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Abstract: The west Florida shelf (WFS; Gulf of Mexico, USA) is an important area for commercial
and recreational fishing, yet much of it remains unmapped and unexplored, hindering effective
monitoring of fish stocks. The goals of this study were to map the habitat at an intensively fished area
on the WFS known as “The Elbow”, assess the differences in fish communities among different habitat
types, and estimate the abundance of each fish taxa within the study area. High-resolution multibeam
bathymetric and backscatter data were combined with high-definition (HD) video data collected
from a near-bottom towed vehicle to characterize benthic habitat as well as identify and enumerate
fishes. Two semi-automated statistical classifiers were implemented for obtaining substrate maps.
The supervised classification (random forest) performed significantly better (p = 0.001; α = 0.05)
than the unsupervised classification (k-means clustering). Additionally, we found it was important
to include predictors at a range of spatial scales. Significant differences were found in the fish
community composition among the different habitat types, with both substrate and vertical relief
found to be important with rock substrate and higher relief areas generally associated with greater
fish density. Our results are consistent with the idea that offshore hard-bottom habitats, particularly
those of higher vertical relief, serve as “essential fish habitat”, as these rocky habitats account for
just 4% of the study area but 65% of the estimated total fish abundance. However, sand contributes
35% to total fish abundance despite comparably low densities due to its large area, indicating the
importance of including these habitats in estimates of abundance as well. This work demonstrates
the utility of combining towed underwater video sampling and multibeam echosounder maps for
habitat mapping and estimation of fish abundance.

Keywords: benthic habitat mapping; multibeam; fish community; underwater video

1. Introduction

Mapping of benthic habitats has become a critical element of living marine resource
management globally [1–4]. Detailed habitat maps, at spatial scales relevant to management
actions, provide the basis for protecting sensitive biota that may be vulnerable to disruptive
human activities [5] and for evaluating the relationships of abundance and community
structure of plants and animals to particular habitat types. Marine spatial planning, an
element of ecosystem-based management, requires detailed, georeferenced information on
benthic sediment types, and ecological processes within them [1,3,5,6]. In order to meet
the demand for broad scale, accurate, and timely habitat mapping products, a variety
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of technologies and protocols have been developed and tested [7–9]. However, most of
these technologies do not individually provide comprehensive, synoptic, or relatively
unambiguous interpretations of habitat features and their biotic attributes.

Benthic habitat mapping generally involves performing an acoustic survey (e.g., with
a multibeam echosounder) over a region of interest with systematic transects of data
derived via “mowing the lawn” [10,11]. For a multibeam echosounder (MBES), the width
of individual transects and thus the efficiency of such sequential approaches are dictated
primarily by water depth. MBES provides a detailed topography (bathymetry) product
plus a backscatter image which measures the intensity of the returning sound pulse and can
be indicative of sediment grain size, composition, and substrate type [10–16]. In addition,
ground-truthing data, for example, collected from camera imagery, must be collected in
order to inform or verify interpretations of the acoustic returns and understand what
sediment and other geological features they represent and to identify the biota associated
with these habitats [7,8,17]. Additionally, with the increasing volume of data and the greater
demand for habitat maps for ecosystem-based management and marine spatial planning,
scientists and managers must consider the reliability of MBES data and their derivative
metrics as surrogates to classify habitat types over differing spatial scales, especially where
no independent ground-truthing exists [9,17–21]. For bathymetry, these derivative features
include terrain attributes such as slope, rugosity, aspect, etc. [21,22], and for backscatter,
these include texture metrics such as those derived from a gray level co-occurrence matrix
(GLCM) [23–29].

Benthic habitat maps have the potential to make significant contributions to fisheries
science. For example, habitat maps in the Florida Keys (USA) have facilitated habitat-
stratified surveys, leading to more precise and cost-effective fisheries-independent moni-
toring surveys [30], which have become more important for monitoring as stricter manage-
ment regulations have reduced the data available from fisheries-dependent sources [31–34].
Although the west Florida shelf (WFS; Gulf of Mexico, USA) is an important commer-
cial and recreational fishing area, much of the WFS remains unmapped and unexplored,
hindering effective monitoring of fish stocks [34–36]. Additionally, fisheries are typically
managed using relative indices of abundance; however, what is of interest to managers
are absolute estimates of abundance [37–39] when species are managed under an overall
catch quota.

In this study, we demonstrate how MBES and towed underwater video can be used in
tandem to extrapolate a small video sub-sample to provide predicted habitat maps for the
entire study area and estimate absolute fish abundance in a popular fishing area on the
WFS known as “The Elbow”. We compare the performance of two different approaches for
mapping habitat: a supervised approach (random forest) and an unsupervised approach (k-
means clustering) [10]. Additionally, we investigate the importance of predictors derived
from different sources (bathymetry vs. backscatter) and over several spatial scales of
analysis in the mapping procedure. Moreover, we test if the fish communities differ
significantly among habitat types and identify the taxa driving any differences. Lastly, we
demonstrate how these habitat maps can be combined with fish density data from a towed
video survey to estimate fish abundance.

2. Materials and Methods
2.1. Study Area

The Elbow is hypothesized to be an ancient sea level stand shaped by wave action
approximately 12,000 years ago [36,40]. The area lies 145 km west-northwest of Tampa
Bay, Florida (Figure 1). It contains both hard-bottom (rock) and soft-bottom (sand) habitats,
supporting associated benthic invertebrate assemblages including sponges, gorgonians,
and sea urchins as well as a diverse community of reef fishes. The portion of the Elbow
surveyed in this study (see next section) ranged in depth from 45 m to 65 m and contains
a linear ridge that runs north to south for 16 km (Figure 1a). This area was chosen as
a candidate to test and develop this analysis protocol for integrating towed video and
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MBES data because the hard-bottom ridges formed by paleo-shorelines in this area are
representative of what we would expect elsewhere on the WFS [41]. Additionally, vessel
monitoring systems (i.e., satellite tracking) data have identified the Elbow as a reef fishing
“hot spot” [42,43], and this area is of interest to fisheries management [34,36].

Figure 1. Bathymetry (a) and backscatter (b) surfaces of the Elbow on the west Florida shelf (WFS) aligned to a matching
10 m × 10 m resolution grid. The inset map (c) shows the location of the area relative to the state of Florida. Towed video
transects overlain on the bathymetry surface with the three solid lines represent daytime transects that were used for
training habitat models and in conducting fish analyses. The dashed line represents a night transect that was used for
validation of habitat models and was excluded from fish analyses.

2.2. Data Collection and Processing
2.2.1. Multibeam Echosounder Data

In December of 2015, 88 km2 of the Elbow region was surveyed using a Teledyne
Reson SeaBat 7125 MBES (Figure 1). This echosounder has 512 overlapping beams and
was operated at 400 kHz with a 140◦ swath. The SeaBat 7125 was pole-mounted on the
port side of the R/V Bellows operated by the Florida Institute of Oceanography. Navigation
and motion compensation data were collected with an Applanix POS MV OceanMaster
system [44]. An AML Oceanographic Micro•X was used to correct for sound launch
velocity at the sonar head, and an AML Oceanographic Minos•X with an SV•Xchange
sound velocity sensor was used for sound velocity profile correction to compensate for
changes in the speed of sound throughout the water column.

Bathymetry data were post-processed using Caris HIPS and SIPS 10.2 with depth
uncertainties less than 0.35 m [45]. The backscatter mosaic was created using the Caris SIPS
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time series algorithm. The bathymetry surface and the backscatter mosaic were exported to
2 m × 2 m resolution and 1 m × 1 m resolution raster grids, respectively. The bathymetry
surface was then aggregated to a coarser 10 m × 10 m resolution grid, and the backscatter
was aligned to a matching grid using bilinear interpolation so that both surfaces were
referenced to a common grid as required for use in the statistical substrate habitat models
(Figure 1). A resolution of 10 m × 10 m was chosen, as this approximates the scale of video
observations, reduces artifacts in terrain attributes, and reduces potential errors related to
positional uncertainty of the towed video system.

2.2.2. Towed Underwater Video

The Camera-Based Assessment Survey System (C-BASS) is a towed underwater
camera system custom built to non-lethally sample demersal reef fish and classify bottom
types [46,47]. The C-BASS is towed behind a research vessel at speeds of 1.5–2 m s−1 and
between 2–4 m above the seafloor [46]. The system consists of four LED lights and six
underwater video cameras [46,47]. All cameras on the C-BASS are oriented obliquely at
a downward angle from the main horizontal chassis, as this increases the area observed,
increases fish detection probability, and provides a perspective that aids in the simultaneous
identification of fish species and associated habitat characteristics [47,48]. A forward-facing
monochrome HD camera was used as the primary camera to identify fish and habitat types
in this study, as it consistently provided the clearest imagery, however, other color onboard
cameras were used to aid in identification of fish and habitats. This primary camera is a
FLIR Blackfly Gige Vision camera with a Sony IMX249 image sensor (13.3 mm diagonal;
1920 × 1200 pixel resolution) and a 2/3” Kowa LM5JC10M lens (focal length = 5 mm).
This camera was mounted at an angle of 32.8◦ down from the main horizontal chassis. In
addition to the six cameras, the C-BASS has various onboard sensors which continually
record data along transects at a frequency of 1 Hz or greater, including a three-axis compass
to record pitch, roll, and heading of the towbody, an altimeter to record height above the
seafloor, and a CTD and fluorometer to record depth and ambient water properties [46,47].

Video transects were planned by inspection of the MBES bathymetry to maximize the
likelihood of encountering a diversity of possible benthic habitat types. Four representative
video transects from a February 2016 cruise aboard the R/V Weatherbird II were analyzed
(Figure 1a). These transects consist of 15 h of video and covered 109 linear km and an area
of almost 1 km2, or just over 1% of the total study area. One transect followed the main
north-south ridge found in the area; a second transect zigzagged across the entire study
area, crossing over the main ridge multiple times to sample a broad range of habitats, and a
third transect bisected the study area from north to south. These three video transects were
collected during the day and were used as the training data set for creating substrate maps
and were used in fish community and abundance analyses (Figure 1a). A fourth transect
was collected at night and followed a smaller ridge west of the main ridge. This transect
was reserved as an independent validation transect used for accuracy assessment of the
predicted substrate maps. Additionally, it was excluded from fish analyses (Figure 1a), as
fish identification is more difficult at night, and it would confound comparisons of fish
communities across habitat types, as day and night fish communities have been shown to
differ on the WFS [49].

Substrate was classified from still images extracted every 15 s, resulting in the classi-
fication of 3680 images; however, scrolling a few seconds in each direction was allowed
to provide context and ensure that the classification adequately characterized the area.
Images were classified according to the substrate and biotic components of the Coastal
and Marine Ecological Classification Standard (CMECS) scheme [50]. Vertical relief was
qualitatively assessed. All observations were binned into four broad habitat types: sand,
low relief rock, moderate relief rock, and high relief rock. Low relief rock ranged from
rocky habitats covered by a sand veneer to those exposed but showing little change in
elevation; moderate relief was defined as a noticeable or step-like change in elevation; high
relief occurred when there were large and sudden changes in elevation (Figure 2). These
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relief categories are qualitative and were assessed visually from the video imagery but
correspond well with those described by Smith et al. [30] for mapping the Florida Keys
(Figure A1). The biotic elements were not included in the final broad categorization, as the
main observable biotic features were attached fauna such as sponges and corals, and they
largely tracked where there was rock; however, the biotic component did prove particularly
useful in identifying areas where low relief rock was covered by a thin sand veneer, as the
presence of attached fauna such as sponges and corals indicates the likely presence of hard
substrate beneath the sand as attachment for these organisms [51]. In the cases of mixed
habitat classes, areas were considered to be rock where a thin sand veneer was overlain on
rock or where large moderate to high relief rocky features were exposed. Conversely, areas
characterized by a few rubble piles or very small, isolated, low relief rocky features within
a larger expanse of sand were considered to be sand.

Figure 2. Substrate types observed in the Elbow of the west Florida shelf include sand (a) and rock
substrate of varying levels of relief: low (b), moderate (c), and high (d).

For fish counts, all videos were analyzed manually using the CVision fish counting
software [52]. Fish were only counted if they were observable in the primary camera,
though other cameras were used to aid species identification. Fish were identified to
the lowest taxonomic level possible. If fish could not be identified to species, they were
identified to a higher taxonomic level (e.g., genus or family). The C-BASS is best suited
for surveying larger-bodied reef fish, such as groupers and snappers, and previous work
has shown that fishes smaller than approximately 15–20 cm (i.e., average length of most
adult squirrelfish and bigeye species in the Gulf of Mexico) cannot be reliably identified
unless they have very distinguishing features given speed, elevation, and orientation of
the camera towbody. Fishes smaller than the average adult damselfish (approximately
10 cm) are virtually undetectable on C-BASS imagery [53]. Any individuals observed but
otherwise unidentifiable due to visibility, behavior, or otherwise were categorized as large
or small unidentified fish.

2.3. Predictive Habitat Mapping
2.3.1. Response Variable: Ground-Truth Substrate Observations

Both supervised (random forest) and unsupervised (k-means clustering) statistical
models were fit to predict seafloor substrate (rock vs. sand) based on the MBES data
and their derivative features [10]. Ground-truth substrate classifications from the towed
video were used as the response variable, and bathymetry, backscatter, and their derivative
features were the predictors (independent variables) in the predictive statistical models.
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Due to a comparatively small number of observations for higher relief rocky habitats and
their relatively small spatial size relative to the positional error associated with our towed
system, these models did not attempt to predict vertical relief but rather substrate type.
To reduce the influence of spatial autocorrelation on accuracy assessment, ground-truth
observations from three transects were used to train the model, and one entire transect
was reserved for the accuracy assessment of predictions (Figure 1). To reduce the effect of
positional uncertainty of the video system and confusion due to mixed habitats or habitat
boundaries [54–57], only habitat observations that were the same as their previous and
subsequent observations were used to fit and assess the models.

2.3.2. Predictor Variables: MBES Data and Their Derivative Features

The 10 × 10 m resolution bathymetry and backscatter grids were used to calculate
various derivative metrics (Table 1). These metrics include terrain attributes derived from
the bathymetry surface [21,22] and texture measures derived from the backscatter mosaic
using GLCMs [23,24] as well as the local mean and the standard deviation of backscatter
using varying window sizes. The 10 × 10 m bathymetry and backscatter surfaces along
with their derivative features were used as the predictor variables in the statistical models.

Table 1. Derivative features from the 10 m × 10 m bathymetry and backscatter surfaces for the Elbow of the west Florida
shelf. Features were calculated using eight different scales of analysis from a 3 × 3 pixel to a 69 × 69 pixel moving
window, and the resulting surfaces all have 10 m × 10 m resolution. Formulas for texture metrics are from Hall-Beyer [24].
N = number of rows or columns in the gray level co-occurrence matrix (GLCM) (equal to the number of gray levels, 32);
i = row indices of the GLCM (equal to gray level of reference pixel); j = column indices of the GLCM (equal to gray level of
neighboring pixel); Pi,j = probability (relative frequency) of neighboring pixels having gray levels i and j.

Feature Source Description/Algorithm

Local mean of bathymetry Bathymetry Mean of bathymetry in a given window

Local standard deviation of bathymetry Bathymetry Standard deviation of bathymetry in a given window (a
measure of rugosity)

Eastness Bathymetry sin(aspect)
Northness Bathymetry cos(aspect)

Slope Bathymetry Measure of the rate of change in bathymetry
Topographic Position Index Bathymetry Indicates whether a location is a local high or low
Local mean of backscatter Backscatter Mean of backscatter in a given window

Local standard deviation of backscatter Backscatter Standard deviation of backscatter in a given window (a
measure of heterogeneity)

GLCM Mean (µ) Backscatter N−1
∑

i,j=0
i
(

Pi,j

)
GLCM Variance (σ2) Backscatter N−1

∑
i,j=0

Pi,j(1− µi)
2

GLCM Homogeneity Backscatter N−1
∑

i,j=0

Pi,j

1+(i−j)2

GLCM Contrast Backscatter N−1
∑

i,j=0
Pi,j(i− j)2

GLCM Dissimilarity Backscatter N−1
∑

i,j=0
Pi,j|i− j|

GLCM Entropy Backscatter N−1
∑

i,j=0
Pi,j[− ln

(
Pi,j

)
]

GLCM Angular Second Moment Backscatter N−1
∑

i,j=0
P2

i,j

GLCM Correlation Backscatter N−1
∑

i,j=0
Pi,j

(i−µ)(j−µ)
σ2

Bathymetric terrain attributes and backscatter texture metrics were computed at
multiple scales of analysis by varying the window sizes over which the metrics were
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calculated [22]. Including predictors derived at a range of different scales is considered
“best practice” in benthic habitat mapping [22,25,56,58,59]. Systematically representing
multiple scales was accomplished by varying the size of the analysis window according to
the Fibonacci sequence [22]. The Fibonacci sequence was used to determine the radius in
number of pixels around a central pixel for eight different scales of analysis. This resulted
in derivative features being calculated at eight different window sizes from 3 × 3 pixels to
69 × 69 pixels (3 × 3, 5 × 5, 7 × 7, 11 × 11, 17 × 17, 27 × 27, 43 × 43, 69 × 69; scale factors
ranging from 30–690 m).

The bathymetric terrain attributes were calculated in the R programming language
version 3.6.3 [60] using the raster package [61]. The terrain attributes chosen were slope,
eastness and northness components of aspect (i.e., the orientation of the slope), local
standard deviation of bathymetry (a measure of rugosity), local mean of bathymetry, and
topographic position index (e.g., a local high or low [62]). These attributes were selected
based on suggestions from Lecours et al. [21]; however, topographic position index (TPI)
was substituted for relative difference from mean value (RDMV), as they both are used to
determine local highs and lows, but TPI has a more intuitive meaning, and the denominator
in RDMV can cause the metric to be undefined, leading to voids in the resulting surface.
Horn’s method [63] was used to derive slope and aspect, as this is the most widely used
and widely available algorithm for computing these metrics [21]; however, its calculation
is restricted to a 3 × 3 window. To extend these metrics (slope, eastness, and northness) to
multiple scales, these attributes were first derived (referred to as native scale), and then the
local mean of each attribute was calculated using varying window sizes (method three in
Dolan [64]).

For the backscatter derivatives, the local mean and the local standard deviation of
backscatter intensity were calculated across the range of window sizes. Additionally,
texture measures based on GLCMs were calculated [23,24]. Texture metrics used were
GLCM contrast, GLCM dissimilarity, GLCM homogeneity, GLCM angular second momen-
tum (ASM), GLCM entropy, GLCM mean, GLCM variance, and GLCM correlation [24].
These texture metrics can be broken down into three groups: the contrast group (contrast,
dissimilarity, and homogeneity), the orderliness group (ASM and entropy), and the de-
scriptive statistics group (mean, variance, and correlation) [24]. For the GLCM texture
metrics, the 10 m x 10 m backscatter surface was first quantized to 32 gray levels (discrete
integer values ranging from 0–31) using equal probability quantization [23,65]. Then,
a symmetrical GLCM was tabulated in all four directions (0◦/180◦, 45◦/225◦, 90◦/270◦,
135◦/315◦, where 0◦ is directly to the right and degrees increase counter-clockwise), and the
value of texture metrics was averaged over all directions to get directionally/rotationally
invariant measures of texture. Although there are many software packages to calculate
these GLCM textures, many are proprietary, and there can be inconsistencies in the results
among different software [24,66]. In some cases, these inconsistencies have prevented
their use in benthic habitat mapping studies [67]. For this study, free open source software
was developed to calculate these texture metrics on raster data and is available as an R
package [68].

2.3.3. Estimating Towed Video Position

To associate ground-truth habitat observations from the towed video with the relevant
MBES data, the position of the video at a given time must be estimated. This was done
trigonometrically [15,48,69]. The layback of the of the towed video system behind the
vessel was calculated using Pythagorean theorem based on the cable out from the winch,
the depth of the C-BASS, the vertical offset of the height of the A-frame block relative to the
waterline, and the fore/aft offset between the A-frame and the GPS antenna (Equation (1)
and Figure 3). The layback was converted to a time delay by dividing it by the average
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speed over the preceding minute and then was used to assign C-BASS a position by
assuming that the C-BASS exactly followed the ship track but lagged in time.

Layback = y +

√
C2 − (z + A)2 (1)

C : cable out (m); z : CBASS Depth (m); A : A− Frame height (m); y : fore/aft offset.

Figure 3. Schematic representation showing the physical meaning of the parameters from
Equation (1) that were used to calculate the layback of the Camera-Based Assessment Survey System
(C-BASS) system behind the ship’s GPS antenna.

2.3.4. Classification Algorithms

Both supervised and unsupervised classification procedures were employed to predict
substrate over the full area of the MBES survey [10]. The supervised classification map
was created using a balanced random forest algorithm with down-sampling [70,71] via the
RSToolbox [57,72] and ranger [73] R packages. The random forest algorithm has been imple-
mented in a number of previous benthic habitat mapping studies [20,25,26,56,74–76] and
has been found to have good performance for mapping benthic habitats when compared
to other classifiers [74,77]. The random forest algorithm works much like a traditional
decision tree where each node determines the optimal split in the predictor variables to best
separate groups, however, rather than simply fitting one decision tree, a “forest” of many
decision trees (e.g., hundreds to thousands) is fit to the data based on a bootstrap sample
(sampling with replacement) of the data, and each node on a tree is only given access to a
random subset of predictors [70,78]. Due to class imbalance (many more observations of
sand as compared to rock), we implemented a balanced random forest algorithm using
down-sampling, meaning that each bootstrap sample used to fit an individual decision tree
contained an equal number of observations of each class, and the number of observations
of each class was equal to the number of observations in the minority class. This has
been found to be an effective way to improve predictions using unbalanced data [71]. The
number of decision trees was set to 3000, and the plot of “out-of-bag” (OOB) error vs. the
number of trees was used to verify that a sufficient number of trees was used by ensuring
that the error rate reached an asymptote, and the number of variables available at each
split was tuned to maximize Kappa using five-fold cross validation. Cohen’s Kappa (κ)
is a measure of the level of agreement between two sets (often between predictions and
observations). The value of Kappa is equal to one if there is complete agreement between
the two sets, zero if the agreement is no greater than what could occur by chance, and
negative if the agreement is less than what could occur by chance. Some rules of thumb
for Kappa are that values less than zero represent poor agreement, from 0–0.2 represents
slight agreement, from 0.2–0.4 represents moderate agreement, from 0.6–0.8 represents
substantial agreement, and values from 0.8–1 represent almost perfect agreement [79,80].

The unsupervised statistical model used was k-means clustering [81], implemented
via the RSToolbox R package [57,72]. K-means clustering is one of the most used clustering
algorithms for both terrestrial and marine mapping applications [56,57] and is widely
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available in many different software environments. As the k-means clustering algorithm
requires the number of clusters to be specified a priori, a rule of thumb is to use twice the
number of the desired classes [82]. Since the desired thematic resolution was a two-class
map of rock vs. sand, the k-means algorithm was run using four clusters. The ground-truth
habitat points from the training data set were then used post-hoc to interpret the acoustic
clusters. Each cluster was interpreted as a substrate type based on majority vote of all
ground-truth habitat points from the training set contained within that cluster.

2.3.5. Variable Selection and Dimensionality Reduction

Calculating the derivative features for bathymetry and backscatter across multiple
scales resulted in 130 predictor variables (Table 1). GLCM correlation was only included at
five different scales (3 × 3, 5 × 5, and 7 × 7 were removed), as the metric is undefined if all
values in the window have the same value, which is more likely for smaller window sizes
and leads to voids in the resulting surfaces. Of these 130 predictors, many were redundant
and highly correlated, thus it was necessary to conduct variable selection and dimension
reduction [56].

For the supervised classification model, the Boruta selection algorithm was used to
determine important predictors [77,83]. This method fits many random forest models
and uses an iterative process to determine if a predictor variable has an importance score
significantly greater than a permuted version of itself. The significance threshold was set
at α = 0.05, and variable importance was calculated as the unscaled permutation-based
mean decrease in accuracy of OOB observations [84,85]. To further reduce the number of
predictors and remove high co-linearity predictors, the Pearson correlation was calculated
between all remaining predictors, and a predictor was removed from the model if it was
highly correlated (|r| > 0.8) with a predictor that had a higher average importance score
as determined by the Boruta procedure [25,56,58]. This is similar to procedures employed
in other studies (e.g., [25,58]) however, in our study, rather than including only the most
important scale of a given predictor, the same predictor was allowed to be included
at multiple scales based on the logic that a given predictor may be important at several
different scales and may be representative of different processes, especially if those different
scales are not highly correlated.

For the unsupervised classification model, all predictors (multibeam bathymetry,
backscatter, and their derivative features) were z-score normalized to minimize the effects
of differing ranges and units among predictors, and a principal components analysis (PCA)
was conducted to remove the effect of multi-collinearity [56,86]. To remove redundant
principal components (PCs), only a subset of the original PCs was retained. A PC was only
retained if it explained more variance than what would be expected if the total variance was
divided randomly amongst all the PCs as modeled by a broken-stick distribution [87–89].
The retained PCs were then used in the k-means clustering procedure [81].

2.3.6. Accuracy Assessment

Both supervised and unsupervised substrate maps were assessed using the validation
transect in terms of overall, producer’s, and user’s accuracy as well as the Cohen’s Kappa
statistic [90]. User’s and producer’s accuracy statistics are useful for assessing errors of
omission (false negatives) and errors of commission (false positives) for each substrate
type. The Kappa scores of the two maps were then compared using a Monte-Carlo permu-
tation procedure with 999 iterations to test whether the supervised classification map had
significantly greater performance (α = 0.05) than the unsupervised classification map [91].

An entropy map, which displays the uncertainty in predicted substrate for each indi-
vidual pixel, was generated for the supervised classification map. Entropy was calculated
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based on the proportion of decision trees in the model that voted for each class within a
given pixel using the Shannon entropy formula (Equation (2)) [57,92,93].

Entropy = −
M

∑
i=1

[pi∗ ln(pi)] (2)

pi : probability that a cell is of class i; i : class number; M : number of classes.

2.3.7. Map Comparison

To compare maps, a difference map was created to visually depict where and how
classifications from each model agreed and disagreed [94]. In addition to comparing
observations to predictions for accuracy assessment, Kappa can also be used to compare
how well two maps agree with each other. Moreover, since, when used in the spatial context,
Kappa confounds similarity in location with similarity in quantity, we can decompose
Kappa into Klocation and Khisto where Kappa is the product of these two terms [80,95,96].
Klocation quantifies how well the spatial allocation of the classes agree between the
two maps, and Khisto quantifies the agreement between the fraction of pixels assigned to
each class [80,95,96]. As such, Kappa, Klocation, and Khisto were calculated to compare
the supervised and the unsupervised classification maps.

2.3.8. Vertical Relief

In addition to substrate, vertical relief was determined, as this has been found to
be an important factor relating to fish community composition and abundance in many
studies [34,53,97–101]. Vertical relief was calculated directly from the 10 m bathymetry
surface using a moving 3× 3 pixel moving window by taking the depth value of the central
pixel in the window and subtracting the minimum depth of the surrounding pixels. These
relief values were then reclassified into categories (low, moderate, and high relief) using the
thresholds determined by Smith et al. [30] for the Florida Keys (low relief <1 m, moderate
relief >1 and ≤2 m, and high relief >2 m) as these previously established thresholds
corresponded well with our observations based on changes in total depth over 15 s bins as
calculated from C-BASS’ onboard sensors (Figure A1). This was then layered over the best
performing substrate map to delineate rock habitats of various types of relief, resulting in a
final habitat map with four classes: sand, low relief rock, moderate relief rock, and high
relief rock.

2.4. Fish Community Analyses and Abundance Estimates
2.4.1. Fish Densities

Using the fish counts and the corresponding habitat classifications from the video
data, a species-by-site matrix of fish counts and habitat observation binned to 15 s intervals
was created by associating each individual fish with the closest habitat observation in time.
For each 15 s bin, fish counts were converted to densities by dividing fish counts by the
cumulative area viewed in the video over the 15 s observation window (Equation (3)). The
horizontal angle of view of the system in air was calculated based on the properties of
the camera system [102]. This angle of view was then adjusted for the refraction of light
in seawater using Snell’s Law, and the average width of the frame for each 15 s bin was
calculated using the trigonometric approach of Grasty [53], which estimates the frame
width using the altitude and the pitch of the camera relative to the bottom as well as the
horizontal angle of view of the camera in seawater. Distance traveled by the video system
was calculated using ship speed; the area viewed was calculated by multiplying the frame
width by the distance traveled. For calculations, median values of the ship speed, C-BASS
altitude, and C-BASS pitch over each 15 s bin were used (see Supplementary Materials for
full details).



Geosciences 2021, 11, 176 11 of 40

2.4.2. Multivariate Community Analysis

Differences in the fish communities among the four broad habitat types (sand, low
relief rock, moderate relief rock, and high relief rock) were analyzed. If the same habitat was
observed multiple times sequentially along a transect, fish counts were aggregated, and the
area viewed summed across all contributing 15 s bins. Counts were converted to densities
by dividing the number of fishes by the area viewed (see above for area calculations).

To assess differences in fish communities among habitats, a non-parametric permu-
tation based analysis of variance (PERMANOVA) [103] tested the null hypothesis of no
significant difference in fish community composition and abundance among habitat classes.
Species composition differences among individual pairs of habitat classes were evaluated
using pairwise PERMANOVA tests. Prior to conducting the PERMANOVA, the validity of
the assumption of homogeneity of multivariate dispersion was checked using a multivari-
ate analogue to the Levene’s test [104]. A canonical analysis of principal coordinates (CAP)
was conducted to identify which taxa were responsible for driving these compositional
differences [105]. These analyses were conducted in R using the vegan [106,107] and Bio-
diversityR [108,109] R packages. All fish counts were square-root-transformed to reduce
the influence of occasional large aggregations, and the Bray–Curtis dissimilarity metric
was used to calculate dissimilarity between samples [110]. Moreover, any observations
where no fish were observed were removed for these analyses, as that is a requirement of
the Bray–Curtis dissimilarity metric since it cannot be calculated based on joint species ab-
sences [110]. Significance was assessed at α = 0.05, and p-values for pair-wise comparisons
were adjusted using Holm’s sequential Bonferroni procedure to account for the effect of
multiple comparisons [111,112].

2.4.3. Fish Abundance Estimates

Based on the results of pairwise PERMANOVA tests, habitat classes were merged
if their pairwise comparisons were not significantly different. The average density for
each fish taxa by habitat type was calculated (Equation (4)) and 95% confidence intervals
determined via bootstrap resampling with 999 iterations [113]. The combined map of
substrate and vertical relief was used to calculate the total area of each habitat type.
These areas were used to scale habitat-specific densities up to abundance estimates by
multiplying the area of each habitat type by the habitat-specific density for a given taxa
and then summing across habitat types to provide an estimate of total abundance for the
study area (Equation (5)). The 95% confidence intervals for abundance were calculated
by substituting the lower and the upper bounds of the habitat-specific density confidence
intervals as Dh in the calculations of abundance.

Db = cb/Ab (3)

Dh =
∑n

n=1 cb

∑n
n=1 Ab

=
∑n

n=1(Db∗Ab)

∑n
n=1 Ab

(4)

Abd =
nh

∑
h=1

(Dh∗Ah) (5)

Db: Average density of fish taxa for bin b;
n: number of bins for a given habitat type;
cb: number of fish of a given taxa in bin b;
Ab: Aera viewed by the camera over bin b;
Dh: Average density of fish taxa for habitat type b;
Abd: Abundance of fish taxa summed across all habitat types;
nh: number of habitat classes;
Ah: Area of habitat type h in the entire study area.
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3. Results
3.1. Predictive Habitat Mapping
3.1.1. Preparing Ground-Truth Data

The ground-truth dataset consisted of 3680 observations where each observation was
the substrate classification determined from the video at 15 s intervals. This consisted
of 473 observations of rock, 3195 observations of sand, and 12 observations where the
substrate was not discernable. After censoring substrate determinations that differed from
their previous and subsequent observations (procedure described above), those where
substrate was not visible, and observations beyond the bounds of the MBES survey, there
remained 238 observations of rock and 2533 observations of sand. After splitting these data
into training and validation sets, the training data set consisted of 210 observations of rock
and 1947 observations of sand, and the validation data consisted of 28 observations of rock
and 586 observations of sand (Figure 4).

Figure 4. Ground-truth observations of substrate from the towed video system for training (a) and validation (b) of statistical
substrate classification models. The blue area represents the multibeam echosounder (MBES) survey area.
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3.1.2. Supervised Classification

The Boruta variable selection procedure retained 120 of the 130 predictors; however,
after removing predictors that were highly correlated with a more important predictor
(|r| > 0.8), only 12 predictor variables remained. These predictors were local mean of
bathymetry (27× 27), TPI (17× 17), slope (11× 11), eastness (7× 7 and 69× 69), northness
(native and 11 × 11), local standard deviation of backscatter (11 × 11 and 27 × 27), GLCM
correlation (11 × 11 and 43 × 43), and GLCM variance (27 × 27; Figure 5). After variable
selection, the optimal number of variables available at each split was determined to be
four, and the number of decision trees was found to be sufficient (Figure A2). The tuned
and fitted model was then used to predict substrate for the entire study area, resulting in a
map consisting of 3.82 km2 of rock and 83.75 km2 of sand (Figure 6). Accuracy assessment
was performed on the validation data; the confusion matrix with performance metrics is
presented in Table 2.

Figure 5. Retained predictor variables used in the random forest supervised classification model for substrate.
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Figure 6. Substrate map of the Elbow of the west Florida shelf with 10 m x 10 m resolution determined through supervised
(random forest) classification (a) and the corresponding Shannon entropy map describing the uncertainty of the classification
of each pixel (b).

Table 2. Confusion matrix and user’s (row-wise) accuracy, producer’s (column-wise) accuracy,
overall accuracy, and Cohen’s Kappa statistic (κ) for the substrate map of the Elbow of the west
Florida shelf derived using supervised classification.

Rock Sand User’s Accuracy

Rock 23 9 71.9%

Sand 5 575 99.1%

Producer’s Accuracy 82.1% 98.5% Overall Accuracy 97.7%

κ 0.75
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The variable importance is shown in Figure 7. The most important predictor was
slope (11 × 11), followed by standard deviation of backscatter (27 × 27). Although some
predictors were more important than others, all predictors had positive values indicating
that they all provided some benefit to the model’s overall predictive ability (Figure 7).
Uncertainty in predicted substrate for each individual pixel is presented in the entropy
map (Figure 6b).

Figure 7. Permutation variable importance of the MBES derived predictor variables in determining substrate type for the
supervised (random forest) classification model in the Elbow of the west Florida shelf. The reported values of mean decrease
in accuracy are unscaled (not divided by standard deviation) as suggested in Strobl and Zeileis [84].

3.1.3. Unsupervised Classification

The first nine PCs explained more variance than could be expected if the total variance
was divided randomly amongst the PCs (Figure 8), and as such, they were retained for
use in k-means clustering (Figure 9). The nine PCs explained 86% of the total variance. A
k-means clustering procedure with four clusters was conducted on the retained PC layers
(Figure 10a). Acoustically derived clusters were then assigned to substrate classes based on
the majority of the ground-truth points within that cluster (Table 3 and Figure 10b). This
substrate map predicts the study area to consist of 3.74 km2 of rock and 83.83 km2 of sand.
Accuracy assessment was performed on the validation data; the confusion matrix with
performance metrics is presented in Table 4.
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Figure 8. Plot of the percent of variance explained by each individual principal component for observed data and
simulated data in which the variance was distributed randomly amongst the principal components as modeled by a
broken-stick distribution.

Table 3. Substrate interpretation of the map of the four acoustic clusters of the Elbow determined
through k-means clustering (Figure 10a) using the ground-truth habitat observations from towed
video in the training set (Figure 4a). The number of ground-truth points of each substrate type within
an acoustic cluster were counted, and the acoustic cluster was assigned a substrate type based on the
class of the majority of the images contained within that acoustic cluster.

Cluster Rock Observations Sand Observations Assigned Substrate

1 21 229 Sand
2 179 75 Rock
3 10 1447 Sand
4 0 194 Sand

Table 4. Confusion matrix and user’s (row-wise) accuracy, producer’s (column-wise) accuracy,
overall accuracy, and Cohen’s Kappa statistic (κ) for the substrate map of the Elbow of the west
Florida shelf derived using unsupervised classification.

Rock Sand User’s Accuracy

Rock 10 0 100.0%

Sand 18 585 97.0%

Producer’s Accuracy 35.7% 100.0% Overall Accuracy 97.1%

κ 0.51
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Figure 9. Plot of the nine retained principal components for use in the k-means clustering procedure.
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Figure 10. Maps for the Elbow of the west Florida shelf of the four acoustic clusters from the k-means clustering procedure
of the first nine principal components of the MBES derived predictors (a) and the resulting unsupervised substrate map
based on interpretation of the acoustic clusters from the ground-truth habitat observations from the towed video system
(b) with 10 m × 10 m resolution.

3.1.4. Map Comparison

The supervised substrate map predicted 0.08 km2 more rock than the unsupervised
substrate map. These differences can be visualized in Figure 11. The two maps agree
98.33% of the time; the supervised classification map predicts rock where the unsupervised
classification map predicts sand 0.87% of the time, and the supervised map predicts sand
where the unsupervised map predicts rock 0.80% of the time. The comparison of Kappa,
Klocation, and Khisto shows “almost perfect agreement” in both the spatial allocation and
the relative frequency of class assignment (Klocation = 0.807 and Khisto of 0.989). Overall,
this corresponds to a Kappa value (Klocation*Khisto) of 0.798, indicating a “substantial
level” of agreement between the two maps. When comparing the predictions on the
validation data set for accuracy assessment, the supervised classification model was found
to have greater performance (κ = 0.75 vs. κ = 0.51). This difference was found to be
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significant (p = 0.001) using a one-tailed Monte-Carlo permutation test, indicating that the
supervised classification procedure had significantly greater predictive performance than
did the unsupervised classification method.

Figure 11. Difference map showing where the modeled predictions of substrate agreed and disagreed
for the supervised and the unsupervised classification models. For disagreement, the legend is
formatted with the supervised/unsupervised model prediction.

3.1.5. Vertical Relief

The reclassified relief map was layered onto the substrate map created using the
supervised classification procedure, as it had better performance than the unsupervised
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procedure, to create a “habitat map” consisting of a combination of substrate and vertical
relief (Figure 12). This map predicts 83.75 km2 of sand, 3.46 km2 low relief rock, 0.31 km2

of moderate relief rock, and 0.05 km2 of high relief rock.

Figure 12. Combined substrate and vertical relief map of the Elbow of the west Florida shelf with
10 m × 10 m resolution determined through supervised (random forest) classification and maximum
vertical relief calculated from the bathymetry around a central pixel. Thresholds for vertical relief
were low relief <1 m, moderate relief >1 and ≤2 m, and high relief >2 m [30].
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3.2. Fish Community Analyses and Abundance Estimates
3.2.1. Fish Densities

The average densities for each fish taxon by habitat type were calculated; however,
moderate and high relief rock were merged into one category since the fish communities
in them were not found to be significantly different in the pairwise comparisons (see next
section). Fish densities were estimated by habitat type for 36 species or species groups as
well as for all fishes combined. For most taxa (33 of the 36 species/species groups), average
fish density was highest over rocky habitats, and only three species (Rainbow Runner,
remora spp., and Pearly Razorfish) had their highest densities over sand. Of the 33 taxa
with highest densities over rocky habitat, 17 had highest densities over moderate to high
relief rock and 16 over low relief rock (Figure 13 and Table A1).

Figure 13. The habitat-specific densities for select fish taxa by habitat type determined from the
towed video transects. Error bars represent the 95% bootstrap confidence intervals.
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3.2.2. Multivariate Community Analysis

A total of 2030 different individual fish were observed, spanning at least 32 different
species and 18 different families (Table A2) along the three observed video transects. After
combining sequential 15 s bins of the same habitat into one observation and removing
observations where no fish were present, there were 41 observations over sand, 80 over low
relief rock, 10 over moderate relief rock, and 7 over high relief rock. The dispersions among
different habitats were found not to be significantly different (p = 0.186), indicating that
the assumption of homogeneity of multivariate dispersion was met. The PERMANOVA
showed that the fish community compositions differed significantly among habitat types
(Table 5, p = 0.001), and the pairwise comparisons found that all habitat types significantly
differed from one another except between moderate and high relief rock (Table 6).

Table 5. Results of the PERMANOVA assessing the null hypothesis of no significant difference in
fish communities among the four habitat types: sand, low relief rock, moderate relief rock, and high
relief rock.

Degrees of Freedom Sum of Squares Mean Square F p

Habitat 3 4.762 1.58737 4.4454 0.001

Residual 134 47.849 0.35708

Total 137 52.611

Table 6. Results of the pairwise PERMANOVA tests with 9999 iterations to assess differences in fish
communities between each pair of habitat types. The F statistic, a p value, and an adjusted p value
using a sequential Bonferroni procedure to account for multiple comparisons are reported.

Comparison F p Adjusted p

Sand vs. Low Relief Rock 8.685 0.0001 0.0006
Sand vs. Moderate Relief Rock 3.114 0.0006 0.0024

Sand vs. High Relief Rock 3.513 0.0002 0.0010
Low Relief Rock vs. Moderate Relief Rock 2.727 0.0066 0.0198

Low Relief Rock vs. High Relief Rock 2.410 0.0165 0.0330
Moderate Relief Rock vs. High Relief Rock 0.839 0.5773 0.5773

The CAP results indicated that communities over moderate and high relief rock were
differentiated by having more Creolefish, Gray Snapper, Goliath Grouper, and Spanish
Hogfish; low relief rocky habitats were differentiated by squirrelfishes, Blue Angelfish,
lionfishes, and surgeon fishes; sand communities were differentiated by Sand Tilefish,
Rainbow Runner, and remoras (Figure 14).
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Figure 14. Canonical analysis of principal coordinates (CAP) plot showing the top 15 species that differentiate communities
among four habitat types: sand, low relief rock, moderate relief rock, and high relief rock habitats. Points represent
individual observations of a habitat type, and vectors represent the species correlation vectors. Additionally, the centroids
for each habitat type are plotted.

3.2.3. Fish Abundance Estimates

We estimated 110,000 fish (95% CI (59842, 174961))≥15 cm in length within the 88 km2

study area (Figure 15 and Table A3). Of these, 39,000 (35%) were predicted to be over
sand, 25,000 (23%) over low relief rock, and 45,000 (41%) over moderate to high relief rock
(Figure 15).
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Figure 15. Estimates of total abundance for select fish taxa within the portion of Elbow on the west Florida shelf that
was mapped using a MBES. The calculated contributions of sand, low relief rock, and moderate to high relief rock to the
estimated total abundances are also shown. Extrapolations are based on the area of each habitat as determined by the
combined substrate and vertical relief map using the supervised methodology (Figure 12) and the habitat-specific densities
for each taxon (Table A1 and Figure 13). Error bars represent the 95% bootstrap confidence intervals.
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4. Discussion
4.1. Comparison of the Supervised and Unsupervised Procedures

Both the supervised and the unsupervised map classification procedures resulted in
maps of the study area with the same general configurations; both maps identified the
main long rocky ridge running north to south, a smaller ridge to the west, and several
small rocky outcroppings (Figures 6a and 10b). The maps looked very similar based on
a visual inspection, and this was verified statistically as the maps exhibited “substantial
agreement” overall and “almost perfect agreement” in terms of both spatial allocation and
relative frequency of class assignment. Inspection of the difference map showed that the
disagreement was mainly in transitional areas at the boundary of features. Additionally,
both the supervised and the unsupervised substrate maps had very high accuracy (>97%)
when predicting the validation data. However, overall accuracy can be a misleading metric
when classes are highly unbalanced [90,114]. Accordingly, it is critical to evaluate maps
using both user’s and producer’s accuracy as well as the Kappa statistic, which accounts
for agreement that could occur by chance [90]. Both maps had high user’s and producer’s
accuracies for sand. However, for rock (the rarer class), the unsupervised classification
showed a moderately higher user’s accuracy than did the supervised map (100% vs. 71.9%)
but had a much lower producer’s accuracy (35.7% vs. 82.1%). Thus, the unsupervised
classification only predicted rock if it was very certain, leading to high errors of omission
(false negatives). This in turn meant that the unsupervised classification was likely under-
predicting the area of rock habitats, which is consistent with the finding that the supervised
classification map predicted slightly more rock than the unsupervised classification map
(an additional 0.08 km2). Additionally, in the difference map, it was more common to see
instances where the supervised classification map predicted rock and the unsupervised
map predicted sand as opposed to vice versa (Figure 11), especially in areas further from
the training data. This, along with the supervised model’s greater performance on the
validation data, indicated that the supervised model was more generalizable than the unsu-
pervised model for predictions on new data. There are tradeoffs between overall accuracy
and user’s and producer’s accuracy for each class. Examination of the Kappa statistic,
however, indicated the supervised methodology performed better than the unsupervised
methodology, and a Monte-Carlo procedure determined this difference to be significant
(p = 0.001). In the supervised classification map, κ > 0.6, indicating “substantial agreement”
between predictions and observations, while in the unsupervised classification map, κ > 0.4,
indicating “moderate agreement” between predictions and observations. Although the
supervised classification map performed better, the unsupervised procedure can still be
useful. Particularly, the determination of acoustic clusters (Figure 10a) can be very valuable
for designing the initial ground-truthing surveys, as one can make sure to sample within
each acoustic cluster to maximize the likelihood that the full diversity of habitats in the
area is sampled.

In addition to accuracy assessment, for the supervised methodology, we mapped
the uncertainty in the classification for each individual pixel (Figure 6b). This gave us a
picture of how uncertainty changed throughout the study area rather than just the average.
Generally, the most uncertainty was found in rocky areas. However, some other areas also
had moderate uncertainty. These other areas may represent differing morphologies of rock
and sand habitats other than the ones from which the model was trained—mixed habitat
classes, areas with gravel or debris, or entirely new habitats that were not observed in the
video transects. This makes sense, as rock is the rarer substrate class, thus there are fewer
samples upon which to train the model, and high complexity areas and habitat boundaries
tend to have greater errors [56,115,116]. To improve the uncertainty within these areas,
additional ground-truthing efforts would be needed to collect more observations in these
areas. Assessing the uncertainty in a spatial context is very important, as the accuracy
statistics calculated from the confusion matrix simply describe “average” uncertainty, but
uncertainty is variable across the study area (Figure 6b) [56,117]. Despite being important,
uncertainty in spatial classification of habitats is rarely assessed in benthic habitat mapping
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studies [56]. The entropy map presented herein provides a method to visually depict uncer-
tainty regardless of the number of habitat classes and can be used with other classifiers as
long as the model used is capable of outputting class probabilities [57,92,93]. Additionally,
another simple way to represent the (un)certainty over space is to map the probabilities
of the assigned class at each pixel location or, conversely, one minus that to display the
uncertainty in the classification.

4.2. Variable Importance for Substrate Mapping

Of the many predictor variables considered, most were either unimportant or redun-
dant, as only 12 of the 130 predictors were retained in the final model. Seven of these
predictors were derived from bathymetry and five from backscatter. The two most im-
portant predictors were slope (11 × 11) and standard deviation of backscatter (27 × 27).
These two predictors had noticeably higher importance scores than the rest of the retained
variables (Figure 7). Previous studies also have often found slope to be an important
predictor and that including both bathymetric and backscatter information can improve
classification accuracy [26,58,75,76,118]. Additionally, several predictors were found to be
important at two differing spatial scales, potentially indicating that the same predictor may
be representative of different properties and processes at differing scales of analysis.

4.3. Fish Community Analysis and Abundance Estimates

We found the fish communities to differ significantly among habitat types except
between moderate and high relief rock (Tables 5 and 6). This is consistent with many other
studies on the WFS and elsewhere finding both substrate and vertical relief or complexity
to play important roles in shaping fish community composition [34,53,97–101,119]. In
particular, our study is comparable to that by Switzer et al. [34] who also studied a portion
of the Elbow, instead using baited stationary cameras and finding fish communities to
differ among different types of hard-bottom habitats. In our analysis, we also identified
the species driving compositional differences among habitat groups, generally finding that
taxa differentiating higher relief habitats were large reef fish species (e.g., snappers and
groupers), while the low relief rocky habitats were differentiated by smaller reef fish (e.g.,
squirrelfishes, angelfishes, and lionfishes), and sand habitats were differentiated by Sand
Tilefish and some pelagic species (e.g., jacks and remoras) likely moving through the area
rather than seeking rocky areas for refuge.

Overall, fish density was highest over moderate to high relief rock, followed by low
relief rock and then sand (Figure 13and Table A1), but this differed by taxa; 17 taxa had
densities highest over moderate to high relief rock, 16 taxa had densities highest over
low relief rock, and only 3 taxa had highest densities over sand. After extrapolating fish
densities to total abundance, we estimated 110,000 fish (95% CI (59842, 174961) ≥15 cm in
length within the study area (Figure 15and Table A3). Of these, 39,000 (35%) were predicted
to be over sand, 25,000 (23%) over low relief rock, and 45,000 (41%) over moderate to high
relief rock (Figure 15). Rock substrate (of all relief classes) therefore contained 65% of
all fish while comprising just 4% of the study area. Additionally, moderate to high relief
rock made up just 0.4% of the study area but contributed more than all the surrounding
sand, which covers approximately 96% of the study area. The disproportionate importance
of rocky substrates, particularly moderate to high relief rocky areas, underscores the
importance of offshore hard-bottom areas as “critical habitats” for demersal fish in the
offshore environment. Moreover, we found that although sand habitats sustain much
lower densities of fish and therefore are not likely to be targets of directed fishing efforts,
they are still important to the population dynamics of species since the physical area of
low density is so large. Thus, accurate assessment of these demersal reef fish populations
requires sampling both sand and rock habitats; however, rock habitats, particularly those
that are higher relief, should be differentially sampled with greater intensity to increase
the precision of density and abundance estimates, as density and variability are greater
there [120].
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4.4. Conclusions, Limitations, and Future Work

In this study, we developed a cost-effective approach to combine limited video obser-
vations (1% of the total study area) from a towed video system with MBES data to create
full-coverage substrate habitat maps and estimate the total abundance of fish taxa. The field
of automated habitat mapping in the marine environment is relatively young, and there has
been little agreement on optimal protocols for determining inputs or statistical methods.
However, best practices have begun to emerge over the last several years [21,56,94]. This
study was able to implement many of the suggestions for best practices [21,56] and did so
using free open source software, which we hope will help lead to more consistent, robust,
and transparent benthic habitat maps [94]. Additionally, while the analyses herein are
restricted to a single study area, the methodology provides a robust analysis framework
that can be applied to other areas which can be useful for survey design as the Gulf of
Mexico fisheries-independent monitoring surveys transition to a design that allocates
sampling effort in a way that considers habitat quantity [34,121] as well as for large scale
studies that estimate total abundance of fish taxa based on habitat-specific densities [39].

The use of towed video sampling to estimate fish abundance is likely to have less bias
in the “catchability” (siting probability in this context) as opposed to traditional sampling
gear such as trawls [53,122]. Still, it is important to understand the biases associated with
any system [123]. Paired gear catchability experiments are an obvious way to formally
assess the sensitivity of these estimates to fish attractance/avoidance to towed systems and
represent an important next step towards improved fish density and absolute abundance
estimates using towed video systems [123]. Previous work demonstrated that most of
our target species (large reef fish) exhibit neutral or weak avoidance behavior in the near-
field such that these reactions generally do not prevent the fish from being identified and
counted [53]; however, more data can make these findings more robust. Additionally, a
more comprehensive analysis of the far-field effects (before the fish come into view of the
camera) is still needed. We have upcoming work with Florida Fish and Wildlife Research
Institute to do these types of analyses. Moreover, although uncertainty of the habitat map
was characterized (Figure 6b), the estimates of fish abundance only considered uncertainty
in the fish densities. Characterizing the uncertainty in predicted substrate represents an
important step towards understanding the limitations of our study; however, more work
should be done to formally incorporate this uncertainty into the abundance estimates. This
can be done at the design stage by informing where more ground-truthing effort is needed
in order to reduce habitat uncertainty, via comparison with other mapping approaches
such as Florida Fish and Wildlife Research Institute’s interpreted sidescan sonar habitat
maps [35], or through novel analytical approaches that can account for errors in both
terms. Additionally, addressing the impact of spatial autocorrelation using geostatistical
techniques to account for the effect of space on fish densities can improve abundance
estimates [124]. More work should also be done to ensure appropriate thresholds for
delineating vertical relief categories, as there are high densities in higher relief areas, and
therefore abundance estimates are sensitive to how these thresholds are defined. More
accurate quantification of visual relief thresholds could be accomplished by accounting
for the bend in the tow cable by determining an appropriate catenary factor [69] or by
using acoustic positioning so that images can be more accurately projected in space onto
the multibeam bathymetry [48,125] or through direct measurements of vertical relief using
stereo cameras [126]. Lastly, the habitat maps and the fish densities from this study could
be used to improve future towed video surveys in this area, as these data allow for the
design of a truly stratified systematic sample where sampling effort is optimally allocated
according to the variance in fish density estimates, which would provide more precise and
unbiased estimates of abundance [120].

In addition to improved fisheries surveys, habitat maps can be valuable for more
sophisticated ecological analyses in the marine environment. Evaluating biological in-
teractions of different scales and accounting for the configuration and the heterogeneity
of habitats is well established in studies of the terrestrial environment but has been less
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studied in marine settings [127–129]. Improved habitat maps that incorporate analyses at
multiple scales can aid in conducting these types of analyses. As habitat maps become
more commonly used in conservation and management, addressing the full propagation
of uncertainty throughout all analyses represents a difficult but important challenge to be
addressed [94].
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Appendix A

Figure A1. Box plot of vertical relief over 15 s time bins for each relief class. Re-
lief was calculated from C-BASS’ onboard sensors, where total depth was calculated
as CBASS_Depth + CBASS_Altitude*cos(CBASS_Pitch), and the relief was calculated as the
max(Total_Depth)-min(Total_Depth) for each 15 s time bin. The blue, orange, and red areas represent
the range of relief values that correspond to low, medium, and high relief, respectively, based on the
cutoffs provided by Smith et al. [30].

Table A1. Habitat-specific densities for all observed taxa in number of individuals/m2 as determined from the towed video
transects in the Elbow area of the west Florida shelf. Lower and upper bounds represent the 95% confidence intervals.

Taxa Habitat Lower Bound Mean Upper Bound

All_Fish Sand 0.000305091368 0.000464386728 0.000675358543
All_Fish Low_Relief 0.005654144932 0.007306868473 0.008924795926
All_Fish Mod/High_Relief 0.041204024881 0.127203256069 0.245024232512

amberjack_spp Sand 0.000000000000 0.000002902417 0.000007282130
amberjack_spp Low_Relief 0.000038238047 0.000404866063 0.000988826791
amberjack_spp Mod/High_Relief 0.000000000000 0.000133616866 0.000390694044
angelfish_blue Sand 0.000005804730 0.000014512085 0.000023436164
angelfish_blue Low_Relief 0.000326755837 0.000530181749 0.000767483569
angelfish_blue Mod/High_Relief 0.000399268295 0.000935318059 0.001528539056
angelfish_gray Sand 0.000000000000 0.000000000000 0.000000000000
angelfish_gray Low_Relief 0.000009508321 0.000057838009 0.000126721804
angelfish_gray Mod/High_Relief 0.000000000000 0.000133616866 0.000426533497
angelfish_spp Sand 0.000000000000 0.000000000000 0.000000000000
angelfish_spp Low_Relief 0.000000000000 0.000009639668 0.000029689030
angelfish_spp Mod/High_Relief 0.000000000000 0.000000000000 0.000000000000

bigeye_spp Sand 0.000010242236 0.000023219336 0.000037805805
bigeye_spp Low_Relief 0.000136342357 0.000240991704 0.000356470592
bigeye_spp Mod/High_Relief 0.000000000000 0.000000000000 0.000000000000
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Table A1. Cont.

Taxa Habitat Lower Bound Mean Upper Bound

boxfish_spp Sand 0.000000000000 0.000000000000 0.000000000000
boxfish_spp Low_Relief 0.000000000000 0.000019279336 0.000048421997
boxfish_spp Mod/High_Relief 0.000000000000 0.000000000000 0.000000000000

butterflyfish_spp Sand 0.000000000000 0.000002902417 0.000007276943
butterflyfish_spp Low_Relief 0.000009548271 0.000048198341 0.000105886188
butterflyfish_spp Mod/High_Relief 0.000000000000 0.000000000000 0.000000000000

eel_spp Sand 0.000000000000 0.000000000000 0.000000000000
eel_spp Low_Relief 0.000000000000 0.000009639668 0.000029404678
eel_spp Mod/High_Relief 0.000000000000 0.000000000000 0.000000000000

goatfish_spotted Sand 0.000000000000 0.000000000000 0.000000000000
goatfish_spotted Low_Relief 0.000000000000 0.000000000000 0.000000000000
goatfish_spotted Mod/High_Relief 0.000000000000 0.000133616866 0.000430797429
grouper_black Sand 0.000000000000 0.000000000000 0.000000000000
grouper_black Low_Relief 0.000000000000 0.000000000000 0.000000000000
grouper_black Mod/High_Relief 0.000000000000 0.000400850597 0.001324759414

grouper_creolefish Sand 0.000000000000 0.000000000000 0.000000000000
grouper_creolefish Low_Relief 0.000000000000 0.000356667722 0.000928362228
grouper_creolefish Mod/High_Relief 0.007643028251 0.036343787448 0.075195350579

grouper_gag Sand 0.000000000000 0.000001451209 0.000004381866
grouper_gag Low_Relief 0.000000000000 0.000019279336 0.000059046688
grouper_gag Mod/High_Relief 0.000000000000 0.000267233731 0.000852786071

grouper_goliath Sand 0.000000000000 0.000000000000 0.000000000000
grouper_goliath Low_Relief 0.000000000000 0.000000000000 0.000000000000
grouper_goliath Mod/High_Relief 0.000000000000 0.000400850597 0.001065084821

grouper_red Sand 0.000000000000 0.000001451209 0.000004381866
grouper_red Low_Relief 0.000009425807 0.000038558673 0.000078463175
grouper_red Mod/High_Relief 0.000000000000 0.000000000000 0.000000000000

grouper_scamp Sand 0.000000000000 0.000000000000 0.000000000000
grouper_scamp Low_Relief 0.000009680947 0.000144595023 0.000359476725
grouper_scamp Mod/High_Relief 0.000000000000 0.000133616866 0.000430797429

grouper_spp Sand 0.000001443556 0.000005804834 0.000011675402
grouper_spp Low_Relief 0.000000000000 0.000019279336 0.000048726459
grouper_spp Mod/High_Relief 0.000000000000 0.000133616866 0.000426393036
jack_crevalle Sand 0.000000000000 0.000001451209 0.000004375663
jack_crevalle Low_Relief 0.000000000000 0.000028919005 0.000077360701
jack_crevalle Mod/High_Relief 0.000000000000 0.000000000000 0.000000000000

jack_rainbowrunner Sand 0.000000000000 0.000002902417 0.000008756979
jack_rainbowrunner Low_Relief 0.000000000000 0.000000000000 0.000000000000
jack_rainbowrunner Mod/High_Relief 0.000000000000 0.000000000000 0.000000000000

jack_spp Sand 0.000000000000 0.000000000000 0.000000000000
jack_spp Low_Relief 0.000000000000 0.000009639668 0.000029677705
jack_spp Mod/High_Relief 0.000000000000 0.000000000000 0.000000000000

lionfish_spp Sand 0.000056869715 0.000094328554 0.000134798264
lionfish_spp Low_Relief 0.001457130610 0.002091807993 0.002804478909
lionfish_spp Mod/High_Relief 0.002402247287 0.007482544475 0.015170870783
porgy_spp Sand 0.000004360488 0.000013060877 0.000023075921
porgy_spp Low_Relief 0.000028376948 0.000077117345 0.000148411135
porgy_spp Mod/High_Relief 0.000000000000 0.000133616866 0.000437293986

remora_spp Sand 0.000000000000 0.000001451209 0.000004377825
remora_spp Low_Relief 0.000000000000 0.000000000000 0.000000000000
remora_spp Mod/High_Relief 0.000000000000 0.000000000000 0.000000000000
shark_spp Sand 0.000000000000 0.000000000000 0.000000000000
shark_spp Low_Relief 0.000000000000 0.000009639668 0.000029219565
shark_spp Mod/High_Relief 0.000000000000 0.000000000000 0.000000000000

snapper_gray Sand 0.000013061514 0.000108840639 0.000254981252
snapper_gray Low_Relief 0.000468269192 0.001156760180 0.002055718899
snapper_gray Mod/High_Relief 0.002742580078 0.063468011169 0.149759809054
snapper_spp Sand 0.000000000000 0.000000000000 0.000000000000
snapper_spp Low_Relief 0.000000000000 0.000019279336 0.000059229663
snapper_spp Mod/High_Relief 0.000000000000 0.000133616866 0.000390694044

snapper_yellowtail Sand 0.000000000000 0.000000000000 0.000000000000
snapper_yellowtail Low_Relief 0.000000000000 0.000038558673 0.000116011333
snapper_yellowtail Mod/High_Relief 0.000000000000 0.000267233731 0.000809175808

squirrelfish_spp Sand 0.000004354164 0.000014512085 0.000026267894
squirrelfish_spp Low_Relief 0.000464723937 0.000616938763 0.000782913741
squirrelfish_spp Mod/High_Relief 0.000125668348 0.000534467462 0.001081371358

stingray_spp Sand 0.000000000000 0.000000000000 0.000000000000
stingray_spp Low_Relief 0.000000000000 0.000009639668 0.000029666787
stingray_spp Mod/High_Relief 0.000000000000 0.000000000000 0.000000000000
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Table A1. Cont.

Taxa Habitat Lower Bound Mean Upper Bound

surgeonfish_spp Sand 0.000000000000 0.000001451209 0.000004388087
surgeonfish_spp Low_Relief 0.000057776382 0.000134955354 0.000233778550
surgeonfish_spp Mod/High_Relief 0.000000000000 0.000000000000 0.000000000000

tilefish_sand Sand 0.000027559370 0.000043536256 0.000062686638
tilefish_sand Low_Relief 0.000048742988 0.000106036350 0.000172505726
tilefish_sand Mod/High_Relief 0.000000000000 0.000000000000 0.000000000000

triggerfish_spp Sand 0.000000000000 0.000004353626 0.000010194629
triggerfish_spp Low_Relief 0.000009284980 0.000038558673 0.000078463175
triggerfish_spp Mod/High_Relief 0.000000000000 0.000000000000 0.000000000000
wrasse_creole Sand 0.000000000000 0.000000000000 0.000000000000
wrasse_creole Low_Relief 0.000000000000 0.000000000000 0.000000000000
wrasse_creole Mod/High_Relief 0.000000000000 0.001336168656 0.004307974287

wrasse_hogfish Sand 0.000000000000 0.000001451209 0.000004377401
wrasse_hogfish Low_Relief 0.000009404868 0.000038558673 0.000078650541
wrasse_hogfish Mod/High_Relief 0.000000000000 0.000133616866 0.000418370109

wrasse_pearlyrazorfish Sand 0.000000000000 0.000001451209 0.000004378067
wrasse_pearlyrazorfish Low_Relief 0.000000000000 0.000000000000 0.000000000000
wrasse_pearlyrazorfish Mod/High_Relief 0.000000000000 0.000000000000 0.000000000000
wrasse_spanishhogfish Sand 0.000000000000 0.000000000000 0.000000000000
wrasse_spanishhogfish Low_Relief 0.000000000000 0.000000000000 0.000000000000
wrasse_spanishhogfish Mod/High_Relief 0.000000000000 0.000267233731 0.000654899428
wrasse_spotfinhogfish Sand 0.000000000000 0.000000000000 0.000000000000
wrasse_spotfinhogfish Low_Relief 0.000000000000 0.000009639668 0.000029467959
wrasse_spotfinhogfish Mod/High_Relief 0.000000000000 0.000133616866 0.000421591353

Figure A2. Model diagnostics showing the mean out-of-bag error as the number of decision trees in the random forest
model increases. The error rate plateaus, meaning that a sufficient number of decision trees are used in the model.
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Table A2. List of all fish taxa observed along with the number of individuals seen.

Common Name Scientific Name Family Order Number of
Individuals Observed

Amberjack spp. Seriola spp. Carangidae
Perciformes 45(Jacks)

Angelfish spp. Pomacanthidae
Perciformes 1(Angelfishes)

Blue Angelfish Holacanthus bermudensis
Pomacanthidae

Perciformes 72(Angelfishes)

Gray Angelfish Pomacanthus arcuatus
Pomacanthidae

Perciformes 7(Angelfishes)

Bigeye spp. Priacanthidae
Perciformes 41(Bigeyes)

Boxfish spp. Ostraciidae
Tetraodontiformes 2(Boxfishes)

Butterflyfish spp. Chaetodontidae
Perciformes 7(Butterflyfishes)

Eel spp. Anguilliformes 1

Spotted Goatfish Pseudupeneus maculatus Mullidae
Perciformes 1(Goatfishes)

Grouper spp. Serranidae
Perciformes 7(Groupers and Sea Basses)

Black Grouper Mycteroperca bonaci Serranidae
Perciformes 3(Groupers and Sea Basses)

Atlantic Creolefish Paranthias furcifer Serranidae
Perciformes 309(Groupers and Sea Basses)

Gag Grouper Mycteroperca microlepis Serranidae
Perciformes 5(Groupers and Sea Basses)

Goliath Grouper Epinephelus itajara Serranidae
Perciformes 3(Groupers and Sea Basses)

Red Grouper Epinephelus morio Serranidae
Perciformes 5(Groupers and Sea Basses)

Scamp Mycteroperca phenax Serranidae
Perciformes 16(Groupers and Sea Basses)

Jack spp. Carangidae
Perciformes 1(Jacks)

Crevalle Jack Caranx hippos Carangidae
Perciformes 4(Jacks)

Rainbow Runner Elagatis bipinnulata Carangidae
Perciformes 2(Jacks)

Lionfish spp. Pterois spp. Scorpaenidae Scorpaeniformes 338(Scorpionfishes)

Porgy spp. Sparidae
Perciformes 18(Porgies)

Remora spp. Echeneidae
Perciformes 1(Remoras)

Shark spp. Superorder:
Selachimorpha 1

Snapper spp. Lutjanidae
Perciformes 3(Snappers)

Gray Snapper Lutjanus griseus Lutjanidae
Perciformes 670(Snappers)

Yellowtail Snapper Ocyurus chrysurus Lutjanidae
Perciformes 6(Snappers)

Squirrelfish spp. Holocentridae Beryciformes 78(squirrelfishes)

Whiptail stingray spp. Dasyatidae Rajiformes 1(Whiptail Stingrays)

Surgeonfish spp. Acanthuridae
Perciformes 15(Surgeonfishes)
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Table A2. Cont.

Common Name Scientific Name Family Order Number of
Individuals Observed

Sand Tilefish Malacanthus plumieri Malacanthidae
Perciformes 41(tilefishes)

Triggerfish spp. Balistidae
Tetraodontiformes 7(Triggerfishes)

Creole Wrasse Clepticus parrae Labridae
Perciformes 10(Wrasses)

Hogfish Lachnolaimus maximus
Labridae

Perciformes 6(Wrasses)

Pearly Razorfish Xyrichtys novacula Labridae
Perciformes 1(Wrasses)

Spanish Hogfish Bodianus rufus Labridae
Perciformes 2(Wrasses)

Spotfin Hogfish Bodianus pulchellus Labridae
Perciformes 2(Wrasses)

Large No ID 298

Table A3. Estimates of total abundance for all observed taxa within the portion of Elbow on the west Florida shelf that was
mapped using a MBES. The calculated contributions of each habitat type (sand, low relief rock, and moderate to high relief
rock) to the estimated total abundance are also shown. Extrapolations are based on the habitat-specific densities (Table A1
and Figure 13), and the area of each habitat based on the combined substrate and relief map (Figure 12). Upper and lower
bounds represent the 95% bootstrap confidence intervals.

Taxa Habitat Lower Bound Mean Upper Bound

All_Fish Total 59,842 109,616 174,961
All_Fish Sand 25,552 38,893 56,563
All_Fish Low_Relief 19,576 25,299 30,900
All_Fish Mod/High_Relief 14,714 45,424 87,498

amberjack_spp Total 132 1693 4173
amberjack_spp Sand 0 243 610
amberjack_spp Low_Relief 132 1402 3424
amberjack_spp Mod/High_Relief 0 48 140
angelfish_blue Total 1760 3385 5166
angelfish_blue Sand 486 1215 1963
angelfish_blue Low_Relief 1131 1836 2657
angelfish_blue Mod/High_Relief 143 334 546
angelfish_gray Total 33 248 591
angelfish_gray Sand 0 0 0
angelfish_gray Low_Relief 33 200 439
angelfish_gray Mod/High_Relief 0 48 152
angelfish_spp Total 0 33 103
angelfish_spp Sand 0 0 0
angelfish_spp Low_Relief 0 33 103
angelfish_spp Mod/High_Relief 0 0 0

bigeye_spp Total 1330 2779 4401
bigeye_spp Sand 858 1945 3166
bigeye_spp Low_Relief 472 834 1234
bigeye_spp Mod/High_Relief 0 0 0
boxfish_spp Total 0 67 168
boxfish_spp Sand 0 0 0
boxfish_spp Low_Relief 0 67 168
boxfish_spp Mod/High_Relief 0 0 0

butterflyfish_spp Total 33 410 976
butterflyfish_spp Sand 0 243 609
butterflyfish_spp Low_Relief 33 167 367
butterflyfish_spp Mod/High_Relief 0 0 0
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Table A3. Cont.

Taxa Habitat Lower Bound Mean Upper Bound

eel_spp Total 0 33 102
eel_spp Sand 0 0 0
eel_spp Low_Relief 0 33 102
eel_spp Mod/High_Relief 0 0 0

goatfish_spotted Total 0 48 154
goatfish_spotted Sand 0 0 0
goatfish_spotted Low_Relief 0 0 0
goatfish_spotted Mod/High_Relief 0 48 154
grouper_black Total 0 143 473
grouper_black Sand 0 0 0
grouper_black Low_Relief 0 0 0
grouper_black Mod/High_Relief 0 143 473

grouper_creolefish Total 2729 14,213 30,067
grouper_creolefish Sand 0 0 0
grouper_creolefish Low_Relief 0 1235 3214
grouper_creolefish Mod/High_Relief 2729 12,978 26,852

grouper_gag Total 0 284 876
grouper_gag Sand 0 122 367
grouper_gag Low_Relief 0 67 204
grouper_gag Mod/High_Relief 0 95 305

grouper_goliath Total 0 143 380
grouper_goliath Sand 0 0 0
grouper_goliath Low_Relief 0 0 0
grouper_goliath Mod/High_Relief 0 143 380

grouper_red Total 33 255 639
grouper_red Sand 0 122 367
grouper_red Low_Relief 33 134 272
grouper_red Mod/High_Relief 0 0 0

grouper_scamp Total 34 548 1398
grouper_scamp Sand 0 0 0
grouper_scamp Low_Relief 34 501 1245
grouper_scamp Mod/High_Relief 0 48 154

grouper_spp Total 121 601 1299
grouper_spp Sand 121 486 978
grouper_spp Low_Relief 0 67 169
grouper_spp Mod/High_Relief 0 48 152
jack_crevalle Total 0 222 634
jack_crevalle Sand 0 122 366
jack_crevalle Low_Relief 0 100 268
jack_crevalle Mod/High_Relief 0 0 0

jack_rainbowrunner Total 0 243 733
jack_rainbowrunner Sand 0 243 733
jack_rainbowrunner Low_Relief 0 0 0
jack_rainbowrunner Mod/High_Relief 0 0 0

jack_spp Total 0 33 103
jack_spp Sand 0 0 0
jack_spp Low_Relief 0 33 103
jack_spp Mod/High_Relief 0 0 0

lionfish_spp Total 10,666 17,815 26,417
lionfish_spp Sand 4763 7900 11,290
lionfish_spp Low_Relief 5045 7242 9710
lionfish_spp Mod/High_Relief 858 2672 5418
porgy_spp Total 463 1409 2603
porgy_spp Sand 365 1094 1933
porgy_spp Low_Relief 98 267 514
porgy_spp Mod/High_Relief 0 48 156

remora_spp Total 0 122 367
remora_spp Sand 0 122 367
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Table A3. Cont.

Taxa Habitat Lower Bound Mean Upper Bound

remora_spp Low_Relief 0 0 0
remora_spp Mod/High_Relief 0 0 0
shark_spp Total 0 33 101
shark_spp Sand 0 0 0
shark_spp Low_Relief 0 33 101
shark_spp Mod/High_Relief 0 0 0

snapper_gray Total 3695 35,785 81,952
snapper_gray Sand 1094 9116 21,355
snapper_gray Low_Relief 1621 4005 7118
snapper_gray Mod/High_Relief 979 22,664 53,479
snapper_spp Total 0 114 345
snapper_spp Sand 0 0 0
snapper_spp Low_Relief 0 67 205
snapper_spp Mod/High_Relief 0 48 140

snapper_yellowtail Total 0 229 691
snapper_yellowtail Sand 0 0 0
snapper_yellowtail Low_Relief 0 134 402
snapper_yellowtail Mod/High_Relief 0 95 289

squirrelfish_spp Total 2019 3542 5297
squirrelfish_spp Sand 365 1215 2200
squirrelfish_spp Low_Relief 1609 2136 2711
squirrelfish_spp Mod/High_Relief 45 191 386

stingray_spp Total 0 33 103
stingray_spp Sand 0 0 0
stingray_spp Low_Relief 0 33 103
stingray_spp Mod/High_Relief 0 0 0

surgeonfish_spp Total 200 589 1177
surgeonfish_spp Sand 0 122 368
surgeonfish_spp Low_Relief 200 467 809
surgeonfish_spp Mod/High_Relief 0 0 0

tilefish_sand Total 2477 4013 5847
tilefish_sand Sand 2308 3646 5250
tilefish_sand Low_Relief 169 367 597
tilefish_sand Mod/High_Relief 0 0 0

triggerfish_spp Total 32 498 1125
triggerfish_spp Sand 0 365 854
triggerfish_spp Low_Relief 32 134 272
triggerfish_spp Mod/High_Relief 0 0 0
wrasse_creole Total 0 477 1538
wrasse_creole Sand 0 0 0
wrasse_creole Low_Relief 0 0 0
wrasse_creole Mod/High_Relief 0 477 1538

wrasse_hogfish Total 33 303 788
wrasse_hogfish Sand 0 122 367
wrasse_hogfish Low_Relief 33 134 272
wrasse_hogfish Mod/High_Relief 0 48 149

wrasse_pearlyrazorfish Total 0 122 367
wrasse_pearlyrazorfish Sand 0 122 367
wrasse_pearlyrazorfish Low_Relief 0 0 0
wrasse_pearlyrazorfish Mod/High_Relief 0 0 0
wrasse_spanishhogfish Total 0 95 234
wrasse_spanishhogfish Sand 0 0 0
wrasse_spanishhogfish Low_Relief 0 0 0
wrasse_spanishhogfish Mod/High_Relief 0 95 234
wrasse_spotfinhogfish Total 0 81 253
wrasse_spotfinhogfish Sand 0 0 0
wrasse_spotfinhogfish Low_Relief 0 33 102
wrasse_spotfinhogfish Mod/High_Relief 0 48 151
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