16 to 4%.

5.1.1. Scenario 3—LGM

Previous studies based on reconstructed vegetation and their potential hydro-climatic
habitat on a pan-African scale revealed a reduction of around 25 to 27% annual precipitation
during LGM times in eastern Africa, compared to the amount of modern-day precipita-
tion [102]. The orographic temperature driven displacement of the vegetation belts was
estimated to be around −700 m in the dry, high mountains and around −1000 m in the
humid mountainous regions [15], which is also supported by our modelling results that
suggest an orographic lowering of the afro-alpine vegetation to around −1000 m. The
pan-African vegetation reconstruction (based on sea surface temperature derived paleo-
precipitation estimates and resulting vegetation transfer functions) by Anhuf, et al. [15]
suggests grass savanna cover in the surrounding of Lake Turkana, dry forest or savanna
vegetation in the majority of the area and forests in the highland areas. The coupled earth
system model HadCM3LC yields a forest cover of less than 40% in Ethiopia during LGM
times, in contrast to partly 60 to 80% forest cover during pre-industrial time [103]. Our
model results for the LGM times are in overall agreement with the earth system model [103]
and transfer function results [102], but paleo-lake Chew Bahir would already dry out at a
precipitation decrease of 15 to 20%. In contrast to Hopcroft and Valdes [104], who used
HadGEM2-ES to infer global vegetation patterns, our modelling results do not show vast
spatial distribution of forests in Ethiopia, neither in the western nor in the central highlands.
There is no general decrease in the EVI (vegetation greenness or proxy for productivity),
but instead a large decrease in EVI in the high altitudes of the western highlands and the
southeastern escarpments. In contrast, an EVI increase is observed in the rift lakes region
surrounding lakes Abaya and Chamo and the lowlands of the BRZ. For all altitudes, the tree
cover decreased from 17 to 14%. Tree refugia during the LGM are mainly the Gofa range,
the northwestern escarpments, as well as parts of the Agere-Selam escarpment (Figure 1).
In contrast to the Agere-Selam escarpment, our model did not suggest a tree refuge in
the Gamo-Gidole Horst, which suggests the possibility of a complex reorganisation of the
vegetation mosaic in the EARS during the LGM.

The model result is tested with a new pollen record from the Gelba wetlands at
2300 m a.s.l. (Figure 1) [105], which are located in the Gamo-Gidole Horst at the catchment
boundary of lakes Abaya and Chamo. Results from the Gelba wetland record show a
high abundance of afro-alpine vegetation during late LGM times (Ericaceous, afro-montane
forest), in addition to more dry conditions until about 13.5 ka BP, with increasing afro-alpine
vegetation and wetlands/open water after 13 ka BP. Pollen from Podocarpus, Juniperus,
Artemisia, Rumex and Poaceae are abundant in that region during the LGM [105], which
indicates the presence of dry afro-montane forest species.

5.1.2. Scenario 2—AHP

In our preceding LBM study [10], it was estimated that a precipitation threshold of
120 to 130% during the AHP was required to allow paleo-lake Chew Bahir to reach the
overflow sill at 543 m a.s.l., whereby +7–15% of the increase is due to vegetation feedback.
However, the quantification of the vegetation feedback was previously used from a study
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at Lake Naivasha in Kenya by Bergner, et al. [36], where paleo-vegetation was extrapolated
based on pollen proxy information and subsequently parametrised to calculate ET in the
same manner as explained in Section 3.3.2. Since pollen data as well as precise paleo-
vegetation estimates are scarce in southern Ethiopia, a continuous PVM was used for all
precipitation amounts and a new threshold was determined. This threshold shows an
addition of +18–34% is needed to compensate for the biosphere feedback.

Other studies concerning the overall precipitation estimate for the EARS during the
AHP based on LBMs yield: +20–30% (Ziway–Shala +28% [106]; Lake Turkana +20% [107];
Suguta Valley +26% [13]; Lake Nakuru–Elmenteita +23–45% [108] and Lake Naivasha
+29–33% [36,107]). Apart from the estimate from Lake Naivasha, none of these model
approaches considered the biosphere feedback, making those estimates presumably too
small. A site specific or a pan-eastern African vegetation model, similar to the one presented
here for paleo-lake Chew Bahir, could resolve these uncertainties.

The impact of changing seasonality on ET, due to a shift in the CAB (Scenario 2b), with
the additional precipitation required to compensate for the increased ET during present-
day dry months, was estimated at +7% based on SEBAL results for each month [10]. Our
current hydrosphere-biosphere approach suggests an even larger effect of +16%, including
the biosphere feedback. The 2b scenario (CAB caused seasonality changes) promotes the
growth of forests in the mid-altitudes (between 1000 and 2000 m a.s.l.) which comprise
most of the catchment areas for lakes Abaya and Chamo, both of which were significant
water sources for paleo-lake Chew Bahir. Forest growth in these catchments would decrease
the surface runoff to the lakes while significantly increasing ET on land. However, our
modelling results provide possible realizations of a hydrosphere-biosphere interaction
within the EARS as a minimum precipitation amount with two contrasting AHP scenarios,
whereas a mixture of both (2a and 2b) seem most likely.

Scenario 2a (equally enhanced rainfall) suggests an approximately 40% increase in
EVI and a 150% increase in tree cover throughout the study area compared to modern-day
conditions. For scenario 2b, the tree cover increase is lower at 115%. The EVI increase is
almost the same at 38%. In comparison, the CAB 2b scenario would increase EVI in the
lowlands (below 1000 m a.s.l.) and the lake shores of Abaya and Chamo, as well as for
the eastern escarpments, which are regions where the dry season is well pronounced. In
contrast, the 2a scenario would increase EVI on the highlands in the northwestern part
of the Omo River catchment, but the increase is not significant compared to the overall
increase throughout the study area. The diverging model results between 2a and 2b for the
southeastern escarpments also apply to the TC prediction. The 2b scenario produces forest
growth, whereas the 2a scenario does not produce forests in that region. Furthermore,
the 2b CAB scenario would result in an increase in forest coverage in the vicinity of Lake
Abaya relative to modern-day conditions, which would not be the case in scenario 2a.

We conclude that the potential forest coverage during the AHP in southern Ethiopia
is restructured and the overall trend observed in the modelling results is in agreement
with the pollen record from Augustijns, et al. [105]. The pollen record shows wet to
open water conditions and afro-montane forest pollen peaks at 13 ka and 7 ka. A pollen
record from the central Ethiopian highlands from Lake Dendi (3270 m a.s.l.) revealed a
low abundance of Podocarpus and Juniperus pollen during the AHP and instead yielded
high Poaceae abundances [16], which would be in accordance with the modelling results
of scenario 2b. This could be interpreted as supporting evidence for the concept of an
eastward shift and intensification of the CAB.

5.1.3. Scenario 1—Pre-Industrial

How agriculture and grazing altered the landscape and affected the potential veg-
etation cover during the PI remains an open question. For instance, the Northwestern
Ethiopian Highlands have been deforested since at least 3 ka, when agriculture and grazing
progressively replaced hunting and gathering [109,110]. Soil erosion altered the landscape
and may have degraded the ecosystem irreversibly [3]. This also affected the water run-off
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coefficient and the water budget of the lake basins [110]. Such a complete deforestation is
not visible in the pollen record from the Chencha bog (3000 m a.s.l.) on the Chencha Horst
(Figure 1), where the afro-montane forest cover seems to decrease at 1.7 ka but recovers
after 0.8 ka [105]. In contrast, around Lake Turkana, Gil-Romera, et al. [111] did not see
indications for a human-induced ecosystem shift in the past 2 ka. Instead, they concluded
that bush encroachment and retraction are predominately controlled by rainfall and fire on
multi-decadal to centennial cycles.

Overall, the model suggests that 11.5% of afro-montane forests have been replaced by
agricultural areas. The forest coverage decreased (pre-industrial to modern-day) from 44%
to 10% in high altitudes and from 16 to 4% in mid to low altitudes, showing the immense
impact of agriculture on the landscape in the highlands. The model results agree with
the atlas of the potential vegetation of Ethiopia [3] for the moist evergreen afro-montane
forest but classifies vast parts of the dry evergreen afro-montane forest as grassland. Either
the lack of sufficient training data for the dry central Ethiopian highlands could bias the
result as the model is based on a learning algorithm, or grassland may already be a proper
classification for the degraded potential landscape. The grassland and savanna classified
areas of the PI scenario are different to the results of the potential vegetation based on
Friis, et al. [3]. The species perspective from Friis, et al. [3] does not match either the
observed or the predicted landscape phenology and density of the MODIS LC, which
follows a north-south gradient (Figure 3).

The shrinking of agricultural areas and the increase of savanna and grassland areas
in the catchment of Lake Abaya reduces the ET rate on land for the PI scenario, which
then leads to a modelled positive water budget within the lake system of lakes Abaya,
Chamo and paleo-lake Chew Bahir. This could imply that agricultural activities in the
Main Ethiopian Rift degraded the landscape and replaced high forest ET (low run-off) with
high agricultural ET, conserving the water balance. However, if the actual soil-determined
potential vegetation is a grassland complex (low ET, higher run-off), a hypothetical sponta-
neous end of agriculture would lead to a less negative water budget and increased lake
levels. In contrast, a potential and realistic further increase in agriculture and extensive
water use could result in a more negative water budget and decrease the lake levels of
lakes Abaya and Chamo.

The LC in the Lake Abaya basin has been changing for decades [112], which may lead
to an increase of areas with extensive water use and agriculture (coffee, banana) on the one
hand, and gully eroded areas with a high run-off for the lake’s water supply on the other.
This explains the high sediment load of Lake Abaya, visible even in satellite imagery. For
the PI, this could further imply that extensive agriculture has already affected the water
budget of Lake Abaya and subsequently Lake Chamo and paleo-lake Chew Bahir. This
extrapolation is supported by a report by von Höhnel [113], who observed in 1888 at the
end of the dry season that the southern shore of paleo-lake Chew Bahir was occupied by a
shallow lake, which is desiccated today. High lake levels after the termination of the Little
Ice Age at the end of the 19th century have also been reported (e.g., Nicholson [114]) for
lakes in the vicinity and under a similar climate regime. Based on the model results, we
conclude that the persistent aridification of southern Ethiopia since the beginning of the
20th century, could be at least partly caused by LC changes.

5.2. Proxy Model Interference

While the atlas of the potential vegetation of Ethiopia [3] uses dominant and char-
acteristic plant species to classify the broad variety of vegetation types, the MODIS LC
uses remote sensing derived phenology and spectral properties to classify the vegetation
and the landcover. Phytoliths as an environmental proxy from the Chew Bahir sediment
cores [33], allow us to distinguish mesic and xeric as well as C4 and C3 grasses [95]. The
best preservation of phytoliths is recorded during the AHP (Figure 7). The abundance of
C3 grass phytoliths is interpreted as the existence of aquatic vegetation of a wetland (domi-
nated by C3) near the sediment core site, similar to today. Due to changes in the water level
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of paleo-lake Chew Bahir over the past 20 ka, the wetland vegetation may have migrated
up to 100 km northwards. If the wetlands are close to the drill location, the C3 signals
prevails. The wetland, with its dense aquatic vegetation seen today, may act as a phytolith
filter that filters out long-distance phytolith transport. We thus assume that the origin of C4
phytoliths in the Chew Bahir sediments are sourced in the catchment of the Hamar Range
and in particular the catchment that is related to the alluvial fan 6 km west of the drill
site. C4 xeric phytolith types may indicate the existence of open shrubland to grassland on
these alluvial fans, which would be the desert and semi-desert shrubland unit based on
Friis, et al. [3]. C4 mesic phytolith types indicate a grassland to savanna landscape, which
would belong to the Acacia-Commiphora, respectively, the Combretum-Terminalia woodland
and wooded grassland [3], especially Combretum-Terminalia woodland, as it is typically
covered by dense (mesic) grass vegetation.

During the LGM, the absence of phytoliths (most likely caused by dissolution) sup-
ports the scenario of a highly alkaline paleo-Lake Chew Bahir. Our model uses this
condition as a lake disappearance precipitation threshold (see Figure 5C). During the
AHP, the rapid onset of phytolith preservation starting around 11 ka agrees with the rapid
onset of humid conditions as recorded in the Chew Bahir K record and other records from
paleo-lakes in the vicinity [13,34,35,93]. Phytolith preservation decreased continuously
over a period of 3000 years (8 to 5 ka), again providing proxy evidence for a gradual decline
of the AHP in the region, as previously also suggested by Foerster, et al. [33] and Fischer,
et al. [10] and statistically analysed by Trauth, et al. [94]. During the main phase of the
AHP (11 to 6 ka), the record shows the dominance of C4 mesic phytoliths, and hence a
savanna landscape with underlying dense productive grass, even close to the lake shore,
which is a modern-day sparse grass and/or open shrubland area. The slow replacement of
C4 xeric grasses (suggesting open or semi-desert shrubland) could indicate either a slow
climatic signal towards more and continuous precipitation in the lowlands, or a signal of
the slow replacement process towards a more closed savanna landscape in the area. This
trend could also be interpreted as a slow reaction of the landscape due to a groundwater-
table-dependent vegetation structure, since groundwater may react over millennial time
scales [115]. On the other hand, this trend could be an artefact in the phytolith record due
to morphotype specific dissolution [116] during the AHP, showing the limitation of this
phytolith record. The continuous upward trend is punctuated by two C3 grass phytolith
peaks at 10.5 ka and 9 ka, that is in agreement with the Chew Bahir K proxy record [11].
This could mark a brief period of dry conditions leading to rapid lake desiccation and a
formation of a dense and productive wetland in the basin until it becomes flooded again.
Fischer, et al. [10] concluded, based on the lake dynamics modelling and K-proxy results,
that many of these lake level fluctuations interrupted the paleo-lake highstand during the
AHP. A higher resolution phytolith analysis extending further back in time may detect
additional lake desiccation phases.

5.3. Limitations and Advantages of the Method

We used elevation and monthly precipitation as the only predictors in our model,
being aware that LC is also determined by other environmental factors, such as lithology,
soil type or depth, geomorphological position (such as aspect, slope and terrain position)
or windspeed and dry season length [117]. Precipitation and elevation, however, are the
major determinants of the vegetation in tropical Africa [3,117]. Incorrect LC classifications,
especially in the transition areas (forest to savanna and grassland to open shrubland), are
below a significant error for our application on the hydrological cycle but may remain a
consequence of the simple model structure. A better spatial precision for LC prediction
could be achieved with the incorporation of more predictors, but testing, for example, the
topographic position index on different spatial scales has not shown a significant effect.
In addition to derivates of precipitation and elevation, reliable high-resolution data are
especially scarce for soils and the lithology in southern Ethiopia. Additionally, a model
with a higher complexity may lack traceability. Hence, we used these simple predictors for



Geosciences 2021, 11, 418 24 of 31

our LC prediction, being aware that the interpretation of results for areas of smaller scales,
such as archaeological sites, incorporate uncertainties.

With a ROC of 0.79, the model fits the LC prediction well. It was necessary, however,
to include an additional weighting factor, making each class equally important, as the
imbalance between them made a successful model training for all classes impossible. This
has led to a higher classification importance for the open shrubland and forest classes,
which increases their suitable habitat in the PI prediction tremendously. This effect is
acceptable since the dry parts of the grassland classified areas of the MODIS product
for example, may be classified as open shrubland as well. The parameter variability
(greenness, phenology, precipitation and elevation) in the LC groups overlap with the
neighbouring groups. Another effect is the higher importance of the forest class in the
model training and hence the broad increase of forest coverage in the high altitudes for
the PI scenario. Forests are mainly limited to refugia and inaccessible areas. Hence, the
environmental boundaries of the predictors (precipitation, elevation) can only be partly
learned by the algorithm. The algorithm cannot learn a potential habitat of forests, if
there are no remaining broadleaf forests left today, which may be true especially for the
drier parts of the Ethiopian highlands [3]. Moreover, the coarse data resolution of the
precipitation, compared to the landcover, leads inherently to the overlapping predictor
variable space in between the LC’s.

While LC, EVI and TC prediction works well, NVC and NTC prediction was not
possible. The model is not able to predict low NTC correctly, as low NTC could imply
high TC or high NVC, either on densely green or sparsely vegetated areas (see Figure 8A).
The prediction of NVC works well for low NVC but fails to predict high NVC (Figure 8B).
The predicted NVC stabilizes at around 20-40%, while the observed NVC reaches almost
100%. Again, we encounter problems due to the coarse resolution of the GPM precipitation
data and overlapping predictor variable space on a variety of plant phenology. This
inappropriate model behaviour might also be caused by non-involved forcing factors
such as the underlying soil. For instance, the white clayish lacustrine sediments of Chew
Bahir, covering about 755 km2, prevents plant growth, while the predictions based on the
precipitation-elevation would predict sparse vegetation.
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The model link is the central step in aligning the thresholds of the lake’s system with
the response of the surrounding vegetation. The parameter-based approach in estimating
the annual ET [36,75,91] is widely used and tested for its sensitivity for the input parame-
ter [10,36]. For the application, the LBM is dependent on precise input parameters, that
are determined, tested and calibrated in our precursor study [10]. The calibrated surface
parameters (albedo, emissivity, soil moisture availability and roughness length) were tested
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carefully on the closed basins internal logic of the resulting ET in balance with P. This
resulted in a difference of the LC surface parameters, compared to Bergner, et al. [36] and
Lyons, et al. [91], but the in-between class differences remained. Land surface parame-
terization remains an approximation with classified LC’s. The transitions between open
shrublands, grasslands, savannas and forests are gradual. Continuous predictor models
combined with ET land surface parameterization could improve the performance of the
hydrosphere-biosphere prediction.

5.4. Human Landscape Preferences

Our model shows that the landscape in the study area during the LGM is dominated
by a mixture of grasslands with a variety of vegetation types, resulting in a complex, mosaic
landscape that would have offered a wide range of resources for hunter-gatherers. Hunter-
gatherers at Sodicho Cave used exclusively obsidian raw material to produce their stone
tools [118]. The use of the Humbo Baantu outcrop as obsidian source is attested for Sodicho
Cave [64] and Mochena Borago [59,60]. The Humbo Baantu outcrop is around 20 km
southeast from Mochena Borago [60] and around 60 km from Sodicho Cave (Figure 1).
The use of these outcrops [64,118] shows the wide range of hunter-gatherers in the open
landscape during the LGM. Movements through such landscapes to reach for example
the Humbo Baantu obsidian outcrop, would have required at least a short-term camp and
open water stop, that might have been available as residual water in the highlands [64,119]
or even in the colder areas of afro-alpine vegetation or at small, temporal streams in the
Lake Abaya catchment. The potential of alpine environments for human life/occupation is
shown at Fincha Habera, although Ossendorf, et al. [29] suggest the existence of gallery
forests within the Bale Mountain valleys. Trees are almost nonexistent at Mochena Borago
according to our modelling results during the LGM, and the absence of evidence of human
activity [59,60] may indicate that humans avoided the afro-alpine belt. Our modelling
results support the refugium character of Ethiopian highlands during cold and dry condi-
tions [10,33,59,60,64,120]. In summary, it seems that humans in southern Ethiopia lived in
a rather open grassland with some trees during the LGM.

For the African Humid Period, the modelling results indicate a vast expansion of
forests and dense vegetation in southern Ethiopia. According to the results, forests and
dense vegetation covered the known obsidian outcrops in the area that were intensively
used by humans during the LGM. So far, the archaeological record and our modeling results
suggest that human activities ceased during very wet periods when dense vegetation and
forests predominated. The exact reasons for this remain unknown, but it can be speculated
that also pronounced wet phases were not necessarily favorable for humans, possibly
because of dense vegetation constraining mobility or promoting the spread of diseases.

With obsidian becoming inaccessible due to the forest cover, the Main Ethiopian
Rift lakes, such as Ziway-Shala presumably offered easier access to food, water and
raw material [33,61,64]. The highly variable lithic technology along the lakes through
time indicates a complex and changing settlement pattern coherent to changing lake
levels [10,33,61]. Due to a gap in the archaeological record, rapidly changing lake levels
seem to be unfavorable conditions for humans, however, it is also possible that signs of
former human activities were simply washed away [33]. The shores of lakes Abaya and
Chamo became densely vegetated and forested during the AHP, according to the model
scenario 2b (CAB caused change in seasonality). If humans preferred more open landscapes
in southern Ethiopia at this time, the closed landscape at the shores of lakes Abaya and
Chamo would explain the absence of archaeological records. There are also no published
archaeological records from the shores of paleo-lake Chew-Bahir, except for a brief report
on rock engravings (5.66 ka ± 0.11; 4781–4274 cal BP) from an island in the southern part
of the lake after the termination of the AHP [121]. The persistence of an open landscape,
however, indicates a potential for archaeological sites during the AHP, similar to Lake
Turkana [33]. After the AHP, human activity is recorded again in the archaeological record



Geosciences 2021, 11, 418 26 of 31

of Mochena Borago and Sodicho Caves [64,118,122]. The modelling results show that
Mochena Borago and Sodicho Cave may have been surrounded by grassland once again.

Within the last 25 ka, hunter-gatherers used Mochena Borago and Sodicho Caves
when the vicinity of the sites were characterized by grassland and solitary trees. With
caution, we may propose that during the LGM and Middle Holocene, humans in southern
Ethiopia occupied or even may have preferred open landscapes.

6. Conclusions

We developed a new Predictive Vegetation Model (PVM) based on open-source meth-
ods and multi-source data, which we linked to a Lake Balance Model (LBM) of the southern
Main Ethiopian Rift [10] to independently reconstruct and disentangle the environmental
processes, changes and amplitudes for the Last Glacial Maximum (LGM), the African
Humid Period (AHP) and the pre-industrial (PI) time. The model output was compared to
a new phytolith proxy record from Chew Bahir basin and pollen records from southern
Ethiopia. The model shows a 15–20% decrease of annual precipitation during the LGM,
which was dominated by open landscapes in the low and high altitudes with only a few
forest refuges remaining, leading to the desiccation of paleo-lake Chew Bahir. During
the AHP, a 25–40% increase in the annual precipitation amount resulted in a doubling of
forest-covered areas and would explain the maximum possible lake level of paleo-lake
Chew Bahir. Additional rainfall during northern hemisphere summer due to an eastward
shift of the CAB would lead to a dense forest coverage in the mid-altitudes and open
landscape in the highlands, which is supported by pollen records. The phytolith record
indicates a rapid onset of humid conditions at ~12 ka and a slow transition throughout
the AHP to mesic conditions. Our comparison of model results and archeological records
in that region suggests that humans may have largely occupied open landscapes. For the
modern time, we conclude that the agriculturally altered landscape may endanger the
water supply of the lakes Abaya and Chamo and may have contributed to the aridification
of the Chew Bahir basin during the 20th century. This is of interest and concern for land
and water management in Ethiopia in the near future, due to the increasing agricultural
use of the Lake Abaya basin.
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