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Abstract: Mapping existing landslides is a fundamental prerequisite to build any reliable suscep-
tibility model. From a series of landslide presence/absence conditions and associated landscape
characteristics, a binary classifier learns how to distinguish potentially stable and unstable slopes.
In data rich areas where landslide inventories are available, addressing the collection of these can
already be a challenging task. However, in data scarce contexts, where geoscientists do not get access
to pre-existing inventories, the only solution is to map landslides from scratch. This operation can
be extremely time-consuming if manually performed or prone to type I errors if done automatically.
This is even more exacerbated if done over large geographic regions. In this manuscript we examine
the issue of mapping requirements for west Tajikistan where no complete landslide inventory is
available. The key question is: How many landslides should be required to develop reliable landslide
susceptibility models based on statistical modeling? In fact, for such a wide and extremely complex
territory, the collection of an inventory that is sufficiently detailed requires a large investment in
time and human resources. However, at which point of the mapping procedure, would the resulting
susceptibility model produce significantly better results as compared to a model built with less
information? We addressed this question by implementing a binomial Generalized Additive Model
trained and validated with different landslide proportions and measured the induced variability in
the resulting susceptibility model. The results of this study are very site-specific but we proposed a
very functional protocol to investigate a problem which is underestimated in the literature.

Keywords: landslide inventory; regional landslide susceptibility; INLA; unique condition unit

1. Introduction

Landslide susceptibility assessment is the most common approach to assess how prone
a given landscape is to generate landslides. At the scale of a single slope this is commonly
achieved by solving geotechnical relations that express the equilibrium of a potential un-
stable mass [1,2]. For broader geographic contexts, i.e., from catchments to regional and
even continental scales, landslide susceptibility is commonly generated via data-driven
or expert-driven methods. Expert-driven models are based on the standardization and
weighting of causative factor maps, even without the availability of a sufficiently complete
landslide inventory. Data-driven methods use binary classifiers, of a statistical or machine
learning origin. Irrespective of the specific algorithm at hand, certain conditions need to be
met for a data-driven-based susceptibility assessment. The first condition is to have access
to a series of spatially-explicit instances describing landslides that have already occurred.
Under the assumption that “the past is the key to the future” [3], the model learns how to
discriminate landslide presences from the absences on the basis of a set of predisposing
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factors. Any classifier, essentially, measures the correlations existing among the propor-
tion of presence/absence data and the range or classes described by each predisposing
factor under consideration. Due to this, variations in the distribution and proportion of
presence/absence data have an impact on the model results. Some articles have already
investigated this effect. The first attempt was made by Guzzetti et al. [4], who assessed the
variation in model performance as the input data changed by randomly sub-sampling the
whole number of mapping units available in their study area. A mapping unit corresponds
to the basic geographic objects in which a study area is partitioned and to which probability
values of landslide occurrence are assigned to Guzzetti et al. [4] concluded that the random
sampling did not have any major effect on the proportion of stable and unstable units,
which remained relatively constant for the replicates they produced. A similar conclusion
was later reached by Heckmann et al. [5] who tested a similar assumption but adding a step
where the size of the dataset changed while contextually checking auto-correlation issues
as many susceptibility replicas were built. Frattini et al. [6] initially constrained the input
data, combining an equal amount of mapping units with absence and presence of landslides.
They highlighted variations in the model performance as the proportion of absences became
increasingly unbalanced. This topic was further investigated in several contributions such as
Van Den Eeckhaut et al. [7], Petschko et al. [8], Conoscenti et al. [9], Lombardo and Mai [10].

It must be highlighted that all the scientific efforts mentioned above were carried out
by keeping the presence information essentially constant and varying the number of the
absence instances putted into the model. This is clearly a reasonable assumption because it
is important to use as much landslide data as possible in building the best susceptibility
model. Fewer articles have tested the implications of varying the presence conditions. This
specific topic involves a slightly different scientific domain, where the research question is
related to the effects of incomplete inventories onto the resulting susceptibility map [11],
which means also investigating the minimum requirement with respect to landslide data
in order to be able to use data-driven models at all.

In this case, the thread linking the scientific research gravitates around landslide posi-
tional errors [12] or the missing information of landslide presences at certain locations [13].
The common denominator among these is to assess the effect of incomplete landslide
inventories and test approaches aimed at removing the bias induced by the incompleteness,
from an optimal reference model [14].

From this particular setting we took inspiration for the present work. However, instead
of seeking ways to adjust a model built on the basis of a less numerous landslide inventory,
here we pose a different key question: When would a model built on a small number
of landslides be sufficiently capable to describe the landslide susceptibility theoretically
obtained by training a model on the basis of a much larger dataset, without any specific bias
adjustment? The reason for such a question is the fact that in data scarcity situations [15],
it is very common to have limited information on the distribution of landslides [16], and
globally, it is very common to hardly have access to any landslide data at all [17]. Therefore,
mapping landslides is a mandatory step without which no data-driven susceptibility model
could be built in these areas [18,19].

More specifically, in the context of the research project ‘Silk Road Disaster Risk Re-
duction’, aimed at assessing unstable slopes along the new silk road (Belt and Road
Initiative) [20], the already existing landslide inventories in this famous pathway are very
limited. Based on the landslide susceptibility evaluation carried out at a continental scale in
central Asia, Titti et al. [21] show the necessity to build more detailed susceptibility models
at a national scale even where national scale landslide inventories are not available or
very incomplete at best. Considering the vast area and the complexity of the mountainous
landscape in the countries of central Asia, to map a complete landslide inventory would
take a very long time.

In this context we tried to answer our key question, evaluating the landslide suscepti-
bility in Tajikistan applying several constraints. At the beginning of this work, a limited
number of landslide inventories were already available in the study area. To safely consider
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a landslide inventory that is enough populated to support our analysis, we decided to inte-
grate the existent catalogs with an intense landslide mapping activity from satellite images
that required long additional time, after which, we assumed the inventory to be reliable
(see Figure 1). Then, the analysis was carried out, reducing the number of presence cases in
our dataset and actually converted them to absences, mimicking a situation where we did
not know that landslides were there. After that, we compared the effect of an increasingly
smaller number of landslide presences to a landslide susceptibility model built by using
a binomial Generalized Additive Model [22–24], implemented in INLA [25–27]. INLA is
an R [28] package developed by Lindgren and Rue [29] that allows users to implement a
number of statistical models in a Bayesian framework, providing analogous and much
faster results than traditional MCMC [30,31].

Figure 1. Panel (a) locates Tajikistan in yellow. Panel (b) shows the study area corresponding to the western sector of
Tajikistan. Panel (c) reports the Landslide Identification Points (LIP) for the mapped landslides.

2. Materials and Methods
2.1. Tajikistan and Its Reference Landslide Inventory

Tajikistan is characterized by an extremely complex rough terrain, with approximately
44% of its territory potentially hosting permafrost, which is rapidly thawing [32]. Thick
soils with a relatively high erodibility index [33] characterize the area. In conjunction
with these peculiarities, high intensity precipitation affects the whole territory and strong
earthquakes have been reported throughout the history of the country. This combination
makes Tajikistan particularly prone to landslides. Shallow and fast landslides are mainly
visible in Tajikistan, such as debris slides and debris flows.

Numerous examples of earthquake-induced landslides [34–36], rainfall-induced
ones [37–39], and a combination of both effects exist [40]. This has even produced the
highest landslide dam in the world [41] after a coseismic failure.

Due to the large area of the country, we focused on the western part, excluding the
eastern region of Gorno-Badakhshan, which is characterized by the presence of numerous
glaciers and by the very low density of population and infrastructure.

Geologically, the western part of Tajikistan is extremely complex, with 12% of its
lithologies being of igneous origins, 11% metamorphic, 72% sedimentary, and 3% covered
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by glaciers (see Figure 2a). In terms of land use, the anthropic control on the natural
environment is very limited, with relatively small pockets of croplands and large areas
with bare land or sparse vegetation (see Figure 2b).

Figure 2. Four of the nine covariates used in this study: (a) Land use, (b) lithology, (c) PGA maps of the 475-year Return
Period, and (d) average annual precipitation (over a 10-year period).

As for the main landslide triggers, the strongest seismic activity is registered in the
central eastern regions, partly overlapping with the areas with the highest amount of
rainfall (see Figure 2c,d).

Landslides were mapped as individual points, without any attributes on the classifica-
tion with respect to type and age, focusing on the initiation areas. Some information has
been collected from Havenith et al. [35], Nazirova and Saidov [42], and others have been
mapped using image interpretation from Google Earth Images. In addition to this, we used
the earthquake-induced landslide inventories for some of the historical earthquakes (e.g.,
the Khait earthquake 1949) [36,43]. Each point representative of a landslide was assigned
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to the highest point along the landslide crown. We chose this representation instead of
the common alternative of a centroid (see [44]) because of the shallow nature of the recog-
nized landslides. This is in fact the most conservative choice in case of shallow flow-like
landslides although a laboratory test have also highlighted that the same processes can
also exhibit a marked retrogressive behavior (e.g., [45]). Nevertheless, due to the relatively
coarse size of the mapping unit we chose (see Section 2.3), the models we tested would not
be sensitive to either point representation criteria. In other words, both the centroid or the
highest point along the landslide crown would fall within the same mapping unit, thus
labeled as unstable for the following analyses.

2.2. Covariates

Nine morphometrical, seismic, and meteorological covariates were selected and pre-
processed (see Table 1), seven of which are continuous and two categorical.

Relative relief, slope degree, plan curvature (curvature tangent to the contour line),
and profile curvature (curvature tangent to the slope line) have been derived from the 30-m
Shuttle Radar Topography Mission (SRTM) DEM [46]. The former has been calculated as
the range between the maximum and minimum elevation in a neighborhood of 1 km of
radius, the others using the formula by Zevenbergen and Thorne [47].

The annual rainfall map is the result of the cumulative daily precipitation of one year
averaged over 10 years of data (2010–2019). The precipitation data was obtained from the
Multi-Satellite Retrievals for Global Precipitation Measure (IMERG) [48] with a cell size of
10 × 10 km.

The PGA has been mapped with the 475-year Return Period by Ischuk et al. [49].
Lithology provided by the Tajikistan General Office of Geology [50], which has been

classified into 13 classes (see Figure 2a) and Land use in 14 classes (see Figure 2b).

Table 1. Covariates used in the analysis, types, acronyms, and units.

Covariate Original Type Acronym Unit

Slope degree Continuous Slope degree (°)
Relative relief Continuous Rlf m
Plan curvature Continuous PlC m−1

Profile curvature Continuous PrC m−1

Peak Ground Acceleration Continuous PGA m/s2

Annual precipitation Continuous Rn mm/y
Land use Categorical LU unitless
Lithology Categorical Litho unitless

Area with Slope > 10° per map
unit Continuous Area m2

Grid-cells with a slope steepness less than 10 degrees were masked out before comput-
ing any of the covariates mentioned above, as these were considered a priori as not being
susceptible to landslide initiation. Before any susceptibility analyses was run, a mean zero,
unit variance rescaling procedure was applied to all numerical variables.

2.3. Mapping Units

Different methods may be used to obtain the terrain objects in which a given study
area is partitioned. In the landslide susceptibility literature, these objects commonly consist
of grid cells, terrain units, Unique Condition Units (UCUs), slope units, geo-hydrological
units, topographic units, and administrative units [51].

To evaluate the landslide susceptibility in Tajikistan, the study area was subdivided
into mapping units that take into account the landslides predisposing factors according to
the concept of the Unique Condition Unit (UCU) [52,53]. The reason behind such a choice
was meant to partition the study area into spatial object that are as independent as possible from
the adjacent once while respecting the natural hydrological, geomorphological, and geological
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structure of the landscape under consideration. This is particularly relevant in case of statistical
models, for they assume independence among each instance of the target variable.

Specifically, we intersected a catchment partition (obtained via ’r.watersheds’ in QGIS)
with the lithology map (scale 1:2,800,000). This operation produced 16,020 UCUs with a
maximum size of 738 km 2. These UCUs were assigned with a binary status 1/0 according
to the presence/absence of landslides. After this operation, 677 UCUs contained at least
one landslide and 15,343 were considered stable (Figure 3).

As for the covariate information associated to each of the UCUs, we opted to summa-
rize the distribution of each continuous parameter via its mean and standard deviation
(with the exception of the area). Conversely, the categorical covariates have been expressed
in terms of the predominant class per UCU. Overall, this operation led to the generation of
15 covariates. Their specific use within the model will be explained below.

Figure 3. Landslide distribution per UCU.

2.4. Modeling Strategy
2.4.1. Generalized Additive Model

To estimate the landslide susceptibility of Tajikistan, we chose a Bayesian version
of a binomial Generalized Additive Model (GAM) [22,54]. This is being implemented in
INLA [55,56].

The binomial GAM we implemented can be denoted as follows:

η(P) = β0 +
J

∑
j=1

β jxj + f (Litho) + f (LU) + f (Rnµ) + f (Slopeµ), (1)

where:

• η is the logit link;
• P is the probability of landslide occurrence;
• β0 is the global intercept;
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• β j are the jth regression coefficients estimated for the xth covariates which we modeled
as fixed effects (or linear properties);

• f (Litho) and f (LU) are two random effects (non linear properties), which we modeled
as independent and identically distributed (iid) covariates. This implies that the
regression coefficient associated with each class is estimated independently from the
other classes;

• f (Rnµ) and f (Slopeµ) are two random effects (non linear properties) that we modeled
as random walks of the first order (rw1) covariates. This implies that the regression
coefficient associated with each class is estimated with an adjacent class dependence.
In other words, the coefficient of a single class depends on the coefficient estimated for
the class before and after. The use of a random walk allows one to retain the ordinal
structure of a covariate that was originally continuous in nature, which we reclassified
to obtain a non linear function of the same.

The choice of which variable have to be used linearly or non linearly was tested in a
pre-processing step where a bivariate binomial GAM was fitted by using one covariate at a time,
with a rw1 structure. Then, the covariates that exhibited a nonlinear relation with respect to
landslide occurrences have been used accordingly, leaving the others as linear properties.

2.4.2. Performance Assessment

To measure the modeling performance throughout the analyses implemented in this
work, we use the Receiver Operating Characteristic (ROC) curves and their Area Under
the Curve (AUC), following the performance classification scheme proposed by Hosmer
and Lemeshow [57].

Specifically, we tested the performance of the reference susceptibility model by using a
standard 10-fold cross-validation. This means that 10 times the 90% of the UCUs is used to
calibrate the model and the remaining 10% of the whole data are used to test the prediction
skill. Notably, each 10% subset was randomly selected with the constriction to not appear in
the subsequent sample, ensuring that each testing dataset was mutually exclusive with the
others and each sample maintain the exact proportion between presence/absence UCUs of
the original dataset.

For models built by using a grid-cell partition, it is more advisable that the cross-
validation subsets are also spatially constrained. When this condition is met, we refer to
this procedure as spatial cross-validation (see [58]), and it is of fundamental importance to
remove any residual dependence in space from the performance assessment. In our case,
being the mapping unit a UCU, which is assumed to be independent from the neighboring
ones by definition, we did not use an explicit spatial cross-validation although we stress
here that this is of fundamental importance whenever the mapping units finely discretize
the study area at hand.

Taking one step back, the idea behind a ROC curve is that the spectrum of susceptibility
values can be cut into two parts, turning the continuous probability values into two binary
label, one consisting of stable slope conditions and the other of unstable ones. These
instances can then be matched with the observed data on mapping units that actually
contain at least a landslide or not, allowing one to compute confusion matrices reporting
True and False Positives as well as True and False Negatives [59]. A ROC curve is then
defined by slicing the susceptibility spectrum via multiple cutoffs, storing the True and
False Positives Rates each time.

In this work, not only were the ROC curves used to assess the model performance
but we also took inspiration to produce a robust classification of the susceptibility map.
The literature is rich of articles where different approaches to classify the susceptibility are
used. These span from using a quantile description to more robust statistical criteria with
no justification at all (details in [27]). In this study we decided to classify the maps in four
susceptibility classes: Very low, low, high, and very high. To select the best four probability
cutoffs, we tested a large number of combinations through an optimization algorithm (Genetic
Algorithm-based) and extracted the four thresholds that yielded the highest AUC value [60].
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This was done both by using a cutoff that best replicates the number of unstable UCUs per
probability bin (classical ROC), and by using the cutoff that best replicates the area (with
slope > 10°) of unstable UCUs per probability bin (ROC weighted over the UCUs area).

2.4.3. Fitting Different Presence Data Proportions

To investigate the effect of partially-mapped landslides in a data scarce environment,
we fitted several binomial GAMs at varying proportions of presence information in the
model. Specifically, we used a reference model fitted by using the whole landslide pres-
ence/absence information and then, we compared to the reference, a series of models fitted
by randomly changing the presence instances into absences. This operation numerically
mimics a situation where an actual mapping unit containing a landslide is not properly
scanned, thus leading one to miss the landslide occurrence at that location and assigning
an absence condition to that UCU. Our random substitution of presences into absences
has been gradually run, switching 5% of the total presences at a time, from 0% of the total
presence to the 95%. This means that the second run has included 95% of the landslide
inventory (5% turned into absences) and the last run with 5% of the inventory. In this
manner, each run is linked to the previous by the same landslides sample minus its 5%
(as absolute value, the 5% is always relative to the total presences with no switches). Each
substitution has been tested with a 10-fold cross-validation. The entire operation has been
repeated 10 times for each substitution, creating a routine for which the prediction was
tested with respect to the remaining data, which was left unchanged (landslide presences
were still presences). In total, 2000 runs has been completed.

As a result of this procedure, we monitored the variation in AUC as the landslide
presence information decreased to just 5% of the data we used in the reference model. We
also monitored the variation in the regression coefficients estimated for each covariate,
being either linearly or nonlinearly used in our model.

A graphical summary of the analytical protocol we proposed is shown in the flow-
chart of Figure A1.

3. Results and Discussion
3.1. Reference Susceptibility Model

The first model we tested represents the benchmark for the subsequent analyses.
It is trained by fitting a model informed of the total number of unstable UCUs and by
featuring all the stable UCUs at the same time. The associated area under the ROC curve
(AUC) is 0.88, which is considered an outstanding performance class according to the
criteria proposed by Hosmer and Lemeshow [57]. The corresponding susceptibility map
(measured in terms of posterior mean and its 95% credible interval) is shown in Figure 4,
where we use the continuous spectrum of probability values to plot it in the left panel.

We present each model component in Figure 5. Here the three panels in the first row
report the nonlinear effects of the mean slope steepness (Figure 5a), mean relief (Figure 5b),
and mean annual precipitation (Figure 5c). The first two appear to share a similar effect:
Relatively low steepness and relief values being associated with high regression coefficients
whereas the remaining distribution appears to be either not correlated or even negatively
correlated to landslide occurrences. As for the rainfall, the pattern appears to be reason-
able, with low annual average precipitations being associated with negative regression
coefficients, which rapidly increase as the rainfall amount increases.
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(a) (b)

Figure 4. (a) Landslide susceptibility map of Tajikistan. (b) 95% of Confidence Interval (CI) of the landslide susceptibility
map of Tajikistan.
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Figure 5. Performance of the single covariate used to model the landslide susceptibility map: (a) slope, (b) relative relief,
(c) annual precipitation, (d) covariates modeled as fixed effects, (e) land use, (f) lithology. See Table 1 for the explanation of
the abbreviations of the covariates.
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In Figure 5d, the linear contributions of the UCU area and PGA appear to be significant,
increasing the probability of landslide presences per mapping unit. It should be noted,
however, that there is only one major earthquake-induced landslide inventory available
(for the Khait earthquake in 1949) and that therefore the mapped landslides do not reflect
earthquake-triggered events in their majority. Conversely, the plan and profile curvatures
were estimated to be not significant and with a posterior mean value around zero. This
is related to the selection process of the UCU, which contains often fairly large units with
large topographical variations.

The categorical variables, land use (Figure 5e) and lithology (Figure 5f), present a
large variation in significance per each category. In detail, land use reveals a significant
contribution to increase the probability of landslide presence per UCU with several land
use types that have a positive contribution to the presence of landslides. The class with
bare or sparse vegetation seems to have less contribution to landslide occurrence that we
originally expected. The units with waterbodies have a higher contribution than expected,
due to the fact that the slopes around existing hydropower dams have a relatively high
landslide density, and the available inventories were more detailed for the areas surround-
ing hydropower projects. The areas covered by snow and ice decrease the probability
of landslide presence per mapping unit. This can also be explained by the difficulty of
mapping landslides in these high mountain terrains, where many of the available satellite
images have a snow cover, thus leading to a possible (or not) under representation of
landslides mapped in these areas.

As regard the role of lithological classes, a large number was estimated to be significant
and most were recognized to positively contribute to the susceptibility estimates. These
correspond to: Igneous intermediate, igneous intrusive, metamorphic, sedimentary chemi-
cal, and sedimentary clastic rocks. Among these, the highest mean regression coefficient
is estimated for an igneous intermediate substratum. This could imply that the detrital
mantle and soil draping over this bedrock type can be rich in clay as this mineral is the
natural product of the long-term weathering effect on igneous rocks [61]. In turn, clays
could be responsible for shallow landslides [62] as they are subject to shrink and swell
processes at varying soil moisture conditions. Similar to the land use class, the posterior
mean value of glaciers in the lithology map is highly negative.

3.2. First set of Cross-Validations

From the 10-fold cross-validation, we extracted the posterior mean to compute the
AUC for each replicate. The average AUC out of the 10 calculations is 0.87, and a variability
measured with a two-times standard deviation is equal to 0.02. The continuous spectrum of
probability which composes the susceptibility map resulting from the first set of traditional
cross-validation runs has been classified using two different criteria. The maps are shown in
Figure 6a,c. We classified the probabilities using the SZ-plugin developed by Titti et al. [60].
The upper map (Figure 6a) is classified by selecting the edges of each class equal to the
cutoffs that maximize the AUC of the segmented ROC curve, which means to maximize the
number of unstable UCUs per probability bin. Therefore, being the UCUs irregular spatial
objects, the map appears dominated by very high susceptibility conditions. Conversely, the
bottom map is generated by cutoffs that maximize the area (with slope > 10°) of unstable
UCUs per probability bin (the relative ROC curve is weighted over the area extension).
Here the maps appear much more realistic and similar to the benchmark presented in
Figure 4 with the main difference being expressed in the extension of the red area, which
covers 43,058 km2 (43% of total area, see Figure 6b) in the first classification and 10,012 km2

(13% of total area, see Figure 6d) in the second classification.
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Figure 6. (a) Tajikistan landslide susceptibility map classified by maximizing the AUC and the relative ROC curves with
respect to the unstable UCUs. (c) Tajikistan landslide susceptibility map classified by maximizing the AUC of the area-
weighted ROC curve and the relative ROC curves. Panels (b,d) show the corresponding classification schemes and the
relative percentage area per class.

Figure 7a provides two interesting perspectives on the analyses we have run. It
demonstrates that the susceptibility pattern (taken from Figure 6c) closely reproduce the
spatial distribution of landslides at the scale of the UCUs. Figure 7b complements this
information by highlighting that the highest susceptible zones are not necessarily those
with the highest relief, but with the most susceptible lithologies, in combination with the
highest levels of rainfall and earthquake acceleration. The relatively lower susceptibility
of the high elevation, snow- and ice-covered regions is due to the limited availability of
inventories for these areas, and may not reflect the actual situation, or the possible future
situation, where climate change will contribute to decreasing glacial coverage.
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Figure 7. (a) 3D representations of the landslides distribution on the classified, area-based (Figure 6c) susceptibility map.
(b) 3D representation of the landslides distribution and of the relative relief.

3.3. Sensitivity Analyses at Varying Landslide Presence

In this section, we evaluate the results from the varying proportions of landslide
presences per UCU, and compare them with the reference susceptibility model presented
in Section 3.1. Figure 8 reports the AUC values obtained for each cross-validation routine
from an initial landslide presence sample of 50 UCUs (5% of the reference inventory) up to
677 UCUs (100% of the reference inventory). Surprisingly, the corresponding difference
in performance is not as evident as we initially assumed. In fact, just 5% of the reference
inventory is enough to reach a median AUC of approximately 0.79. Conversely, 100%
of the reference inventory produced a median AUC of 0.87. The latter corresponds to
an outstanding performance according to the classification scheme proposed by Hosmer
and Lemeshow [57], being clearly preferable to a 0.79 (all the ROC curves are visible in
Figure A8). However, in reality the difference in the time and efforts required to map less
than one hundred or several hundreds of mapping units with landslides is very large. Thus,
specifically for Tajikistan, such a result inevitably raises the question why this happens and
whether it is worth to invest resources in mapping landslides when fewer mass movements
already produce suitable predictive performances.

Comparing the classified susceptibility maps assessed as the median of the 10 runs
with 100% (Figure 9a) and 5% (Figure 9b) of total landslide inventory, it is evident how
much the latter is less reliable than the former. In particular, this is clearly visible in the
southern and northern part of Tajikistan where, on the contrary to the map in Figure 6c and
to the map in Figure 9a, in the susceptibility map modeled with the 5% of total landslides
available (Figure 9b), the classes ‘high’ and ‘very high’ cover a larger area.

To investigate this result further, we carefully checked the area and recognized, as
also shown in Figure 5, that landslides generally occur in very similar morphometric
situations in Tajikistan. At a medium slope and medium relative relief values they are
abundant, whereas they tend not to be represented where snow and ice cover the landscape
(mainly at high relative relief values). This is interesting because we cannot know whether
this effect is real. In fact, snow cover tend to hide landslides or make it impossible to
separate a landslide from other active processes, such as snow avalanches, that dominate
a high portion of relief. Therefore, with the same probability, landslides may actually be
considered absent and present.
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Q1, Q3 Median # Boxplot 95% CI Outliers

Number of UCUs assigned with a landslide presence condition

Figure 8. Distribution of the Area Under the ROC Curve (AUC) values of the 2000 model runs with
different proportions of number presence condition.

Figure 9. (a) 10-runs median susceptibility map with 100% of total landslide inventory (AUC = 0.87) classified in quartiles
and the contour lines of the landslides density distribution; (b) 10-runs median susceptibility map with 5% of total landslide
inventory (AUC = 0.79) classified in quartiles and the contour lines of the landslides density distribution.

Landslides tend to cluster in the wettest portion of the Tajikistan territory. As for
the signal captured by categorical properties, many lithologies are quite susceptible to
landslides, and contribute more to susceptibility than land use types. The lithological units
were grouped into rather broad classes, and therefore the combination of covariates that
results in high susceptibility can be characterized by using a relatively small number of
UCUs. However, the high AUC values could also be related to the large dimension of
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the UCUs. Lima et al. [63] states that a “too detailed representation of the terrain may be
detrimental in the presence of inaccurate landslide data”. In our case, since the UCUs are
rather large terrain units, this could attenuate the effect of the incompleteness we induced
by decreasing the number of presences.

We justify the relatively similar predictive performance through the considerations
provided above. However, to support them numerically we checked their validity by
examining the variations in the estimated regression coefficients as the proportion of
presences changed. For conciseness, a brief overview of this procedure is provided in
the main text through Figure 10. There we exemplify for the reader the variation of the
regression coefficients related to six covariates (one fixed effect, and five classes extracted
from five respective random effects), plotted as the information on landslide presence data
increases. In Appendix A, we report the variation of the regression coefficients for all the
model components estimated to be significant. Specifically, Figure A2 shows the variation
for the four fixed effects. The PGA and the two curvatures essentially exhibit the same
regression coefficient irrespective of the number of presence conditions in the dataset and
among each of the bootstrap replicates. Conversely, the UCU area over 10° of the slope
becomes more positive as the proportion of presences increases.

Q1, Q3 Median # 95% CI Outliers
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Figure 10. Example of covariate effects estimated at a varying proportion of landslide presence data
for: (a) Area, (b) annual rainfall, (c) lithology, (d) slope, (e) land use, and (f) relative relief.
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To provide an overview of what happens with a covariate used in a non linear fashion,
we report the effects estimated for each of the mean slope steepness classes, mean relative
relief classes, and mean annual rainfall classes. The behavior of the slope steepness is
shown in Figure A3 where the variations as the number of presence instances in the dataset
appear to be stronger than for the linear covariates mentioned before. Specifically, as
the number of landslide presences increase, the mean steepness classes 20°–22°, 23°–25°,
and 26°–28° are estimated with an increasingly positive contribution to the susceptibility.
This trend appears to be interrupted from the class 29°–31° and to invert itself for the
classes from 38° to 69° where the regression coefficients become increasingly negative as
the proportion of landslide presences increases.

Mean relative relief has been subdivided into 20 classes (Figure A4). The first 7 classes
show positive regression coefficients, whereas the others became increasingly negative as
the relative relief increases. As the proportion of landslide presences change in each relief
class, the regression coefficients remain constant.

On the contrary of the sinusoidal behavior of the slope covariate, precipitation presents
a discontinuous trend between the minimum and maximum annual rainfall recorded in
10 years in Tajikistan (Figure A5). In particular, increasing the number of landslides in
sample, it contributes negatively to susceptibility from 243 mm/y to about 375 mm/y
where the trend inverts itself, the regression coefficients became increasingly positive as
the proportion of landslide presences increases from 486 mm/y. The classes between
375 mm/y and 486 mm/y do not significantly contribute to estimate the susceptibility.

The situation for the categorical properties is also quite interesting (see Figures A6 and A7).
Metamorphic lithotypes (Figure A6) exhibited the largest variation as the proportion
of landslide presences increases. Specifically, they increasingly contribute in a negative
manner to the susceptibility model. Other examples exist where the situation is the
opposite albeit with a less striking pattern, these being mixed igneous rocks and chemical
sedimentary materials.

The land use classes (Figure A7) show a much more stable response to the landslide
presence content in the dataset and across cross-validation replicates. The only exception
consists of the snow/ice class, which contributes to decreasing the estimated probability of
landslide occurrences per UCU.

Notably, across all these plots not a single example exists where we monitored an
inversion of the regression coefficient sign as the proportion of landslides increased. This is
a fundamental point which justifies the fact that performance-wise, no extreme changes
can be observed at varying presence conditions in the training dataset.

To answer the main question of this paper, starting from a complete landslide inven-
tory, we mapped the landslide susceptibility of west Tajikistan and repeated the same
analytical protocol, gradually reducing the amount of landslides presence condition of
each UCU, labeling them as stable. As a result, we induced systematic incompleteness and
associated biases [63] in the the analyses. We did this in the hope of finding a numerical
threshold above which the susceptibility map is not sensitive to the addition of new unsta-
ble mapping units. However, the AUC distribution plotted in Figure 8 was quite smooth.
Although, the transition from median AUC values of 0.79 to 0.87 is an interesting trend
to monitor, recognizing a single number of unstable UCUs that separates two different
predictive behaviors could not be found.

To further deepen our observation, we opted to calculate the rate at which the median
AUC shown in Figure 8 varies from small to large samples of unstable UCUs passed to the
model. This is shown in Figure 11 where the rate of change between the subsequent AUC
median has been measured with a function f (x), explained as follows:

f (x) = ∆g(x)′k − ∆g(x)′k−1 (2)

where, g(x) is the median function, ∆g(x)′ is the gap between two consecutive first order
derivatives of g(x) in sliding windows, and f (x) evaluates how fast the curve trend
changes by the difference between the gaps ∆g(x)′ of the sliding windows and the previous.
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Interestingly, the maximum of f (x) corresponds to 220 UCUs assigned with a presence
condition (32% of unstable UCUs and 1.5% of the total UCUs). After this, the model does
not significantly improve and therefore, we consider this value as the minimum amount of
presence condition required for this study area.

-

Figure 11. Graph in dots of the median AUC also visible in Figure 8 and the relative f function
(Equation (2)) which measure how much the trend of the median graph varies.

This framework raised the question of when shall the inventory be considered com-
plete and what would have been the implications if we would have stopped mapping
earlier than the deadline we set. All the analyses we then performed have been voted to
address this issue. A series of sensitivity checks have been tested at decreasing numbers of
unstable UCUs.

This observation is much more interesting than the one based on Figure 8 and it does
answer the main question posed at the beginning. However, this result may be site-specific
and not generalizable to other study sites or to other kinds of mapping units.

4. Conclusions

This research was part of a large international project for which a landslide suscepti-
bility assessment was required for landscapes intersected by the new silk road. The first
limitation we found was to access landslide inventories in countries with scarce data avail-
ability, among which is Tajikistan. As a result, we mapped landslides under the assumption
that we could not map them all and that at a certain point, we should have stopped and
considered our inventory suitable for susceptibility modeling.

This framework raised the question when the landslide inventory can be considered
complete enough to serve as a basis for susceptibility modeling and what would have been
the implications if we would have stopped mapping earlier than the deadline we set. All
the analyses we performed were aimed to address this issue, including sensitivity checks
tested at decreasing numbers of unstable UCUs. The susceptibility patterns and associated
performances appeared quite robust, with relatively small differences when using a small
or a large sample of unstable UCUs. This may be due to the relatively coarse spatial
partition we adopted, and the use of the UCUs, which were defined as the intersection
between catchments and geological units.

The susceptibility analysis measures the propensity of the territory to generate land-
slides, from the presence/absence information associated to the mapping units and from
the selected covariates. The small variations we found may imply that UCUs are already
sufficient to capture the landslide distribution even with a relatively small sample of land-
slides, and that UCUs that are unstable share very specific characteristics. In fact, the
difference in AUC between a median model yielding 0.79 and a median model yielding
a 0.87 approximately corresponds to just 80 km2, for the very high susceptible class in
quartile classification. Therefore, from a pure performance perspective, it seems that it
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could have been convenient to stop mapping long before the deadline we set for ourselves.
However, merely looking at the absolute performance would be a mistake. In particular,
the spatial distribution of the probability with an AUC of 0.79 shows high and very high
levels of susceptibility in areas where we expected stable conditions.

Therefore, we further investigated the best compromise in between the two extremes.
This is shown in Figure 11 where we measured the rate of variations in AUC as the unstable
sample increased. There, the largest variation coincides with 220 unstable UCUs, after
which the improvement rate of the susceptibility significantly drops.

One of the limitations in the generalization of the results we obtained may be due to
the mapping unit we chose. In fact, coarser mapping units are less sensitive to variations in
the number and distribution of landslides. Conversely, smaller mapping units would likely
capture the variations induced by our modeling strategy at varying landslide proportions.
This in turn may have led to variations in model performance and covariate effects. We are
currently testing the same analytical protocol on the basis of a slope unit-based partition
to monitor whether the choice of finer mapping units may yield to slightly different
conclusions.

All these considerations could still be very local and not relevant to any landslide
susceptibility studies outside Tajikistan. However, we believe the protocol developed
is a very interesting tool to investigate a problem that is heavily underestimated in the
literature. We envision future development to measure whether the spatial incompleteness
we tested here can be extended to its spatio-temporal counterpart.

To promote reproducible and repeatable analyses and to stimulate further research
on this topic, we have shared the R codes at this repository https://github.com/giactitti/
GAM-Tajikistan, accessed on 8 November 2021.
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Appendix A

Figure A1. Flow-chart summarizing the analytical protocol we implemented.

Figure A2. PGA, area, profile curvature, and plan curvature effects graphical summary at a varying
proportion of landslide presence data.
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Figure A3. Mean slope effect graphical summary at a varying proportion of landslide presence data.
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Figure A4. Mean relative relief effect graphical summary at a varying proportion of landslide presence data.
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Figure A5. Mean annual precipitation effect graphical summary at a varying proportion of landslide presence data.
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Figure A6. Lithology effect graphical summary at a varying proportion of landslide presence data
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Figure A7. Land use effect graphical summary at a varying proportion of landslide presence data.
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Figure A8. ROC curves from the 1st to 10th run at a varying proportion of landslide presence data. Each figure shows 10
ROC curves of cross-validation per 20 different landslide presence proportions (200 curves in each figure).
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