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Abstract: The Pre-Mesozoic units exposed in the inner Northern Apennines mostly consist of
Pennsylvanian-Permian successions unconformably deposited on a continental crust consolidated at
the end of the Variscan orogenic cycle (Silurian-Carboniferous). In the inner Northern Apennines,
exposures of this continental crust, Cambrian?-Devonian in age, have been described in Northern
Tuscany, Elba Island (Tuscan Archipelago) and, partly, in scattered and isolated outcrops of southern
Tuscany. This paper reappraises the most significant succession (i.e., Risanguigno Formation) exposed
in southern Tuscany and considered by most authors as part of the Variscan Basement. New
stratigraphic and structural studies, coupled with analyses of the organic matter content, allow us
to refine the age of the Risanguigno Fm and its geological setting and evolution. Based on the low
diversification of palynoflora, the content of sporomorphs, the structural setting and the new field
study, this formation is dated as late Tournaisian to Visean (Middle Mississippian) and is not affected
by pre-Alpine deformation. This conclusion, together with the already existing data, clearly indicate
that no exposures of rocks involved in the Variscan orogenesis occur in southern Tuscany.

Keywords: northern Apennines; Risanguigno Formation; Carboniferous; southern Tuscany; Monticiano-
Roccastrada Unit; Tuscan Palaeozoic; palynology

1. Introduction

Stratigraphic reconstructions of the deep successions involved in orogens later af-
fected by post-collisional extensional tectonics are always tempting, since these are nor-
mally metamorphosed and involved in polyphase deformation, are laterally segmented
and, consequently, are exposed in scattered outcrops. This is even crucial for the meta-
morphosed, deep successions of the Northern Apennines [1], which experienced the
Variscan sedimentary and tectonic evolution (Devonian-Carboniferous), then the Alpine
cycle (Triassic-Oligocene), and ultimately the extensional process leading to the opening of
the Tyrrhenian Basin (Miocene-Quaternary). Nowadays, the so-called Tuscan Crystalline
Basement (Cambrian?-Devonian [2]) is discontinuously exposed, and the scarcity of fossils
remains inhibits precise age determination [3–5]. Thus, in absence of fossil records, the
Tuscan Basement is traditionally related to the well-known and better exposed Palaeozoic
succession of southeastern Sardinia, where the Alpine deformation is relatively minor [6–9].

To strengthen this approach, several studies of the pre-Alpine metamorphic rocks of
the Tuscan Archipelago and Apuan Alps have incorporated palaeontological, stratigraphic
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and tectonic data [2,9–14]. On the other hand, a few studies have focused on southern Tus-
cany, where contrasting interpretations on datings and palaeogeographic reconstructions
have been proposed [15–20]. More recently, radiometric (Ar/Ar, U/Th [21–23]) and paly-
nological studies [24,25] have served to motivate a review of the entire Tuscan Palaeozoic
successions based on bio/chronological markers. These studies contribute more precise age
datings and provide new evolutionary scenarios in the context of two distinct Palaeozoic
cycles (Mississippian-early Permian and middle-late Permian) [5,26]. Accordingly, we
re-consider the Risanguigno Formation, which is regarded as part of the Tuscan Crystalline
Basement and constitutes the oldest outcrops in southern Tuscany. In this view, this isolated
and scarcely studied formation strongly influenced the reconstruction of the entire Pre-
Alpine Apenninic succession. Therefore, the aim of this paper is to document and illustrate
a newly discovered palynofloral content and, consequently, to provide the precise age of
the Risanguigno Fm, together with its structural setting. This will lead to determination
of Variscan formations in this key sector of Northern Apennines from a stratigraphic and
palaeogeographic perspective.

2. Geological Outline of the Palaeozoic Units of Tuscany

The inner Northern Apennines (Figure 1) resulted from the convergence (Cretaceous-
Eocene) and collision (Oligocene-early Miocene) between the European Corsica-Sardinia
massif and the Adria microplate of the Africa pertinence. This process produced the
stacking of tectonic units deriving from oceanic and continental palaeogeographic do-
mains [27,28].
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Figure 1. Structural sketch map of (a) the Northern Apennines and (b) Northern Tyrrhenian Sea.

In southern Tuscany these are, from top to bottom (Figure 2): (a) the Ligurian and
Sub-Ligurian Units, consisting of remnants of Jurassic oceanic and transitional crust and
their related Cretaceous–Oligocene sedimentary cover; (b) the Tuscan Units including the
Triassic-early Miocene sedimentary (Tuscan Nappe) and Palaeozoic-Triassic metamorphic
succession. According to [29,30], this metamorphic succession can be broadly subdivided in
(i) a late Cambrian?-Mississippian basement (affected by deformation during the Variscan
orogenesis) and (ii) a Late Pennsylvanian to Triassic sedimentary cover, deposited during
the Variscan post-collisional events.
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Figure 2. Tectono-stratigraphic columns illustrating the main features of the paleogeographic do-
mains of the inner Northern Apennines (redrawn from [27,31]).

The Palaeozoic basement is made up of quartzites and phyllite with acidic to interme-
diate metavolcanic rock (porphyroid). At their top, black shale, radiolarite (lydian stone)
and metacarbonate deposits (dolostone, calcschist) have been detected [4,10,32–34]. This
succession, attributed to the Cambrian?-Devonian, on the basis of scattered fossils [4] and
U/Th radiometric dating [21–23], is classically related to the central-southern Sardinia
succession [35] and is considered to be involved in the Variscan orogeny during the early
Carboniferous [12]. In the Inner Northern Apennines, Palaeozoic rocks involved in the
Variscan deformation extensively crop out in the La Spezia-Apuan Alps-Mt. Pisani area,
while smaller exposures are located in the Tuscan Archipelago (Elba island) and southern
Tuscany (Figure 3). It is noteworthy that some deep wells in northern Tuscany (Pontremoli)
and in the geothermal area of southern Tuscany are believed to have intersected deformed
Variscan rocks [2,8,9,12,14,36–40].

The “post-Variscan” Palaeozoic-Triassic sedimentary succession (referable to the
Phyllite-Quartzitic Group of [41]) is mostly exposed in the Monticiano-Roccastrada Unit
(Figures 3 and 4), along the Middle Tuscan Ridge, in three different main tectonic units,
as defined by [19]: Iano Sub-Unit 1; Monte Quoio-Montagnola Senese Sub-Unit 2; Monte
Leoni-Farma Sub-Unit 3—Figure 4. Only minor outcrops are present elsewhere, and locally
drilled by boreholes [1,9,10,37,42–46].



Geosciences 2021, 11, 84 4 of 24

Geosciences 2021, 11, x FOR PEER REVIEW 4 of 24 
 

 

as defined by [19]: Iano Sub-Unit 1; Monte Quoio-Montagnola Senese Sub-Unit 2; Monte 
Leoni-Farma Sub-Unit 3—Figure 4. Only minor outcrops are present elsewhere, and lo-
cally drilled by boreholes [1,9,10,37,42–46]. 

 
Figure 3. Distribution of metamorphic units in Tuscany, including Variscan deposits (in black). 

This succession is formed by phyllite, metasandstone, metaconglomerate with local 
carbonate levels attributed to Mississippian-late Permian on the basis of the fossil 
[16,18,44,47–49], palynoflora content [24,25] and radiometric dating [23]. Its evolution is 
related to rifting [1], transcurrent/transtensive pull-apart basins [5,50] or to late Variscan 
compressional events [9,19]. 

The uppermost part of the succession is represented by the typical Triassic continen-
tal quartz-dominated clastic sedimentation belonging to the Verrucano Group [51–53].  

During the Apennines collisional stages, the above-mentioned Palaeozoic-Triassic 
successions were involved in duplex structures, up to HP-LT conditions (P ≥ 1.1 GPa and 
T ~ 350–400 °C) and retrograde green schist metamorphic conditions [54–61]. Their exhu-
mation was favoured by the development of Miocene extensional detachments [26,62], 
which produced extensional horses (i.e., megaboudins [63]) and the lateral segmentation 
of the previously stacked tectonic units. 

Figure 3. Distribution of metamorphic units in Tuscany, including Variscan deposits (in black).

This succession is formed by phyllite, metasandstone, metaconglomerate with lo-
cal carbonate levels attributed to Mississippian-late Permian on the basis of the fos-
sil [16,18,44,47–49], palynoflora content [24,25] and radiometric dating [23]. Its evolution is
related to rifting [1], transcurrent/transtensive pull-apart basins [5,50] or to late Variscan
compressional events [9,19].

The uppermost part of the succession is represented by the typical Triassic continental
quartz-dominated clastic sedimentation belonging to the Verrucano Group [51–53].

During the Apennines collisional stages, the above-mentioned Palaeozoic-Triassic
successions were involved in duplex structures, up to HP-LT conditions (P ≥ 1.1 GPa
and T ~ 350–400 ◦C) and retrograde green schist metamorphic conditions [54–61]. Their
exhumation was favoured by the development of Miocene extensional detachments [26,62],
which produced extensional horses (i.e., megaboudins [63]) and the lateral segmentation of
the previously stacked tectonic units.
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Figure 4. (a) Schematic sketch of the Middle Tuscan Ridge with geographic distribution of the three
structural Sub-Units; (b) Simplified stratigraphy and tectonic relation among the three Sub-Units
(redrawn from [64]).

Variscan Basement in Southern Tuscany: The Risanguigno Formation

In this framework, the Risanguigno Fm represents the only cropping out unit in
southern Tuscany assigned to the Palaeozoic basement. It is part of Sub-Unit 2 (Monte
Quoio-Montagnola Senese) of the Monticiano-Roccastrada Unit (Figure 4).

Such a formation was initially defined in the type locality of the Risanguigno Creek
by [4]. These main exposures were previously described by [47,65], although interpreted
as part of another formation (Boccheggiano Fm). Subsequently, [20,66,67] related other
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outcrops exposed in the surroundings (Farma River, Figures 4 and 5) to the Risanguigno
Fm, furthermore recognized in a few boreholes [68].
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The base of the formation is never exposed, although [20] postulated the presence of
a basal stratigraphic unconformity separating the Risanguigno Fm from the underlying
Variscan deformed units.
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At the top, the Risanguigno Fm is in contact with the Poggio al Carpino Fm [64], a
middle-late Permian [19,25,69] clast- to matrix-supported polymictic conglomerate, often
alternated with grey quartzose sandstone and subordinate dark grey phyllite [70]. The
contact between the Risanguigno and Poggio al Carpino formations is described as an
angular unconformity by [18], in contrast with [20], indicating that the Poggio al Carpino
Fm stratigraphically overlies the lower unit.

From a sedimentary point of view [2,18,19], the Risanguigno Fm is composed by black-
grey graphitic to bituminous phyllite intercalated with cm- to dm-thick alternations of:
(i) grey-greenish to black quartzose, granolepidoblastic metasandstone and siltstone with
iron-rich carbonate matrix and detritic mica, (ii) cm-thick microcrystalline, granoblastic
dolostone rich in detritic quartz and white mica, (iii) silicified grey metalimestone, and (iv)
thinly bedded, grey-greenish to black chert and radiolarian lydite. A chert sub-sequence,
up to 4.5 m thick and intercalated with fine-grained clastics, was also recognized in close
outcrops by [66], and later correlated with the small chert sequence present also in the
Risanguigno type locality [20]. Anhydrite in the silicified limestone is reported by [17,65],
while this is not described by [68]. Local post-tectonic chloritoid needles are reported in
the metasandstones and metasiltstones by [2].

Rocks are strongly deformed, making the stratigraphic reconstruction difficult. By this,
and due to the fact that the basal contact is not exposed, the thickness of the Risanguigno
Fm is unknown and only inferred in 40 m, at least [20].

Regarding the fossiliferous content, [4,71] reported a conodont fauna, characterized
by Ozarkodina denckmanni, Panderodus unicostatus and Icriodus sp. This fauna was recovered
from the dolostone levels in the type locality at the altitude of 304 m along the Risan-
guigno Creek.

Regarding the chert-subsequence, [4,68] accounted for the presence of recrystallized
radiolaria, often well preserved although flattened during deformation.

The formation, originally attributed to a generic Carboniferous by [47,65], was ascribed
to the Early Devonian on the basis of the conodont fauna [4]. Alternatively, [66] suggested
a Tournaisian-Visean age based on the radiolaria observed in the chert sub-sequence,
while [17,20] related these siliceous portions to late Devonian-early Carboniferous (late
Emsian to Visean?) on the basis of the lithological correlation with similar deposits in the
circum-Mediterranean area.

Similarly, the interpretation of the depositional environment is matter of debate.
Ref. [4] proposed a shallow marine origin, while [17] favoured a moderately deep water
basin origin, owing to the presence of the siliceous portions. In contrast, [71] suggested an
epicontinental shelf characterized by recurrent anoxic conditions, while [20] accounted for
a highly condensed sequence deposited in a starved, low energetic, distal and relatively
deep marine environment.

From a tectonic point of view, the Risanguigno Fm is described as intensely deformed
and marked by a metamorphic grade higher than the one affecting the overlying formation,
i.e., the Poggio al Carpino Fm [4]. In this view, according to [9,37], the Risanguigno Fm
evidences relics of a pre-Alpine deformation, interpreted as a Variscan syn-metamorphic
tectonic foliation relatable to the Sudetic event.

3. Materials and Methods

A detailed field survey was carried out in key areas where the Risanguigno Fm is
exposed. The fieldwork was dedicated to field mapping and data collection for describ-
ing the deformation affecting the Risanguigno Fm and the overlying units. During the
survey, 21 samples of black phyllite, metasiltstone and metacarbonate (16 samples from
the Risanguigno Creek and 5 samples from the Farma River (Table 1) were collected for
petrographic, microfacies and biostratigraphic studies. Palynological samples (c. 20 g each
for phyllite and metasiltstone lithologies and 100 g each for metacarbonate samples) were
treated by standard palynological acid maceration (with 37% HCl, 50% HF, boiling HCl
10%), density separation of the organic matter (using a ZnCl2 solution) and filtration of
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the organic-rich residue at 10 µm. As a result of the high degree of thermal alteration, the
organic residue was treated with Schultz solution and filtered with 10 µm sieve.

Table 1. Analysed samples, with related geographical coordinates, lithology and content (quotes in meter above sea level
—m a.s.l.).

Sample Locality Quote Latitude Longitude Lithology Analysis Content

RIS 1 Risanguigno
Creek 304 m a.s.l. 43◦8′3.85′ ′ N 11◦11′38.13′ ′ E Black phyllite Palynology productive

RIS 2 Risanguigno
Creek 304 m a.s.l. 43◦8′4.03′ ′ N 11◦11′37.84′ ′ E

Fine
metasand-

stone
Palynology barren

RIS 3 Risanguigno
Creek 304 m a.s.l. 43◦8′4.34′ ′ N 11◦11′33.84′ ′ E Black phyllite Palynology productive

RIS 4 Risanguigno
Creek 304 m a.s.l. 43◦8′4.43′ ′ N 11◦11′33.74′ ′ E Black phyllite Palynology productive

RIS 5 Risanguigno
Creek 304 m a.s.l. 43◦8′8.01′ ′ N 11◦11′32.15′ ′ E Black phyllite

and lidyte Palynology productive

RIS 6 Risanguigno
Creek 304 m a.s.l. 43◦8′7.95′ ′ N 11◦11′32.12′ ′ E Black phyllite

and lidyte Palynology productive

RIS 7 Risanguigno
Creek 304 m a.s.l. 43◦8′7.98′ ′ N 11◦11′32.11′ ′ E Black phyllite Palynology productive

RIS 11 Risanguigno
Creek 304 m a.s.l. 43◦8′3.77′ ′ N 11◦11′40.46′ ′ E Black phyllite Palynology barren

RIS 12 Risanguigno
Creek 304 m a.s.l. 43◦8′4.72′ ′ N 11◦11′34.02′ ′ E Dolostone Palynology barren

RIS 13 Risanguigno
Creek 304 m a.s.l. 43◦8′7.76′ ′ N 11◦11′31.90′ ′ E Dolostone Palynology barren

RIS 14 Risanguigno
Creek 324 m a.s.l. 43◦7′46.76′ ′ N 11◦11′43.98′ ′ E Black phyllite Palynology barren

RIS 15 Risanguigno
Creek 324 m a.s.l. 43◦7′47.91′ ′ N 11◦11′43.53′ ′ E Black phyllite Palynology productive

RIS 16 Risanguigno
Creek 324 m a.s.l. 43◦7′47.95′ ′ N 11◦11′43.44′ ′ E Black phyllite Palynology productive

RIS 17 Farma River 265 m a.s.l. 43◦5′15.41′ ′ N 11◦11′23.57′ ′ E Metasiltstone Palynology productive

RIS 18 Farma River 265 m a.s.l. 43◦5′15.32′ ′ N 11◦11′24.59′ ′ E Black phyllite Palynology productive

RIS 19 Farma River 270 m a.s.l. 43◦5′20.19′ ′ N 11◦11′13.15′ ′ E Black phyllite Palynology barren

RIS 20 Farma River 270 m a.s.l. 43◦5′20.13′ ′ N 11◦11′13.22′ ′ E Metacarbonate Palynology barren

RIS 21 Farma River 270 m a.s.l. 43◦5′20.10′ ′ N 11◦11′13.28′ ′ E Metacarbonate Palynology/
Conodonts barren

RIS 22 Risanguigno
Creek 304 m a.s.l. 43◦8′4.22′ ′ N 11◦11′33.97′ ′ E Dolostone Palynology/

Conodonts barren

RIS 23 Risanguigno
Creek 304 m a.s.l. 43◦8′4.28′ ′ N 11◦11′33.79′ ′ E Dolostone Palynology/

Conodonts barren

RIS 24 Risanguigno
Creek 304 m a.s.l. 43◦8′4.18′ ′ N 11◦11′35.98′ ′ E Dolostone Palynology/

Conodonts barren

Light microscope observations were performed on palynological slides using a Leica
DM1000 microscope (Leica, Wetzlar, Germany) using the differential interference contrast
technique in transmitted light. Images were captured using the camera on the digital micro-
scope and successively corrected for contrast and brightness using the open-source Gimp



Geosciences 2021, 11, 84 9 of 24

software. The palynological slides are stored at the Sedimentary Organic Matter Laboratory
of the Department of Physics and Geology, University of Perugia, Italy. Metacarbonate
samples were collected from dolostone levels for the analyses of conodont content and
processed by standard procedures using 10% acetic acid. The residue was washed through
a 71 µm sieve.

4. Results

The results are summarized in different sections, according to the main issues of
lithology, fossil content, and deformation.

4.1. Lithological Characteristics

The outcrops exposed in the Risanguigno Creek and Farma River were revisited
(Figure 5).

In the Risanguigno Creek, the formation crops out in two small windows (quote
304 m and quote 324 m a.s.l.) in correspondence of the riverbed (Figure 5a). A small
supplementary outcrop, never described before, was discovered along the riverbed at
quote 300 m. The Risanguigno Fm is mostly dominated by black to grey phyllite, locally
intercalated by cm-thick level and lenses of metasandstone and metasiltstone (Figure 6a,b).
Only in the outcrop of quote 304 m is phyllite intercalated with cm-thick beds and lenses
of microcrystalline dolostone and silicified grey metacarbonate (Figure 6c). These are
geometrically positioned below a small succession (max 2 m thick) displaying alternation
of phyllite and chert beds/lydite in thinly bedded laminae (Figure 6d). The transition from
the Risanguigno Fm to the overlying grey quartzose metasandstone and metaconglomerate
formation (Poggio al Carpino Fm) is marked by a sharp angular unconformity (Figure 6e).

Along the Farma River, outcrops are located close at the Ferriera locality, on the right
bank of the riverbed at quote 270 m and 265 m a.s.l. (Figure 5b). Black bituminous phyllite,
locally smelly and rich in millimetric-sized crystals of pyrite, is the dominant lithotype.
Conversely, metasandstone and metasiltstone, as also dolostone and metacarbonate, are less
diffuse. The 4.5-m-thick chert sequence evidenced by [66] constitutes the main lithological
variation and morphological prominence (Figure 6f,g). Similarly to the Risanguigno Creek,
here, also, the chert beds are positioned at the top of the succession, immediately below the
Poggio al Carpino Fm.

In both valleys, the complete stratigraphic reconstruction is prevented by an intense
folding (see the next paragraph).

4.2. Fossiliferous Content

Twenty-one samples were obtained from almost all the analysed outcrops. In the
Risanguigno Creek, three samples were from quote 324 (RIS14, 15, 16) and thirteen from
quote 304 (RIS1, 2, 3, 4, 5, 6, 7, 11, 12, 13, 22, 23, 24). In the Farma River, two samples
were from quote 265 (RIS17,18) and three from quote 270 (RIS19, 20, 21). All of them were
analysed for their palynological content. Four samples were analysed for conodont content
(Table 1).

4.2.1. Palynological Content

Ten samples out of 21 were productive, even yielding strongly degraded palynofloral
assemblages (Table 1). Degradation was mainly due to intense in situ pyritization affecting
the exine of miospores. A low metamorphic grade with a temperature of about 350–
400 ◦C [56] was recognized. Nonetheless, different organic microfossils were recognized,
adding new data for the age determination of the Risanguigno Fm. The palynological
assemblage mainly consists of ornamented forms as Auroraspora balteola, Claytonispora
distincta, Retialetes radforthii, Vallatisporites? hystricosus, Perotrilites magnus, Spelaeotriletes
balteatus, S. pretiosus and Grandispora sp. Different tetrads of indeterminate apiculate spores
also occur (Figure 7).



Geosciences 2021, 11, 84 10 of 24Geosciences 2021, 11, x FOR PEER REVIEW 10 of 24 
 

 

 
Figure 6. Lithological characteristics of the Risanguigno Fm: (a) view of the dominant black phyllite; (b) thin intercalations 
of metasiltstone lenses; (c) examples of metacarbonate beds; (d) example of thin laminae and beds of lydite; (e) upper 
contact of the Risanguigno Fm with the Poggio al Carpino Fm with evidence of the angular unconformity; (f) chert se-
quence cropping out along the Farma River; (g) detail of thinly laminated chert sequence. 

4.2.1. Palynological Content 
Ten samples out of 21 were productive, even yielding strongly degraded palynofloral 

assemblages (Table 1). Degradation was mainly due to intense in situ pyritization affect-
ing the exine of miospores. A low metamorphic grade with a temperature of about 350–
400 °C [56] was recognized. Nonetheless, different organic microfossils were recognized, 
adding new data for the age determination of the Risanguigno Fm. The palynological as-
semblage mainly consists of ornamented forms as Auroraspora balteola, Claytonispora dis-
tincta, Retialetes radforthii, Vallatisporites? hystricosus, Perotrilites magnus, Spelaeotriletes bal-
teatus, S. pretiosus and Grandispora sp. Different tetrads of indeterminate apiculate spores 
also occur (Figure 7). 

  

Figure 6. Lithological characteristics of the Risanguigno Fm: (a) view of the dominant black phyllite; (b) thin intercalations
of metasiltstone lenses; (c) examples of metacarbonate beds; (d) example of thin laminae and beds of lydite; (e) upper
contact of the Risanguigno Fm with the Poggio al Carpino Fm with evidence of the angular unconformity; (f) chert sequence
cropping out along the Farma River; (g) detail of thinly laminated chert sequence.

4.2.2. Conodont Content

All processed samples were barren in terms of conodont content.

4.3. Deformation

The Risanguigno Fm, together with the overlying units (Permian Poggio al Carpino
Fm and Triassic Verrucano Group) exposed in the Risanguigno Creek and Farma River
(Figure 5), are commonly involved in polyphase folding characterized by superposed F1
and F2 folds, with NS and NS-NNE axial trends, respectively.
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Figure 7. Miospores from Risanguigno Formation. Scale bar indicates 10 µm. (1) Claytonispora
distincta Playford and Melo 2012 (slide: RIS 3). (2) Pustulatisporites sp. (slide: RIS 3). (3) Retialetes
radforthii Staplin 1960 (slide: RIS 15). (4,15) Indeterminate miospore (slide: RIS 15). (5) Tetrad of
indeterminate apiculate spores (slide: RIS 3). (6,7). Vallatisporites? hystricosus (Winslow) Byvscheva
1985 (slide: RIS 15). (8) Auroraspora balteola Sullivan 1964 (slide: RIS 3); (9) Spelaeotriletes balteatus
(Playford) Higgs 1975 (slide: RIS 15). (10,11) Indeterminate spore with a heavily pyritized exine. (slide:
RIS 15). (12) Spelaeotriletes pretiosus (Playford) Neves and Belt 1970 (slide: RIS 18). (13) Grandispora sp.
(slide: RIS 15). (14) Perotrilites magnus Hughes and Playford 1961 (slide: RIS 15).

Both folding events are referrable to the Alpine evolution. F1 folds are the prominent
structures and involve the entire succession, defining the main shape and geometries of
the exposures (Figures 8 and 9). F1 folds range from map-scale to outcrop-scale and have
hectometre- to decimetre sizes (Figure 8). These consist of tight and isoclinal recumbent
folds, with axial planes steeply dipping toward west. F1 hinge lines mostly dip gently
toward S-SE (Figure 8), although in some rare cases they dip toward N-NW (Figure 9).
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Figure 8. N-S trending F1 folds affecting the metasandstone and metapelite succession of the Poggio al Carpino Fm exposed
in the Risanguigno Creek. (a) F1 sub-isoclinal folds and related S1 axial planar tectonic foliation and related stereographic
diagram (lower hemisphere, equiareal diagram); (b,c) enlarged sector of the F1 hinge zones indicated in (a) and showing the
S0/S1 angular relationships also shown in the stereographic diagram (lower hemisphere, equiareal diagram); (d,e) hinge
zone of F1 fold with a pervasive axial planar S1 tectonic foliation developed within the metapelite; relationships between S0

and S1 are indicated in the stereographic diagram (lower hemisphere, equiareal diagram).

In the quartz-metasandstone and metaconglomerate, S1 is a rough cleavage, as high-
lighted by the differentiated domains when alternating quartzitic and micaceous layers
are present. The L1 object lineation occurs in the phyllite and metasilstone, defined by
elongated quartz and mica lenses tracking the x axis of the finite strain ellipse.
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Figure 9. Macroscopic scale deformation pattern of the phyllite and metacarbonate belonging to the Risanguigno Fm.
(a) detail of the contact separating the Risanguigno Fm from the Poggio al Carpino Fm and geometrical relationships
between S0/S1 and S2 foliations (see the text for more details) also indicated in the stereographic diagram (lower hemisphere,
equiareal diagram). (b) Penetrative S1 foliation crossing the metaconglomerate level belonging to the basal part of the
Poggio al Carpino Fm. (c) Centimetre-scale isoclinal F1 folds and the S1 axial planar tectonic foliation crossed by the S2

tectonic foliation. (d,e) F2 open folds affecting the S0/S1 foliations affecting phyllite and metacarbonate levels.

At the microscopic scale, S1 relates to a continuous foliation, mainly defined by elon-
gate quartz layers, formed by flattened and dynamically recrystallized grains, alternated
with mica-rich domains (Figure 10a,b). Mica domains are mainly composed of fine-grained
white mica and biotite (Figure 10a–d) with locally developed chloritoid crystals, grown
both along the main foliation and crossing it (Figure 10d).
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Figure 10. (a,b) Phyllitic quartzite (Risanguigno Fm) showing the S1 foliation consisting of meta-
morphic layering made up of quartz and white mica + biotite levels ((a) plane polarized light; (b)
crossed polars). (c,d) Microscale F1 fold with associated S1 foliation mainly formed by quartz +
white mica + biotite + chloritoid. This latter is also represented by post-kinematic bigger crystals
(see (e)), suggesting syn- and post-S1 development ((c) plane polarized light; (d) crossed polars).
(f,g) Mineralogical association of the S1 foliation developed within carbonate rich levels, mainly
composed by qtz + cc + white mica + biotite + chloritoid ((f) plane polarized light; (g) crossed polars).
(h,i) s-c shear zone (top-to-the right) affecting the organic matter-bearing phyllite and developed
coevally with the S1 foliation; the latter is affected by a later crenulation cleavage possible related to
the F2 folding event ((h) plane polarized light; (i) crossed polars).
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Syn-kinematic calcite locally developed within the polycrystalline quartz-rich layers
(Figure 10e,f). Localized mylonitic layers with mica fish structures (Figure 10 g,h) developed
mainly at the boundary between quartz- and mica-dominated domains. F2 folds are also
recognisable both at the map and outcrop scale and display hectometre to decimetre
sizes (Figures 8 and 9). F2 folds deformed F1 isoclinal folds and their related S1 axial
planar foliation. F1/F2 fold interferences have been reconstructed in the Farma Creek
area (Figure 8), where F1 folds affecting the Triassic and Palaeozoic succession have been
deformed by top-to-the-East verging F2 folds. F2 folds consist of gentle to close folds, in
some cases overturned. Axial planes are gently to moderately dipping toward West. F2
hinge lines are sub-horizontal or deep gently toward SSW (Figure 9).

An axial-planar foliation (S2) is associated with F2 folds, well developed only in the
metapelite levels (Figure 9). It ranges from spaced disjunctive to a crenulation cleavage. At
the microscopic scale, the S2 consists of a spaced foliation often producing zonal crenulation
cleavage defined by symmetric or asymmetric microfolds.

5. Discussion

The newly obtained data, especially from the bio-chronological perspective, allow us
to frame the Risanguigno Fm in a new scenario with fallouts in the Palaeozoic palaeogeog-
raphy of Gondwana. We describe this in the following sections.

5.1. New Bio-Chronological Framework of the Risanguigno Fm

The palynological assemblage shows similar compositional characteristics to those
documented in the Mississippian successions of Western Europe, northern Gondwana and
other areas.

Auroraspora balteola was documented in the mid-Visean within the Knoxisporites
triradiatus-Knoxisporites stephanephorus (TS) Zone of Kammquartzite Formation in the Rheno-
hercynian Zone (Germany; [72]) and in the late Visean of England [73] in assemblage with
Spelaeotriletes pretiosus in the Tournaisian of eastern Scotland [74]. This last taxon marks
the base of the Spelaeotriletes pretiosus-Raistrickia clavata (PC) Zone attributed to the late
Tournaisian and first described from SW Britain [75] and from Ireland [76]. Later, in the
latter country, [77] also documented the PC biozone, characterized by the occurrence of
S. balteatus and Claytonispora distincta within a stratigraphic interval attributed to middle-
late Tournaisian on the basis of conodont fauna. In Belgium, the base of the PC biozone
occurred within the upper Siphonodella crenulata conodont Zone (late Tournaisian, [78]).
Spelaeotriletes pretiosus was also reported in assemblage with S. balteatus from other Mis-
sissippian sequences of Western Europe [79–82], North America [83–86] and China [87].
The species was also documented from similar-aged rocks in some regions of Northern
Gondwana. In particular, in North Africa, [88,89] considered microfloristic assemblage
marked by the occurrence of S. pretiosus, S. balteatus and Vallatisporites vallatus of late
Tournaisian age, without excluding a younger early Visean age. In Algeria, S. pretiosus
occurred in the middle Tournasian-lower Visean palynozones [90,91]. In Libya, a sim-
ilar microflora was found in the late Tournaisian-Visean time interval (palynozones XI
and XII [92]; palynozones 13 and 14 [93,94]). Analogous palynoflora also occurs in the
Tournaisian-early Visean of Saudi Arabia [95,96] and the Central Iranian Basin [97]. In
Southeastern Turkey, [98] tentatively correlated the Spelaeotriletes pretiosus-Aratrisporites
saharensis assemblage, where Vallatisporites hystricosus also occurs, with the PC biozone of
Western Europe. In Western Gondwana regions, a similar assemblage also characterizes the
late middle to early late Tournaisian Spelaeotriletes pretiosus-Colatisporites decorus Biozone
documented from Brazil [99–105]. On the other hand, in the northern Gondwana regions, S.
balteatus was also documented in slightly younger time-intervals (e.g., Visean of Libya [89];
Visean of Morocco [106]; Visean-Bashkirian of Saudi Arabia [95,107]).

Regarding the conodont content previously reported by [4], the new investigation
carried out in the same levels was not productive. This negative evidence, coupled with the
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contemporaneous presence of a younger-aged rich microflora, suggests that the previously
reported conodonts were reasonably reworked fossils, deriving from older deposits.

Therefore, based on the stratigraphic range of the recorded microflora, we can confirm
the age of Risanguigno Fm as being late Tournaisian-Visean, as already suggested by [66]
on the basis of radiolarian fossil content.

5.2. Paleoenvironmental Insights

The Risanguigno Fm depositional environment was highly debated in previous stud-
ies and alternatively attributed to shallow [4], moderate [7,64] or relatively deep marine
environments [20]. The presence of Middle Mississippian metacarbonate/dolostone and
siliceous portions (lydite beds) seems consistent with carbonate-to-radiolarite platform
environment, also recognized in several lower Carboniferous tectofacies (eastern Southern
Alps, Karawanken Mountains, external Dinarides, southern margin of the Pannonian Basin,
Aegean islands, Calabria and southern Sardinia [7,107]) of the central Mediterranean area.
Accordingly, the lydite deposits do not necessarily require a deep-water environment since
these can develop in different depositional areas [108,109], especially if associated with a
local silica-enrichment related to volcanic activity in nearby zones [4]. In this view, it is
worth remembering that the Variscan evolution was associated with a widespread magma-
tism during the late Carboniferous [110–112], as well as during the Mississippian [112–115].
On the other hand, the organic-rich property of the phyllite supports the deposition in
a starved, oxygen-deficient environment. In fact, the finding of spores characterized by
pseudosculpture induced by deposition of pyrite crystals in the wall (exine) interstices is
indicative of syn-depositional pyrite, suggesting that the water/sediment interface was in
a strongly reducing state [116–119]. Regarding the bathymetric definition of this anoxic
environment, the interpretation remains difficult. Nonetheless, the type and morphology
of the recovered microflora are indicative of a shallow-marine-to-epicontinental deposi-
tional environment: the presence of ornamented spores and tetrads suggest a proximal
depositional environment since the spores were selected according to their hydrodynamic
equivalence, and the tetrads did not maintain their integrity along the distal direction [120].

Consequently, we interpreted the Risanguigno Fm as being deposited during the Mid-
dle Mississippian in a shallow-marine-to-epicontinental setting, characterized by starved,
anoxic condition in its lower portion and progressively evolving to carbonate-radiolarite
platform. Some authors [121] have evidenced that chert sedimentation dominated during
the late Devonian and Mississippian in the tropical Palaeotethys strait, and associated their
development with sea-level rise.

The organic-rich deposit could also be related to oceanic anoxic events known for the
late Frasnian to Late Mississippian age and influenced by global climatic and oceanographic
changes. One of these corresponds to the mid-Tournaisian carbon isotope excursion
(TICE) [122,123], as indicated by the largest positive δ13C excursion in the Phanerozoic.
This is related to the climatic transition between the Devonian greenhouse and the late
Paleozoic ice age [124]. Such TICE was interpreted as being the result of either Oxygen
Carbon sequestration in foreland basin deposits (tectonic-sedimentation driver [122,125])
or oxygen minimum zone expansion (marine anoxia driver [126–129]).

5.3. Stratigraphic Setting

The new palynological evidence frames the Risanguigno Fm in the Mississippian,
thus implying a reconsideration of the southern Tuscany Palaeozoic setting.

The Risanguigno Fm represented an issue in the lateral juxtaposition with the other
southern Tuscany Palaeozoic deposits belonging to the three sub-units of the Monticiano
Roccastrada Unit (i.e., Sub-Unit 1: Scisti di Iano Fm—[130,131]; Sub-Unit 3: Calcari di
S.Antonio-Scisti a Spirifer formations—[16,18]—Figure 4b). The new attribution of the
Risanguigno Fm to the Middle Mississippian implies a stratigraphic correlation with all
these Carboniferous deposits as representing different portions of a same marine deposi-
tional environment, evolving through time.
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In this view, the Risanguigno Fm is interpreted as the older cropping out deposits
of the basin. This shallow marine-to-epicontinental setting was progressively evolving,
in its upper part, to a Moscovian shale-carbonate deposition (Calcare di S.Antonio Fm—
Scisti a Spirifer Fm; [16,18]—Figure 11) and open marine environment during Upper
Pennsylvanian (Scisti di Iano Fm. [131]). A similar age (up to lower Permian) is also
testified for the continental succession (Scisti di San Lorenzo Fm; [132]) exposed in the
northernmost area of Tuscany (Figure 11).
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This Carboniferous-lower Permian deposition was succeeded by a second middle-
late Permian sedimentary cycle (see, e.g., [5] for a review) where the older deposits
were partially dismantled and accumulated in the new one. This is also testified in the
Monticiano-Roccastrada area by the occurrence of numerous clastic fragments relatable
to the Risanguigno Fm [4], or by the presence of middle Carboniferous (late Visean-early
Namurian: [16,47–49,133,134]) clasts, bioclasts and olistoliths embedded within the middle-
late Permian Farma and Carpineta formations [70].

5.4. Deformation Insights

The deformation evidenced by the structural survey indicates that the Risanguigno Fm
shared its tectono-metamorphic evolution with the overlying middle-late Permian Poggio
al Carpino Fm and Triassic Verrucano Group, therefore highlighting their involvement in
the Alpine deformational history. Noteworthy, neither outcrop-scale nor microscopic-scale
evidence suggests the involvement of the Risanguigno Fm in a pre-Alpine deformation.
This implies that the depositional environment of the Risanguigno Fm remained reason-
ably external to the orogenesis of Variscan chain, even during the formation of foreland
and/or piggy-back basins. In this view, the presence of a Variscan tectonic phase in ex-
plaining the angular unconformity separating the Risanguigno Fm with the overlying
Poggio al Carpino Fm and attributed to the Sudetic [15,43] or Bretonian phase [9,18,38] is
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denied. Therefore, such an angular unconformity is to be considered as having developed
during the Carboniferous-Permian post-collisional tectonic regime [32,45,53], giving rise
to short-lived, possibly pull-apart basins, dominated by continental to shallow-marine
conditions [5].

5.5. Paleogeographical Implications

According to several reconstructions [1,5,135–141], during the Variscan evolution the
Mississippian foredeep and piggy-back basin facies are always represented by coarse-
dominated deposits (Culm facies—[141–144]) rapidly involved in the orogenesis and
then progressively dismantled during exhumation and uplift. Accordingly, this foredeep
basin was considered as possibly having been affected by late Variscan deformation [9,19],
thus determining basins and rises, bringing to highly diverse depositional settings [20].
Coupling this latter interpretation with the results of the new structural survey (which
rules out the Variscan deformation), we conclude that the Risanguigno Fm is not related
to the Culm deposits. Thus, we propose the Risanguigno Fm as the oldest deposits of
this sedimentary succession promoted in the “stable” Gondwana foreland that developed
within fairly narrow continental or epicontinental domains. These depositional features
could have favoured the low-energy, anoxic environments.

These settings evolved during the Late Pennsylvanian-Permian [32,45,64], originating
graben/semigraben [1] or transcurrent/transtensive pull-apart basins [5,32,145] dominated
by continental (Scisti di San Lorenzo Fm [131]) to shallow-marine conditions (Scisti di Iano
Fm [130]), or local development to carbonate platform (Calcare di S. Antonio Fm [7]).

6. Conclusions

The new palynological-fossiliferous data for the Risanguigno Fm, coupled with its
sedimentary and deformational setting, make it possible to assign it to the Middle Mississip-
pian (late Tournasian-Visean) and to exclude its encompassment in the Variscan basement.

For this reason, it is possible now to exclude in southern Tuscany the outcrops of
successions deformed during Variscan Orogenesis. Consequently, the Tuscan Crystalline
Basement (Cambrian?-Devonian) is only exposed in the northern Tuscany (Apuan Alps,
Pisani Mts and La Spezia area) and Tuscan Archipelago (Elba Island).

Sedimentation of Risanguigno Fm occurred in a shallow-marine-to-epicontinental
setting, characterized by starved, anoxic conditions. This setting, localized in the Variscan
foreland, evolved to open marine during the Pennsylvanian-Permian without any involve-
ment in the Variscan Orogenesis.

On these bases, the Tuscan Palaeozoic-Triassic sedimentary succession (Phyllite-
Quartzitic Group of [40]), classically considered as “post-Variscan” and now comprising the
Middle Mississippian Risanguigno Fm, is no more to be related to the Variscan Orogenesis.
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