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Abstract: The body of literature seeking to evaluate particle interception in vegetated, aquatic
environments is growing; however, comparing the results of these studies is difficult due to large
variation in flow regime, particle size, vegetation canopy density, and stem configuration. In this
work, we synthesize data from these studies and develop a functional form of particle interception
efficiency (η) as a function of stem Reynolds number (Rec), stem diameter, vegetation frontal area,
particle–collector diameter ratio, flow velocity, and kinematic viscosity. We develop this functional
relationship based on a dimensional analysis and hypothesize that the coefficients would exhibit
regimes within different Rec ranges. We test this hypothesis by synthesizing data from 80 flume
experiments reported in the literature and in-house flume experiments. Contrary to our hypothesis,
data from different Rec ranges follow a single functional form for particle interception. In this
form, η varies strongly with collector density and particle–collector diameter ratio, and weakly
with Rec and particle–fluid density ratio. This work enables more accurate modeling of the flux
terms in sedimentation budgets, which can inform ongoing modeling and management efforts in
marsh environments. For example, we show that by integrating the new functional form of particle
interception into established models of marsh elevation change, interception may account for up to
60% of total sedimentation in a typical silt-dominated marsh ecosystem with emergent vegetation.

Keywords: ecohydraulics; sedimentation; flow-vegetation interactions; particle interception; particle
capture

1. Introduction

Sediment–flow–vegetation interactions play crucial roles in governing geomorpholog-
ical and biological processes of low-gradient aquatic landscapes such as coastal marshes
and floodplains [1–3]. Sediment transport governs land building and is critical to marsh
restoration efforts and sea-level rise models [2,4,5]. The transport of fine sediment, the
fraction with the greatest organic matter concentration, is especially important for bio-
logical processes such as nutrient provisioning and carbon cycling [6–8], representing a
key linkage between geomorphology and other disciplines. Examples of this fine particu-
late organic matter include plant and algae detritus; extracellular polymeric substances
(EPS); soil material; and living algal, bacterial, and diatom communities [9,10]. However,
understanding and predicting the dynamics of fine sediment is especially challenging
because these particles often have porous and irregular structures, they can aggregate (and
disaggregate) with other organic and inorganic substances, and the surface properties that
govern their stickiness vary with ambient conditions [11–14].

The processes governing sedimentation budgets for fine sediment are likewise incom-
pletely understood. Sedimentation budgets are composed of the balance between direct
fluxes to the bed due to settling, indirect fluxes to the bed following capture by vegetation
stems and leaves (i.e., “interception”), and fluxes downstream for particles that remain
in suspension. The magnitudes of all of these fluxes are impacted by vegetation, and
process-level understanding of these impacts is still developing [7,15–20].
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Of the vegetation–flow interactions mentioned above, the impact of vegetation on
effective settling is best understood. Previous studies have shown that vegetation can
enhance settling by producing drag and slowing flow [21–24]. This settling can increase sed-
iment bed elevation, promote land building, and modify the topography of low-gradient
landscapes [2,3,18,25,26]. Vegetation can also enhance turbulence [7,19,27–29], decreasing
effective settling by promoting re-entrainment of particles from the bed. This can lead
to scour and channel formation around discrete vegetation patches [4,30]. Patches of
vegetation can also promote settling within their wakes due to reduced velocity [15,31];
interactions between multiple patch wakes can similarly promote settling and thus land
building [32]. The balance of drag and turbulent forces—which depend on the flow condi-
tions, vegetation density, and particle morphology—ultimately determines vegetation’s
impact on sedimentation due to settling, which can be effectively modeled [27,30,31].

The mechanics of particle interception, and their relationship with flow conditions
and vegetation morphology, are comparatively less understood. Sediment models often
exclude particle interception entirely [2,4] or base it on single-collector theory [3,26], which
is not representative of real-world vegetation canopies. This is a critical gap because
particle interception may represent a significant portion of total sedimentation, especially
for fine particles. For example, Mudd et al. [3] modeled several marshes in the North
Inlet Estuary in South Carolina, U.S., and estimated that up to 74% of total sedimentation
in high-velocity flow conditions is due to particle interception. The interception of fine
organic particles by vegetation also has important biological implications, such as in the
feeding regimes of epiphytic communities that live on vegetation surfaces or the removal
of pathogens from the water column [10,33].

Previous studies of particle interception have largely focused on laboratory-based
flume experiments, using a wide range of particle types, flow conditions, and either single
or multiple collectors to represent vegetation [34–40]. Some of these experimental setups
also included the presence of biofilm, a naturally occurring sticky coating composed
of different communities of algae, cyanobacteria, and other microorganisms, which can
enhance particle interception by increasing both the effective collector diameter and the
likelihood that particles will attach to collectors [34,37,40]. However, it is difficult to directly
compare the results of studies with different ranges of parameters or draw generalizable
conclusions from a single study with a narrow range of tested parameters. The goal of
this study was to reconcile a wide range of experimental data with a functional form for
particle interception grounded in a dimensional analysis. We further applied this new
functional form to existing marsh elevation models to demonstrate the importance of
particle interception in sediment–flow–vegetation dynamics within a real-world setting.

Functional Form for Particle Interception

Particle interception can be represented as capture efficiency (η (dimensionless)). For
cylindrical collectors (i.e., stems), η is the ratio of b (L), the upstream effective width of
particle streamlines that will be intercepted by the collector, to dc (L), the collector diameter
(Figure 1) [35]. The gross particle interception flux, Qc [ML−2T−1], was then defined by
Mudd et al. [3] as

Qc = ηCuah , (1)

where C (ML−3) is the suspended particle concentration, u (LT−1) is the flow velocity, a
(L−1) is vegetation frontal area per unit volume, and h (L) is the length of collectors exposed
to flow, which is equal to flow depth in emergent vegetation.
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b dc

Figure 1. Plan view of the theoretical definition of capture efficiency, η, as the ratio of the effective
width of the particle streamlines that will be intercepted by a collector, b, to collector diameter, dc.
Modified from Palmer et al. [35].

Several previous studies used an experimental flume setup with a single collector to
derive an empirical equation for η. Palmer et al. [35] fit an equation based on experimental
data from a single-collector flume setup and intermediate collector Reynolds numbers
(50 ≤ Rec ≤ 500) as follows:

η = 0.224Re0.718
c R∗2.08 , (2)

where Rec is the collector Reynolds number (dimensionless) and R∗ is the ratio of the
particle to collector diameter (dimensionless). Notably, Equation (2) predicts a positive
relationship between η and Rec. Wu et al. [38] took a colloid filtration theory approach
to capture efficiency, in which η is a product of the contact efficiency (η0, dimensionless,
defined as the proportion of particles in the upstream projected area of the collector
that contact the collector) and the attachment efficiency (α, dimensionless, defined as the
proportion of particles that stick to a collector on contact). In their single-collector flume
study, they determined the following equation for contact efficiency:

η0 = 0.0044Re−0.94
c Pe−0.003 , (3)

where Pe (dimensionless) is the Péclet number of the particle. In contrast to Equation (2),
Equation (3) predicts a negative relationship between η0 and Rec, and thus a negative
relationship between η and Rec.

However, vegetated ecosystems in nature often require consideration of multiple
collectors and the ways in which they might interact. In vegetation canopies, wakes from
collectors at the front of a patch may divert streamlines from the downstream collectors in a
phenomenon known as wake sheltering [31,41]; particles may pass through gaps between
the collectors and escape capture. Experimental studies involving multiple collectors have
found that at higher Rec numbers (Rec & 50), Equation (2) greatly overestimates capture
efficiency, in some cases predicting values for η an order of magnitude greater than those
observed [34,36]. The equation based on colloid filtration theory, Equation (3), was also
shown to overpredict η in multicollector systems [40].

To more accurately reflect real-world conditions, other studies have set up flume
experiments with multiple collectors at a range of densities [34,36,37,40]. The experimental
setup of Fauria et al. [34] included arrays of synthetic vegetation with naturally grown
biofilm and harvested road dust as the suspended sediment. They fit a new equation for
particle interception using the general form from Equation (2), and found that when Rec =
55–184 and biofilm is present,

η = 2.06Re−1.14
c R∗0.65 . (4)

In contrast with Equation (2) but similar to Equation (3), Equation (4) predicts de-
creasing η with increasing Rec; this trend has also been observed in other multicollector
studies [36,37,40]. However, this empirical formula is based on a narrow range of experi-
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mental parameters (e.g., Rec = 55–184, dc = 0.3 cm, and u = 1.8–6), which does not reflect
the full breadth of conditions found in vegetated aquatic environments. Additionally, this
functional form does not account for other factors that may impact particle interception,
notably a and particle density.

In this study, we synthesized multiple published studies of particle interception with
multiple collectors and developed a model grounded in a Buckingham–Pi dimensional
analysis. We evaluated this model in comparison with previously published models of η
(Equations (2) and (4); we were unable to include Equation (3) in our comparison because
we did not have Pe values for all data points). Finally, we applied the new synthesis model
to a real-world tidal marsh to evaluate the relative importance of particle interception
compared with other sedimentation fluxes in typical flows.

2. Materials and Methods
2.1. Hypothesized Functional Form for Particle Interception

We performed a modified Buckingham–Pi dimensional analysis to develop a hypothe-
sized functional form for particle interception. For physical reasons explained below, we
expected that η would vary as a function of flow velocity u, vegetation frontal area per
unit volume a, flow depth h, collector (dc) and particle diameters, and particle and water
densities. Using the Buckingham–Pi approach, we developed dimensionless terms with
which we expected η to vary. Examining each of those terms in the context of what is
known about flow through vegetation, we hypothesized whether their relationship to η
would be positive or negative, and, as explained below, modified one of the terms while
retaining its dimensionless nature for consistency with physical reasoning.

Given the derived functional form for η, we expected the fitted coefficients (i.e., term
weights) to differ across ranges of Rec corresponding to different regimes of flow around
cylinders. Previous multicollector studies lend support to this hypothesis, suggesting that
the decrease in η with increasing Rec may be less pronounced at Rec > 40 [34,36], the point
at which stems begin shedding vortices, than at 5 < Rec < 40 [38]. For the Rec < 40 regime,
the stronger negative relationship is likely due to growth in the size of the flow separation
bubble and the corresponding attached vortices. With growth in the eddies, the eddy cores,
where particles smaller than the eddy scale tend to accumulate [42], move farther from
the rear of the collector stem, decreasing the likelihood of attachment via van der Waals
forces. For the Rec > 40 regime, the eddies behind plant stems detach, forming a laminar
wake (i.e., von Karman vortex street) for 40 < Rec < 150 or a transitional (150 < Rec < 300)
to turbulent (300 < Rec < 10,000) wake. In this regime, the streamlines approaching stems
have significant vorticity, which we expected would decrease the number of particles that
come within the stem’s radius of interception relative to the straight-streamline case of
Palmer et al. [35] (Figure 1). However, we hypothesized that Rec would have less of an
impact on η than the frequency with which these eddies are shed, which is governed by
either smaller stem spacing or scale, rather than Rec [21]. Based on those key physics, we
expected η to vary as a strong negative function of Rec from 5 < Rec < 40 and as a weaker
negative function of Rec from 40 < Rec < 10,000. We did not consider flows with Rec >
10,000 because aquatic ecosystems generally fall well below this Rec threshold.

We expected that dimensionless canopy density (i.e., adc) would govern interception
via several mechanisms. First, it would reduce flow velocities in the wake of collectors
through drag by a factor of ((ah)(1 − adc))−1/2, which would modify the Rec term in the
Buckingham–Pi analysis. Canopy density also increases turbulent kinetic energy (TKE),
which, given the results of Purich [36], should increase η, as particles are more likely to
contact and attach to the sides and back of collectors than in the laminar-flow case. In
rigid emergent vegetation, the TKE in stem wakes is proportional to u2(adc)2/3 [27]. The
velocity dependency would be subsumed by the Rec Buckingham–Pi term, leaving adc
as a separate term with a positive exponent. In flexible vegetation, TKE varies as a more
complex function of velocity within and above the canopy, the deflected height of the
vegetation, and the solid volume fraction of vegetation [7]. However, Zhang et al. [43]
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showed that within the stem region of submersed canopies, the TKE, as in rigid emergent
canopies, varies monotonically as a function of u2(adc)2/3. Thus, we expected that the
simpler representation of the TKE through the Rec Buckingham–Pi term and adc term in the
dimensional analysis would be sufficient to capture the relevant physics of particle capture
in both rigid emergent vegetation and the stem region of most flexible vegetation canopies.

We also anticipated a positive relationship between η and the ratio of particle density
to water density, P (dimensionless), as more massive particles with greater inertia are more
likely to deviate from their streamlines and contact a collector, which promotes particle
interception [44]. Finally, we expected η to increase with increasing R∗, as larger particles
or smaller stems would decrease the distance between particles trapped in eddies and the
stems’ radius of interception (here, R∗ includes additional thickness due to the presence of
biofilm, if present).

Altogether, we hypothesized the following functional form for η in systems with
multiple rigid or flexible collectors:

η = c0

(
Rec√

ah(1 − adc)

)c1

(adc)
c2 Pc3R∗c4 . (5)

Hereafter, we refer to the terms in this model as: the drag-corrected Rec term (c1), the
TKE term (c2), the density ratio term (c3), and the diameter ratio term (c4); c0 is the coefficient
of proportionality within which the attachment efficiency, assumed to be equivalent across
all experiments, is implicit. This form was linearized to facilitate model-fitting:

ln(η) = c0 + c1 ln

(
Rec√

ah(1 − adc)

)
+ c2 ln(adc) + c3 ln(P) + c4 ln(R∗) . (6)

2.2. Data

We initially curated a dataset with 10 experimental and computational fluid dynamics
studies that examined η in real or simulated vegetation; these were the only studies to
publish data with all relevant variables included in Equation (6). We excluded studies that
only included a single collector, as these experimental setups do not capture interactions
between collectors that occur in most real-world systems. After excluding single-collector
studies, we were left with four sets of experiments [34,36,37,40], for a total of 80 data points
(Table 1). Fauria et al. [34] reported separate η values for 32 particle size bins; we included
the three particle size bins with the highest number of particles as three separate data points
for each run and discarded data from the other bins due to the relatively small number of
particles they contained. All experimental setups included silicone grease, biofilm, or both
on the surface of the collectors. The experiments of Wu et al. [40] and Fauria et al. [34]
were conducted with flexible, non-cylindrical vegetation; those of Purich et al. [36] and
Wingenroth et al. [37] used rigid cylindrical stems.

Table 1. Summary of training data used to fit the functional form presented in this paper. Rec, Reynolds number.

Paper Data Points Rec Range Particle Size (µm) Frontal Area/Unit Volume (cm−1)

Purich [36] 18 71–657 231 0.06–0.25
Wu et al. [40] 12 0.02–1.2 1.05 0.002–0.1

Fauria et al. [34] 36 55–184 9.9–13.8 0.06
Wingenroth et al. [37] 14 67–200 32 0.008–0.039

2.3. Model Fitting and Validation

We fit Equation (6) in R using the caret package [45], parameterized to perform a 5-fold
cross-validation. During the cross-validation, the data set was randomly split into five
groups, and one group was removed from the training set as a hold out to test the resulting
model. The best-performing model of the group was then selected. We next performed
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a bidirectional stepwise regression on the resulting model using the MASS package [46]
and determined which combination of terms best explained the variability in ln(η) by
comparing the Akaike information criterion (AIC) scores of the alternative models.

To test the hypothesized split in model behavior in different Rec regimes, we analyzed
the cross-validated and stepwise-trained model using the segmented package in R [47],
which helps determine where the breakpoint(s), if any, are located in the drag corrected
Rec term. The unsegmented and segmented models were validated by (1) calculating the
AICc score (AIC with a correction for small sample sizes) for each version of the model [48]
and (2) completing a 10,000 repetition bootstrap analysis of each model and evaluating
the 95% confidence interval of the coefficients and the coefficient of determination (R2)
for each version of the model. The fit from this model was then compared to predicted η
values from the models of Palmer et al. [35] and Fauria et al. [34], Equations (2) and (4),
respectively. We did not compare our model to Equation (3) because we were unable to
determine Pe values for all data points in our training set.

2.4. Integration into Marsh Model

The previously discussed equations for particle capture (i.e., Equations (2), (4), and (6))
describe the capture of particles on collectors such as vegetation stems. In the field, captured
particles contribute to overall sedimentation on the bed by sloughing off of collectors in
aggregate and sinking to the bed, or when vegetation with captured particles decomposes
into organic matter in the soil [18]. Forms for particle interception must be translated
through additional models or equations to describe the contribution of interception to
bed elevation, total mass flux of sedimentation, etc. Modeling of these sedimentation
mechanisms may vary based on the type of environment (e.g., tidal, fluvial, or coastal).

To demonstrate one way in which our proposed functional form (Equation (6) could
be used in a real-world situation, we adapted a series of equations describing marsh
sedimentation from Mudd et al. [3] to include our model (Appendix A). In Mudd et al. [3],
marsh elevation change over time is defined as

∂ζs

∂t
= Qc/ρs + Qs/ρs + O − E − Cmp , (7)

where ∂ζs
∂t (LT−1) is the change in marsh surface elevation over time, Qc (ML−2T−1) is the

flux of sediment intercepted by marsh vegetation, Qs (ML−2T−1) is the settling flux, ρs
(ML−3) is the density of marsh sediment, O (LT−1) is the organic material accretion rate
due to vegetation production, E (LT−1) is the erosion rate (assumed to be zero within the
vegetation canopy), and Cmp (LT−1) is the compaction rate (assumed to be negligible over a
sub-annual time scale). Mudd et al. [3] used Equation (1) to determine Qc and Equation (2)
to determine η; we substituted Equation (2) with the fitted form of Equation (6).

We then applied this modified marsh elevation model to a data set of salt marsh
conditions in the North Inlet Estuary in South Carolina from the original in Mudd et al. [3]
to demonstrate how the different η prediction methods can impact marsh sedimentation
models. We also performed a sensitivity analysis to evaluate under what conditions particle
interception might be most important to total sedimentation flux, which has implications
for restoration design efforts [49]. To perform this analysis, we applied the modified marsh
sedimentation model to a broad range of typical marsh vegetation and flow parameters
and estimated the contribution of direct particle interception to total sedimentation. The
parameters used for the sensitivity analysis were a = 0.01–0.07 cm−1 [27], u = 10–50 cm s−1 [3],
dc = 0.48 cm [27], and dp = 40 µm [50,51].
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3. Results
3.1. Predictive Model for η

Our final fitted form for η is

ln(η) = −1.13 − 0.38 ln

(
Rec√

ah(1 − adc)

)
− 1.54 ln(adc) + 1.00 ln(P) + 2.10 ln(R∗) . (8)

All terms were retained during stepwise regression (Table S1), and these fitted coeffi-
cients were relatively stable during bootstrapping (Table 2). In this model, η varies as a
negative function of the drag corrected Rec and the TKE terms and as a positive function of
the density ratio and diameter ratio terms.

Table 2. Fitted model coefficients, outer bounds of the 95% confidence interval from a 10,000 repetition
bootstrap analysis, and standardized (or beta) coefficients. c0 is the intercept, c1 is the drag-corrected
Rec term, c2 is the total kinetic energy (TKE) term, c3 is the density ratio term, and c4 is the diameter
ratio term.

c0 c1 c2 c3 c4

Min −3.88 −0.55 −1.71 0.33 1.79
Fitted −1.13 −0.38 −1.54 1.00 2.10
Max 1.21 −0.17 −1.36 1.49 2.50

Standard 1.29 −0.47 −1.35 0.24 1.57

The segmented regression returned two possible points for a split in Rec regime, at 3
and 194. Although models trained on either of these data splits had smaller AICc scores
compared with the nonsplit model, both proposed splits also produced unstable coefficients
during the bootstrap analysis, including large ranges in magnitude and changing coefficient
signs. Thus, the split Rec regime is not defensible given the training data. Use of the single
Rec-regime model is further supported by the lack of clear Rec trends in the residuals
(Figure 2).

Figure 2. Observed ln(η) for all data points (n = 80) compared with ln(η) predicted by Equation (8).
Data points are colored by collector Reynolds number.

Compared with previously reported models (Equations (2) and (4)), our model had a
greater R2 (0.817 compared with 2.58 × 10−4 and 0.075, respectively) and smaller average
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residuals (0.68 vs. 5.00 and 2.47, respectively) (Figure 3). In contrast with Equation (4),
which returned three predicted particle interception values that were greater than 100%, all
predicted η values returned by our model were physically possible.

Figure 3. Observed ln(η) for all data points compared with ln(η) predicted by the models presented
in Palmer et al. [35], Fauria et al. [34], and here. The solid black line is a 1:1 line; the dashed green
line is the regression line of observed ln(η) values vs. ln(η) values predicted by the proposed model.

3.2. Marsh System Model

Using the North Inlet Estuary data from Mudd et al. [3] (their Figure 5), we compared
sedimentation rates using η as predicted by Equation (2) as in their original analysis and
Equation (8) (Figure 4a and Figure 4b, respectively). In contrast with Equation (2), the
new functional form predicted a far smaller portion of sedimentation from particle inter-
ception (0–16% compared with 2–74% using Equation (2) and less overall sedimentation
(8.46 × 102–4.82 × 105 vs. 1.31 × 103–1.28 × 106 g cm−2s−1). The general pattern in
relative sedimentation rate (e.g., that particle interception represents a larger portion of
sedimentation in systems with higher velocities and finer particle sizes) was consistent
across both predicted forms of η.

Over the wider range of vegetation canopy characteristics covered by our second data
set of typical marsh flow and vegetation conditions (Figure 5), Qc exceeded Qs when u
was greater than ∼30 cm/s and a was lower than ∼0.025 cm−1 . As this data set simulates
constant dp, Qs stayed relatively constant. Thus, total sedimentation was greatest in higher
u and lower a conditions, where Qc represents the greatest portion of total sedimentation.
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(a) η predicted by Palmer et al. [35] (b) η predicted here

Figure 4. Fraction of sedimentation due to particle interception (Qc/[Qc + Qs]) using the form for η from (a) the
Palmer et al. [35] model and (b) the proposed method (Equation (8) for the North Inlet Estuary, South Carolina (data
from Mudd et al. [3]). High marsh refers to a site with higher estimated vegetation density (a = 0.087 cm−1), and low marsh
refers to a site with lower estimated vegetation density (a = 0.047 cm−1). Our model predicted less particle interception
(0–16% compared with 2–74% in the Palmer et al. formulation) and less total sedimentation (8.46 × 102–4.82 × 105 vs. 1.31
× 103–1.28 × 106 g cm−2s−1), although both estimated that particle interception would be greatest in systems with small
(∼15–25 µm) particles and high velocity.

Figure 5. Estimated portion of sedimentation due to interception for 40 µm particles under typ-
ical marsh vegetation and flow conditions. Although Qc < Qs for much of the parameter space,
interception dominated in high flow, low collector density conditions.
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4. Discussion
4.1. Functional Form

As hypothesized in Section 2.1, η varies under Equation (8) as a negative function of
the drag-corrected Rec term and a positive function of the density ratio and diameter ratio
terms. We attribute the negative relationship with Rec to the growth in the flow separation
bubble and eddies in the wake with increasing Rec, followed by their detachment and the
transition to turbulent flow, all of which decrease the chance that particles will contact
collectors. The positive relationship with the density ratio term likely reflects the inertial
energy of higher-density particles and their greater likelihood of impacting the collector
surfaces. The positive relationship with the diameter ratio term likely reflects the decreased
distance between particles trapped in eddies and the stems’ radius of interception for larger
particles or smaller stems.

We initially hypothesized that greater TKE would increase the likelihood that particles
would contact the sides and backs of collectors, resulting in higher η than a system with
straight particle streamlines. However, under Equation (8), η actually varies as a strong
negative function of the TKE term. This result may be attributable to several phenomena:
First, all data included in this analysis were obtained from experimental setups with
multiple collectors, where wakes from adjacent collectors can impact others within the
vegetation field. Turbulent wakes may have the net effect of deflecting streamlines away
from downstream collectors [31], reducing the total probability that a particle can contact a
collector. In addition, shearing in the vicinity of stems may have caused re-entrainment
of particles that had previously been intercepted, violating our assumption that the ratio
between contact efficiency and capture efficiency (i.e., η0/η) remained constant across
all experiments.

Our fitted functional form also did not statistically support the split Rec regime,
which we predicted would occur at Rec ≈ 40. This was likely influenced by the relatively
small training data set and the sample-size-limited subsets created by the tested Rec splits.
However, the lack of a statistically defensible split may also result in part from the relatively
low magnitude of the Rec term compared with other terms, particularly the diameter term.
Regardless, a single functional form for η in all Rec conditions has the benefits of greater
ease of use and simpler integration into real-world modeling efforts.

Though our model was fit to data from studies covering only a portion of realistic
stem diameters, Reynolds numbers, and other parameter values, our literature review
revealed no reason to expect the physics behind the model to differ in other natural settings
with similar types of vegetation from those used in the calibration dataset; however, we
expected that the model would overestimate capture in highly flexible vegetation canopies,
as discussed in Section 4.2. Additionally, it is possible that as the pool of available flume
study data expands, the optimized value of the model coefficients may shift (Equation (8)).
Notably, although we did not find a statistically defensible split in the Rec regime in our
study as discussed above, one may become clear with a wider range of training data.

4.2. Role of Vegetation Morphology

Although many aspects of flow–vegetation interactions are represented in the func-
tional form of Equation (8), more refinement is needed to address others, most notably
the impact of vegetation morphology and type. The key physics in the model are based
on nearly cylindrical, smooth collectors that behave nearly rigidly. Several aspects of the
dynamics of flow through flexible vegetation arrays are missing from this model. First,
reconfiguration of flexible vegetation stems by progressive bending and streamlining at
high Reynolds numbers reduces drag [18,27]—an effect that would be captured by the
Rec term in the dimensional analysis, though likely with a different exponent than that
derived for rigid vegetation with an equivalent architecture. Second, the TKE within
flexible vegetation is functionally more complex than the representation in our model
through the Rec and TKE terms; the TKE in flexible submersed canopies is also a function
of velocity within and above the canopy and the height of the reconfigured vegetation.



Geosciences 2021, 11, 157 11 of 16

As discussed by Zhang et al. [43], the scaling relationship for the TKE in rigid canopies
provides an acceptable estimate within certain regions of submersed canopies and with
certain stem scaling relative to velocity perturbations, but even so, a different fitted model
coefficient would be expected to apply to rigid and flexible canopies. Third, the bending
and reconfiguration of flexible vegetation with increasing Reynolds number would reduce
the effective frontal area of the patch and hence the area available for capture [7,52].

Despite two out of four of the datasets on which the model was calibrated and tested
being derived from experiments on flexible vegetation, the model provided a good fit
across the range of data points. Some of the scatter present within the fitted relationship
(Figure 2) may be attributable to the presence of both rigid and flexible vegetation within
the calibration data when, arguably, the different physics of flow through these two types
of canopies would call for different fitted exponents. However, this potential source of error
in the results appears to be small relative to the variability in η arising from the physics cap-
tured by the model. Nonetheless, we expect that in highly flexible canopies with significant
bending, or in flow conditions that induce monami (i.e., waving) of stems, an additional
source of turbulence, deviations from our fitted model would be more substantial.

Other complexities of real-world vegetation, such as irregularities in stem cross-
sectional shape, a branching morphology, or within-patch heterogeneity in diameter [53,54]
could induce additional deviations from the predictions of our model. Additionally,
collectors exhibiting a rougher texture on some or all of their surfaces may increase η
by providing additional surface area for particles to contact [33]. Surface roughness also
increases drag and TKE, which suppress η [35], so additional experiments on collectors with
morphological complexities are required to elucidate those conflicting influences on particle
interception. Another area of particular interest for future study is the influence of biofilm
on particle interception. We do not yet understand how morphological differences (e.g.,
thickness, roughness, and ciliation) between different communities of algae, cyanobacteria,
and other microorganisms that collectively compose biofilm can influence the terms in
Equation (8). This represents an area of opportunity for further improvements, perhaps
through categorizing different types of biofilm characteristics and fitting new intercept
values for each.

4.3. Comparison with Previous Models

Unlike Equation (2 but in agreement with Equations (3) and (4) and the observations
of Wingenroth et al. [37], our functional form predicts a negative relationship between
η and Rec, consistent with physical understanding, as discussed above. When compar-
ing the predicted η values from our model and previously published functional forms
(Equations (2) and (4)), our model performs far better at predicting particle interception in
multicollector systems. The superior performance over Equation (2) is likely attributable
to the derivation of that equation from single-collector data and the positive relationship
between Rec and η estimated by that equation [35]. Though Equation (4) is based on
a multicollector experimental configuration, it does not always accurately predict η for
other experimental setups and parameter spaces, despite it positing a negative relationship
between Rec and η [34]. We attribute the much greater R2 and smaller residuals of our
model (Figure 3) to the greater range in parameter space in the training data, and the
inclusion of new terms (i.e., particle–fluid density ratio and TKE), which should impact
overall interception due to the physics discussed in Section 2.1.

4.4. Application to Marsh Models

As demonstrated in Figure 4a,b, major differences exist between Equations (2) and (8);
models that rely on Equation (2) may significantly overestimate the contribution of sedi-
mentation from interception, and thus overall sedimentation. This is of particular concern
given the importance of sedimentation in estimating resilience to sea-level rise and floods
in marsh environments such as the system described in Mudd et al. [3]. Some of this gap
between the original and modified versions of the Mudd model could be attributed to
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how the model addresses TKE. The original version only captured TKE through upward
motion due to turbulence, wup, which inhibits gravitational settling (Appendix A). Sub-
stituting Equation (2) with Equation (8) is a more holistic approach to turbulence as it
explicitly addresses the impact of the TKE on particle interception through the TKE term in
Equation (8).

A comparison of the different sedimentation fluxes within the Mudd model further
elucidated the relative importance of the sedimentation mechanism under a given set of
conditions. Both forms for predicting η (Equations (2) and (8)) demonstrated the same
trend in Qc relative to dp and u, suggesting that particle interception is of the greatest
importance in high-velocity conditions and/or for especially fine particles that may not
otherwise contribute to sedimentation via settling. During our sensitivity analysis (where
particle diameter (dp) was held constant), variability in marsh sedimentation was mostly
driven by changes in Qc. Although particle interception represents a minority share of total
sedimentation for much of the parameter space, Qc exceeds Qs in high velocity (u) and low
frontal area (a) conditions (Figure 5).

This information can potentially help inform wetland design or restoration efforts
across a variety of systems (coastal, tidal, fluvial, etc.) where the goal is to maximize
sedimentation and substrate elevation. For instance, if vegetation will be manually intro-
duced into a proposed restoration site, choosing a species with greater-diameter stems (to
maximize the diameter ratio term in Equation (8) and low overall frontal area (to minimize
the TKE term) may allow managers to leverage particle interception to increase overall
sedimentation. Insights such as these can be expanded and refined as the pool of available
training data continues to grow, especially with studies examining a broader range of
vegetation (see Section 4.2).

5. Conclusions

In this study, we proposed a new functional form for predicting η based on key
physics in vegetation–flow interactions and a data synthesis. This form was derived from a
Buckingham–Pi-based dimensional analysis, and we fit this model using 80 data points
across four different laboratory-based flume experiments (Table 1). Based on our analysis,
η varies as: a weak negative function of drag-corrected Rec, a strong negative function
of collector density, a weak positive function of particle–fluid density ratio, and a strong
positive function of particle–collector diameter ratio. Our hypothesized Rec regime split
was not statistically defensible; thus, we presented a uniform model for the range of Rec
values typically found in vegetated aquatic environments. After integrating this new
functional form into existing models for marsh elevation [3], we further demonstrated
that our model may help avoid overprediction of particle interception, and provided
an example of how this model can be used by resource managers looking to maximize
sedimentation in wetland restoration efforts.

Our goal for presenting this new functional form was two-fold: First, we hope that
this easy-to-use model (which outperforms existing forms for particle interception in the
literature) can be integrated into crucial real-world modeling efforts. This may be especially
important for the study of pressing global problems (such as estimating the ability of
coastal marshes to outpace sea level rise or the construction of treatment wetlands to
remove suspended parasites or contaminants sorbed to fine sediment) where the role of
flow–vegetation interactions is still poorly understood. Further, our hope is that future
flume- and field-based study of particle interception can continue to inform this work. As
more experimental data across a wider range of flow, vegetation, and particle variables
become available, this functional form can be further refined and applied to the study of
vulnerable and ecologically and economically important environmental systems.

Supplementary Materials: The following are available online at https://www.mdpi.com/2076-326
3/11/4/157/s1, Table S1: Stepwise Regression Results.
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Abbreviations
The following notations are used in this manuscript:

a vegetation frontal area per unit volume (L−1)
α attachment efficiency (dimensionless)
b width of particle streamlines that interact with a collector (L)
C suspended particle concentration (ML−3)
Cmp compaction rate (LT−1)
dc collector diameter (L)
dp particle diameter (L)
E erosion rate (LT−1)
η particle capture efficiency (dimensionless)
η0 particle contact efficiency (dimensionless)
h length of collectors exposed to flow (L)
O organic material accretion rate (LT−1)
P ratio of particle to collector density (L)
Pe Péclet number (dimensionless)
Qc particle capture flux due to interception (ML−2T−1)
Qs particle capture flux due to settling (ML−2T−1)
R∗ ratio of particle to collector diameter (dimensionless)
Rec collector Reynold’s number (dimensionless)
u flow velocity (LT−1)
∂ζs
∂t change in marsh elevation surface over time (LT−1)

Appendix A. Marsh Sedimentation Equations

To model sedimentation due to interception (Qc) and settling (Qs), we modified a
series of equations depicting marsh elevation change presented by Mudd et al. [3]. Total
elevation change is given by Equation (7) and particle flux due to interception is described
by Equation (1). Whereas Mudd et al. used Equation (2) to predict η, we used our fitted
model, Equation (8).

The particle flux due to settling is given by

Qs = (ws − wup)C, (A1)

https://gitlab.com/esdl/flume-synthesis
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where ws (LT−1) is the gravitational settling in turbulence-free water and wup (LT−1) is the
upward motion caused by turbulence. ws can be described by

ws =
v
dp

√1
4

(
A
F

)2/m
+

(
4dp3[P − 1]

3Fv2

)1/m

− 1
2

(
A
F

)1/m
m

, (A2)

where A, F, and m (dimensionless coefficients dependent on the particle material and
shape) were reported by Camenen [55] as 38, 3.55, and 1.12, respectively, for silt particles.

wup is the product of the von Karman constant (Kvk, taken as 0.4) and the shear velocity
(u∗ (LT−1)). u∗ can be defined as

u∗ =

√
0.20k

ρ f
, (A3)

where 0.20 is a constant of proportionality, k (L−2T−2) is the turbulent energy per unit mass
of water, and ρ f (ML−3) is the density of the fluid. Nepf [22] described k as

k = αk
2u2(CDadc)

2/3, (A4)

where CD (dimensionless) is the depth-averaged drag coefficient in a collector field and αk
is a coefficient reported to be 0.9 by Nepf [22]. Note that αk is unit-dependent, and is only
valid when Equation (A4) is evaluated in meters.

The drag coefficient can be defined in several ways. To match the original methodology
from Mudd et al. [3], we used the following form of CD for our analysis in Figure 4:

CD = 2
(

α0v
uµBλ

+ χ + ζ
γµπ

4
Bβ+λ

)
, (A5)

where α0, χ, and ζ are empirical coefficients from Tanino and Nepf [21]; B (ML−2) is
biomass; and µ, λ, γ, and β are empirical coefficients from Mudd et al. [3] (Table A1). As
Equation (A5) requires multiple site-specific empirical values, we used a more general
form of CD for our analysis in Figure 5:

CD = 2
(

α0

Rec
+ α1

)
, (A6)

where, as per Tanino and Nepf [21], α1 can further be defined as

α1 = 0.46 + (3.8φ), (A7)

where φ (dimensionless) is the solid volume fraction.

Table A1. Empirical coefficients used for calculating CD across sites.

Value Goat Island High Marsh Oyster Landing Low Marsh All Applicable Sites

α0 - - 11
χ - - 0.46
ζ - - 3.8
µ 0.00066 0.0019 -
λ 0.55 0.12 -
γ 0.29 0.18 -
β 0.40 0.53 -
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