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Abstract: The use of framework petrography is a common initial step in provenance research of sand
and sandstone. The data tend to be interpreted based on the three main components quartz, feldspar,
and lithic fragments. Surprisingly often, this is done without taking other influencing factors than
the tectonic setting of the catchment and/or the surroundings of the depositional basin into account.
Based on a database of 14 studies with approximately 900 petrographic data points from sand and
sandstone, this study demonstrates quantitative effects on the apparent composition resulting from
both geological and non-geological biases. The study illustrates sandstone-classification differences
based on different specifications of the three end-members quartz, feldspar, and lithic or rock
fragments, how the point-counting method can affect the apparent petrographic composition of
sandstone, how sorting and facies bias may be differentiated from a climate or provenance signal,
and how bias due to diagenetic effects can be minimised. In conclusion, both geological and non-
geological biases should be considered for provenance studies that include petrographic data.

Keywords: siliciclastic sedimentary petrography; provenance; sorting; facies; diagenesis; point counting

1. Introduction

The use of framework petrography is a common initial step in provenance research
of sand and sandstone. Interpretations often lean on the tectonically-based provenance-
discriminative schemes of Dickinson and Suczek [1] or on modified versions of them
(Figure 1) [2,3]. This can lead to interpretations towards, e.g., tectonic environments and
developments in the catchment area at the time of deposition and of that of the basin if it is
part of the same tectonic regime as the catchment (e.g., [1,4,5]). Climate, the other major
basin-external factor for sedimentation and sediment composition, too often either is not
accounted for or even interpreted separately with the same petrographic data that are used
for tectonic considerations, though many studies take both factors properly into account
(e.g., [5–9]).

In addition to the external factors, processes that operate during the complete sedi-
mentary cycle have the capability to modify the petrographic composition of sedimentary
material (e.g., [10,11]). This includes pre-depositional weathering of source rocks and
detrital material during temporal storage in the transport system [7,12], physical sorting
during transport and deposition, diagenesis, as well as weathering after uplift. Addition-
ally, sampling of weathered material or selective sampling (e.g., [11,13,14]) can lead to the
analysis of material that is less representative for the source than preferred. Such non-
geological (artificial) compositional (and analytical) biases have been particularly focused
on for single-grain analysis in provenance research (e.g., [15–17]). Apparent differences in
sediment compositions can also appear for the same samples based on the use of different
point-counting methods or due to subjective interpretation of components for different
operators (e.g., [18–20]).

Geosciences 2021, 11, 205. https://doi.org/10.3390/geosciences11050205 https://www.mdpi.com/journal/geosciences

https://www.mdpi.com/journal/geosciences
https://www.mdpi.com
https://orcid.org/0000-0003-2819-8330
https://doi.org/10.3390/geosciences11050205
https://doi.org/10.3390/geosciences11050205
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/geosciences11050205
https://www.mdpi.com/journal/geosciences
https://www.mdpi.com/article/10.3390/geosciences11050205?type=check_update&version=1


Geosciences 2021, 11, 205 2 of 25
Geosciences 2021, 11, x FOR PEER REVIEW 2 of 26 
 

 

 
Figure 1. One of the most commonly used petrographic provenance-discriminative schemes, in-
cluding the original diagram of Dickinson and Suczek [1] (solid black lines), and the modified 
versions of Dickinson et al. [2] (dashed black lines) and Weltje [3] (grey lines). For the use of the 
discrimination fields, the Gazzi–Dickinson point-counting method should be used with a grain-
matrix limit of 63 µm. Only aphanitic lithic fragments are included in the lithic-fragment pool; 
carbonate clasts are excluded. Q: quartz (both monocrystalline and polycrystalline grains); F: feld-
spar; L: lithic fragments (excluding carbonate and other mono--mineralic polycrystalline grains). 
“Chert” encompasses both sedimentary and volcanic microcrystalline quartz. 

Many publications deal with the quantitative effect of basin-external factors on sedi-
mentary framework petrography (e.g., [1,4,21–23]). Basin-internal factors also are treated, 
though possibly less frequently (e.g., [24–29]). Methodological effects are also not focused 
on in the literature, although some point-counting-method comparisons have been per-
formed (e.g., [18,30,31]). 

This review aims to give an overview of apparent compositional differences of sand-
stone that may emerge due to basin-internal and non-geological factors, with examples 
from literature data. The review touches upon sorting and facies, diagenesis, as well as 
operator bias, and the use of different point-counting methods for classification and prov-
enance interpretation. 

2. Materials and Methods 
The data set was composed of approximately 900 mostly sand and sandstone sam-

ples (the full data set is available as Supplementary data, Table S1). Less than 40 samples 
(minor proportions in Götze [32], Mørk [33], von Eynatten and Gaupp [34], De Ros et al. 
[35], Lippmann [36], Olivarius et al. [37]) that are formally silt or conglomerates were in-
cluded; they are mentioned in the text only when it is relevant for the discussion. The data 
include a sequence from the Permian to Palaeogene of Northern Europe (from Germany 
in the south to the Barents Sea in the north) with a transition from Permo–Triassic tecton-
ically passive to rift-dominated continental and Jurassic to Cretaceous marine rift basins, 
to Palaeogene passive-margin marine environments [20,32,33,36–40]. They also include 
coastal Cambrian passive-margin sandstone from Scandinavian Baltica [41–43], Silurian–
Devonian intracratonic basin sandstone from the Paraná Basin in Brazil [35], Cretaceous 

Figure 1. One of the most commonly used petrographic provenance-discriminative schemes, includ-
ing the original diagram of Dickinson and Suczek [1] (solid black lines), and the modified versions of
Dickinson et al. [2] (dashed black lines) and Weltje [3] (grey lines). For the use of the discrimination
fields, the Gazzi–Dickinson point-counting method should be used with a grain-matrix limit of
63 µm. Only aphanitic lithic fragments are included in the lithic-fragment pool; carbonate clasts are
excluded. Q: quartz (both monocrystalline and polycrystalline grains); F: feldspar; L: lithic fragments
(excluding carbonate and other mono–mineralic polycrystalline grains). “Chert” encompasses both
sedimentary and volcanic microcrystalline quartz.

Many publications deal with the quantitative effect of basin-external factors on sedi-
mentary framework petrography (e.g., [1,4,21–23]). Basin-internal factors also are treated,
though possibly less frequently (e.g., [24–29]). Methodological effects are also not fo-
cused on in the literature, although some point-counting-method comparisons have been
performed (e.g., [18,30,31]).

This review aims to give an overview of apparent compositional differences of sand-
stone that may emerge due to basin-internal and non-geological factors, with examples
from literature data. The review touches upon sorting and facies, diagenesis, as well
as operator bias, and the use of different point-counting methods for classification and
provenance interpretation.

2. Materials and Methods

The data set was composed of approximately 900 mostly sand and sandstone samples
(the full data set is available as Supplementary data, Table S1). Less than 40 samples (minor
proportions in Götze [32], Mørk [33], von Eynatten and Gaupp [34], De Ros et al. [35],
Lippmann [36], Olivarius et al. [37]) that are formally silt or conglomerates were included;
they are mentioned in the text only when it is relevant for the discussion. The data include a
sequence from the Permian to Palaeogene of Northern Europe (from Germany in the south
to the Barents Sea in the north) with a transition from Permo–Triassic tectonically passive
to rift-dominated continental and Jurassic to Cretaceous marine rift basins, to Palaeogene
passive-margin marine environments [20,32,33,36–40]. They also include coastal Cam-
brian passive-margin sandstone from Scandinavian Baltica [41–43], Silurian–Devonian
intracratonic basin sandstone from the Paraná Basin in Brazil [35], Cretaceous Alpine de-
posits [34,44], rift-related Iberian Cretaceous to Pyrenean Palaeogene continental to marine
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deposits [45,46], and recent intracontinental sand from central Spain [47]. The material rep-
resents fluvial, aeolian, lacustrine, deltaic, coastal, shallow-marine, slope, and deep-marine
depositional environments. Thirty-seven percent of the samples are from outcrops, and the
remaining are from wells at sampling depths of 24–5200 m. When specified in the original
publications, the maximum burial depths were estimated to 1200–2200 m (Table S1). In
Table S1, grain size and textural information are provided, according to Wentworth [48],
Powers [49], Folk and Ward [50], Krumbein and Sloss [51], and Longiaru [52]. When speci-
fied, the studies were done with either the Gazzi–Dickinson point-counting method [53]
(or a modification of it) or the Indiana method [54]. In addition, different grain-size limits
for grain vs. matrix were used.

The Gazzi–Dickinson method assumes that crystals of sand size within rock fragments
are identified as the mineral type in the crosshair during the counting (part of phaneritic
lithic or rock fragments of Dickinson [53]). Cherty grains (microcrystalline quartz) are
counted as quartz, and carbonate clasts are not considered [53]. Any impurities of other
minerals in feldspar or quartz grains (including chert) lead to these being classified as lithic
fragments [18] (aphanitic lithic or rock fragments of Dickinson [53]). The limit between
matrix and grains is set at 63 µm. The Indiana method (also known as the “traditional
method”) assumes that a grain type is defined based on its main components of >90%,
such that, for instance, a quartz grain can contain up to 10% of other mineral types [54].
Alternatively, at least two phases in the grain should be >63 µm. Polycrystalline quartz,
including cherty grains and carbonate clasts, are included in the rock-fragment pool [54,55].
Similar to the Gazzi–Dickinson method, the grain-matrix cut-off is set at 63 µm, and
only sand grains are counted. The term lithic fragment is used in this contribution when
referring to aphanitic clasts in accordance with the Gazzi–Dickinson method and rock
fragments when referring undifferentiated to aphanitic and phaneritic clasts in accordance
with the Indiana method.

In the data set, Arribas et al. [47] and Caja et al. [46] used the Gazzi–Dickinson method
with separate classes for carbonate clasts and sand-sized quartz, feldspar, and mica crystals
in rock fragments. Lorentzen et al. [42,43] and Ärlebrand [40] used the Gazzi–Dickinson
method but applied a 30 µm and 20 µm matrix cut-off, respectively. von Eynatten and
Gaupp [34] and Augustsson et al. [20] used a modified Gazzi–Dickinson method with
all rock fragments counted as such. Caja Rodríguez [45] is the only study specifying the
use of the Indiana method. The other studies do not mention the counting method or the
matrix-size limit. Feldspar that in the original publications was reported as being dissolved
or altered were included in provenance-appropriate feldspar categories, irrespective of
applied point-counting method.

The Gazzi–Dickinson-counted data of Arribas et al. [47] and Caja et al. [46] were recal-
culated to results equivalent to the Indiana method (without being able to apply the 90%
and the alternative two-sand-sized-components rules for the mineralogical composition of
rock fragments). The data also were recalculated from the sandstone classification scheme
of Garzanti [23] to (almost) the McBride’s [56] classification scheme (without being able to
apply his 20 µm matrix cut-off).

3. Non-Geological Biases
3.1. Operator Bias

Both the choice of point-counting method and the definition of the used compositional
end members strongly can affect the apparent compositional result. Many sediment-
petrographic studies on provenance only focus on the mineralogical framework, reporting
to a limited degree on diagenetic phases, mineral alterations, and dissolutions that would
be helpful for the reconstruction of the sediment composition at the time of deposition.
Others focus more on diagenetic processes than on provenance, thus presenting detailed
information on the intergranular volume and mineralogical alterations and dissolutions,
giving only fragmentary information on the framework composition (cf. the range of
petrographic details, e.g., in Lorentzen et al. [42,43]). A different focus alone may lead to
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the use of different compositional and textural categories for the petrographic results and
thus different classification of the same components. For instance, does feldspar include
only detrital, unaltered feldspar, or also ceritisised and partly dissolved feldspar grains?
Should albitised feldspar be included in the plagioclase pool, or should those grains be
investigated for their original potassium-rich or calcium-rich feldspar variant? Such deci-
sions may influence the provenance interpretations. The identification of mineral phases
is also subjective, causing challenges when comparing results from different operators
(cf. [20,57,58]). To avoid such operator bias, Ingersoll et al. [18] let several operators point-
count the same thin sections. Alternatively, careful standardisation between operators may
need to be undertaken for a non-biased comparison of data from different operators.

3.2. Point-Counting-Method Bias

The common lack of specification of point-counting method in provenance studies
highlights the challenge of comparing petrographic data that potentially have been counted
with different methods. This is because of the differences in matrix-size cut-off and the
way polycrystalline grains are classified and recalculated for provenance or classification
diagrams. The Gazzi–Dickinson method classifies polycrystalline grains based on textural
parameters. Phrased differently than in the method chapters, only aphanitic lithic frag-
ments (L in the quartz-feldspar-lithic-fragment, QFL, diagram) are polycrystalline grains
with components <63 µm in the crosshair, and phaneritic fragments are those including
components >63 µm in the crosshair, with quartz and feldspar counted separately as long
as they are of sand size (added to the Q and F categories of the QFL diagram) [53]. This dis-
tinction is not included in the Indiana point-counting method, which treats both fragment
categories as one group of rock fragments, although the method assumes that the quartz
or feldspar contents in the clasts are <90% [54] (originally included in the rock-fragment
category of quartz-feldspar-rock-fragment diagrams, in this contribution they are shown
in the same QFL diagrams as for the Gazzi–Dickinson method for simplicity). Therefore,
results based on the Indiana method commonly cause a larger apparent compositional
variation for different sand-grain sizes and a higher framework content of lithic/rock
fragments than for data produced with the Gazzi–Dickinson method [18]. Hence, the use
of compositional diagrams for illustration of petrographic results may indicate apparent,
false compositional variations among data sets. Similarly, the use of discriminatory fields
that were constructed for specific counting methods also can lead to inappropriate inter-
pretations. In this contribution, it is illustrated how carbonate clasts, polycrystalline quartz,
and sand-sized components in rock fragments all can affect the apparent composition of
sand and sandstone.

3.3. Sandstone-Classification Effects on Method Bias

Several framework-component-based sandstone classification schemes have been
suggested during the last century (see [59]). Those that are most used today all lean
on the three compositional end members quartz, feldspar, and lithic or rock fragments
(e.g., [23,56,60,61]). The older classification schemes focus on capturing the compositional
variation of sandstone that occurs due to them being of different origin in terms of tectonic
setting. Thus, for instance, arkose (or similar) includes a much larger compositional range
than quartzarenite (or similar; see Figure 2 for the scheme of McBride [56]). Differently,
Garzanti [23] aimed for a classification scheme that is neutral in respect to the origin.
Therefore, in his scheme, the compositional ranges of quartzose and feldspathic sandstone
are the same (Figure 2).

At first sight, it may seem straightforward to use any classification scheme for petro-
graphic data of sandstone. However, each scheme involves restrictions in terms of grain
size and component differences for the three end-member categories. To illustrate the effect,
the classification schemes of McBride [56] and Garzanti [23] are compared here as they are
different in several key aspects.
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grains); Q: quartz (both monocrystalline and polycrystalline grains); QA: quartzarenite; R: rock fragments (including car-
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sitional fields and assumes that all particles larger than 20 µm are counted as grains; all 

Figure 2. Sandstone classification of the rocks in the used data set based on the scheme of Garzanti [23] (left) and
McBride [56] (right). All data are plotted, also the few samples that formally would be other rock types than sandstone. The
grain-matrix cut-off for the sandstone of Götze [32] (for which the composition for the <20 µm fraction also is provided)
is unknown. * Point-counting with a matrix limit of 20 or 30 µm; ** Gazzi–Dickinson point counting; *** Modified Gazzi–
Dickinson (all rock fragments assigned to L) or Indiana point counting. The used counting methods for the other studies are
unspecified. F: feldspar; L: lithic fragments (as defined by the Gazzi–Dickinson method, and including carbonate grains); Q:
quartz (both monocrystalline and polycrystalline grains); QA: quartzarenite; R: rock fragments (including carbonate grains).

The sandstone classification scheme of McBride [56] includes eight different compo-
sitional fields and assumes that all particles larger than 20 µm are counted as grains; all
other particles are considered to be part of the matrix. The 20 µm limit evolves from the
possibility to identify the mineralogical composition of grains down to that size with a
standard polarising microscope [56]. Thus, not only sand grains but also medium and
coarse silt, as well as gravel, are considered. In addition, the classification scheme assumes
that all quartz, including polycrystalline quartz (with cherty grains), are counted as quartz
because a macroscopic differentiation between monocrystalline and polycrystalline quartz
is challenging [56]. Similarly, all grains that are composed only of feldspar are included in
the feldspar pool. The rock fragments in McBride’s [56] scheme include all particles with
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more than one mineral phase as well as carbonate clasts. Other mono-mineralic grains
are excluded.

The sandstone classification scheme of Garzanti [23] includes 15 different composi-
tional fields (with five possible additional subfields for quartzose and feldspatho-quartzose
sandstone [12,59]). Garzanti’s [23] sandstone terminology captures compositional differ-
ences for feldspar-rich and lithic-fragment-rich sandstone better than quartz-rich sandstone
(unless the supplementary terminology of Garzanti [59] is used), for which McBride’s [56]
terminology is more detailed (Figure 2). The scheme of Garzanti [23] builds on the Gazzi–
Dickinson point-counting technique, although Garzanti [59] argues that a classification
scheme should only be based on composition, not on texture or rock origin. However,
therefore, the rock names are purely descriptive. Some other practical effects are that
cherty grains are lithic fragments, other polycrystalline quartz grains are part of the quartz
pool, and sand-sized crystals in rock fragments are to be counted as the mineral phase,
not as lithic fragments. Similar to the Gazzi–Dickinson method, Garzanti [23] also only
considered components >63 µm as grains. However, carbonate clasts are included in the
lithic-fragment category, and the three end-members, quartz, feldspar, and lithic fragments,
should account for at least 10% of the total sandstone framework.

Formally, only data produced with the appropriate method and using the given matrix
limit should be used in the respective schemes. Despite this, all data are here plotted in
both classification schemes to illustrate their general framework composition, as well as
the differences between the two schemes. The data set in this study covers approximately
half of the possible compositional spreads in the schemes (Figure 2). This represents much
of the natural variation of sand and sandstone composition in nature [1,4,59].

Depending on chosen classification scheme, a group of samples may seem, based on
name, either to all have a similar apparent composition or to illustrate a broad apparent
compositional range. For instance, the sandstone from Weibel and Friis [38] is almost
exclusively feldspatho-quartzose arenite or can partly be described as subarkose and
partly as arkose (Figure 2). Differently, the sandstone of von Eynatten and Gaupp [34] is
almost exclusively litharenite, or lithic arenite and quartzo-lithic arenite, thus, indicating
an apparent larger variation when using the scheme of Garzanti [23].

Some data appear at different positions in the two diagrams because of the differences
in the definition of end-member categories. This is particularly due to two factors:

(1) Chert-rich sandstone will seem quartz-richer in McBride’s [56] than in Garzanti’s [23]
scheme. In the data set, this is particularly visible for the continental to shallow-
marine Triassic sandstone from the Barents Sea of Mørk [33] and the Cretaceous
carbonate-rich gravity-flow sandstone from the Alps of von Eynatten and Gaupp [34],
both of which include on average 8–9% cherty clasts (in the samples with such grains)
in the detrital grain fractions. Whereas the Barents-Sea material mainly is subarkose
and arkose (and partly lithic subarkose and lithic arkose) in the classification scheme
of McBride [56], the compositional spread seems larger in Garzanti’s [23] scheme,
including mainly feldspatho-quartzose and litho-feldspatho-quartzose arenite (and
some feldspatho-litho-quartzose and litho-quartzo-feldspathic arenite; Figure 2).

(2) Sand-sized crystals in clasts that are counted as the mineral phase for the classification
scheme of Garzanti [23] will lead to an apparent larger content of rock fragments when
McBride’s [56] scheme is used. This is illustrated by recalculation from Garzanti’s [23]
to (almost) McBride’s [56] scheme (Figure 2) for the data of Arribas et al. [47] and
Caja et al. [46]. The effect is the largest for the data of Arribas et al. [47], with mainly
feldspatho-litho-quartzose arenite in the scheme of Garzanti [23] and litharenite to
feldspathic litharenite in McBride’s [56] scheme. This is because the studied sand
contains, on average, 20% sand-sized quartz, feldspar, and mica crystals in rock
fragments.

As McBride [56] applied a smaller matrix cut-off (20 µm) than Garzanti [23] (63 µm),
the scheme of McBride [56] possibly is most appropriate for the studies reviewed here
that used grain-matrix-size limits of 20 µm or 30 µm [40,42,43]. This is because different
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grain sizes will produce sediment of different mineralogical compositions. As an extreme
example, the data of Götze [32] from continental Triassic sandstone of Germany only
include three samples, but these were investigated petrographically separately for the
complete grain-size interval and for the <20 µm grain population for comparative reasons.
The sandstone can be defined as feldspatho-quartzose arenite or arkose with higher quartz
than feldspar content. The <20 µm fractions invariably has significantly higher feldspar
than quartz contents (Figure 2), probably because feldspar easily breaks along its two
cleavage planes to form silt. For quartz, the hardness and lack of cleavage cause less
physical abrasion below the size of very fine sand, although also silty quartz grains form
physically (e.g., [62,63]). The silt fraction of Götze [32] illustrates that the handling of
silt-sized particles as detrital framework grains in sandstone might lead to an apparent
feldspar-richer rock composition than if only sand grains are considered. Then, comparison
of different data sets may be challenging.

3.4. Provenance Effect on Operator and Method Biases

The common use of one or several of the tectonically-based provenance-discrimination
schemes of Dickinson and Suczek [1] may both help and hinder plausible interpretation,
even if later reported weaknesses of the schemes are considered (e.g., [64,65]). As these
schemes are designed for the Gazzi–Dickinson point-counting method, the use of the dis-
criminatory fields may lead to inappropriate interpretations if a different counting method
is used. This is also the case for the provenance-discriminative fields of Garzanti [59],
who used the Gazzi–Dickinson-based sandstone-classification diagram of Garzanti [23]
with carbonate clasts included in the lithic-fragment pool. Similarly, only data produced
with the Indiana method should be used for the provenance-discriminative scheme for
sand from igneous arcs of Kumon and Kiminami [66]. However, the general use of similar
diagrams without discrimination fields will be applicable for data achieved from any
point-counting method, as long as all data are produced from the same method, operator
bias is avoided, and interpretations are based on comparative (i.e., relative, rather than
absolute) sandstone compositions.

Rock fragments are an invaluable source of provenance information as they directly
represent drainage lithologies. Their composition and texture frequently reveal detailed
information about the source rocks (e.g., [19,59,67]). For this reason, second-order and third-
order diagrams can be used to further increase the resolution to which clastic provenance
can be reconstructed. For instance, Le Pera et al. [68] used a second-order diagram that
includes plutonic, metamorphic, and sedimentary rock fragments (their ternary Rg-Rm-Rs
diagram) to differentiate between sand of granitic and gneissic origin because both tend to
produce quartz-feldspar-rich sand. For the lithic-fragment (or the complete rock-fragment)
fraction, one of the probably most commonly used second-order schemes includes meta-
morphic (Lm), sedimentary (Ls), and volcanic grains (Lv) (e.g., [47,59,69]). More advanced
grain schemes based on mineralogical and textural parameters for metamorphic [19] and
volcanic [67,70–72] lithic or rock fragments allow for third-order discriminations. For
instance, the proportions between basaltic lathwork (Lvl), andesitic microlithic (Lvmi), and
vitric (Lvv) textures can shed light on volcanic evolution and contribution from different
volcanic centres [73], and the proportions between low-grade and high-grade metamor-
phic clasts may reveal arc unroofing [74]. For quantitatively reliable results from such
sub-groups, a sufficient number of identified rock/lithic fragments of the compared cate-
gories need to be secured, for instance, with a separate point count that only focuses on
rock or lithic fragments, such as was done by Ingersoll and Suczek [69] and Dorsey [74]
for 150 and 300–400 lithic grains per sandstone sample, respectively. In this review, a
second-order diagram that includes all igneous clasts (both plutonic and volcanic ones),
sedimentary and metamorphic grains illustrates possible provenance misclassification of
clay-mineral-rich clasts. Though, none of the studies used in this review included separate
rock-fragment/lithic-fragment counts.
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3.5. Cases Studies on Non-Geological Bias
3.5.1. Case 1—Operator Bias

Both Beyer [39] and Augustsson et al. [20] provided point-counts for early Triassic
sandstone from Well Rockensußra 2/83 in Germany. The counting method was not de-
scribed by Beyer [39], and Augustsson et al. [20] used a modified Gazzi–Dickinson method
with all rock fragments assigned to the lithic-fragment pool. In addition, neither of the
studies defined the grain-size cut-off for the matrix. Compared to Beyer [39], Augustsson
et al. [20] claim higher ratios for monocrystalline quartz in the total detrital quartz popula-
tion and lower feldspar contents for similar facies and grain sizes at the same stratigraphic
level (Solling Formation in Figure 3). Two samples were counted by two different operators,
with an up to almost 10% difference in feldspar content in the framework and amounts of
quartz types (Figure 3). In addition, in one of the samples, one operator did not find any
rock fragments, whereas the other observed ca. 5% (Figure 3).
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The different point-counting results of Beyer [39] and Augustsson et al. [20] were most
likely due to misinterpretation of some components by one or both operators. This is most
obvious by the different classifications of lithic fragments, but also the difference in quartz
types and feldspar contents may be affected. Bias due to the use of different point-counting
methods also may be an explanation as they are described incompletely in the publications.

3.5.2. Cases 2a and 2b—Apparent Compositional Bias: Carbonate and Rock Fragments

The turbiditic Palaeogene foreland-basin sandstone from the Spanish Pyrenees [46]
contains on average 35% carbonate clasts in the framework (equivalent to 80% of the rock
fragments; leading to classification as hybrid arenite or calclithite for the youngest units
in the classification scheme of Zuffa [75]). The quartz fraction (including polycrystalline
quartz, chert, and quartz in rock fragments) includes 30% polycrystalline grains. The
amount of sand-sized quartz, feldspar, and mica crystals in rock fragments is on average
only 2% of the detrital components. In addition, observed cherty grains are biogenic,
not microcrystalline volcanic quartz [46]. The sandstone was interpreted to reflect initial
transport from weathered (quartz-rich) silicate basement rocks and recurrent uplift and
thrusting that caused a source change to recently developed carbonate platforms and older
sedimentary basement [46].

Despite the low amount of sand-sized quartz, feldspar, and mica in rock fragments,
the sandstone of Caja et al. [46] seems much more quartz-rich when using Gazzi–Dickinson-
method categories for the proportions of quartz, feldspar, and lithic fragments as a base for
diagrams than when using Indiana-method-based categories (Figure 4). The reason is that
the high carbonate and polycrystalline-quartz content leads to an apparent composition
with a majority of rock fragments when these components are included in the rock-fragment
pool in accordance with the Indiana method (Figure 4). Comparison of the end members
monocrystalline quartz, feldspar, and lithic fragments with polycrystalline quartz (cf. [1])
for Gazzi–Dickinson-counted data illustrates the full effect of only the carbonate clasts
on the apparent composition (the remaining effect is due to the polycrystalline quartz;
Figure 4).
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monocrystalline and polycrystalline quartz with chert for Gazzi–Dickinson-counted data, but only monocrystalline quartz
for Indiana-method data. L only includes poly-mineralic grains for Gazzi–Dickinson data, but also carbonate and poly-
crystalline quartz (including chert) for Indiana-method data. For comparative reasons, the data also are shown with
only monocrystalline quartz in the Q pool (Qm) and all polycrystalline quartz in the L pool (Lt) (cf. [1]). The data for the
“pseudo”-Indiana method is the same in both diagrams, as only monocrystalline quartz grains count as quartz. Clasts that
were unspecified in the publications are included in the lithic-fragment pool (mostly 0–2% of the framework volume).

If the carbonate clasts are considered, their major abundance may give the illusion of
a composition that is typical for transport from an igneous arc rather than a foreland-basin-
related continent-collisional tectonic setting when provenance-discriminative diagrams
that are not constructed for consideration of carbonate clasts are used (cf. Figure 1).
In this case, such an interpretation should be easy to avoid, though, as arcs commonly
rather contain igneous than carbonate rocks and cherty material of volcanic rather than
sedimentary origin [1,73]. The carbonate-rich sandstone actually correctly mirrors the
composition of mixed rifted shoulder—foreland-basin material from the warm and arid
Arabian Peninsula [76]. If the carbonate clasts are not considered, though, an average
of 35% of the framework composition is ignored. On the one hand, ignoring carbonate
fragments would give the illusion of a rock composition that is more mature than in reality.
On the other hand, the apparent composition also correctly would be in line with an
association with uplifted foreland (recycled orogen and basement uplift in Dickinson and
Suczek [1] and Dickinson et al. [2]). In addition, the mixed rift-foreland sand of Garzanti
et al. [76] similarly is quartz-feldspar-rich. Hence, the high general content of carbonate
clasts in the foreland-basin sandstone of Caja et al. [46] does not fully represent the assumed
catchment area and rather masks the basin-external siliciclastic source types.

The story is partly different for recent fluvial sand from the Henares River in central
Spain [47] that includes on average 11% carbonate clasts in the framework (equivalent to
40% of the total rock fragments). The amount of sand-sized quartz, feldspar, and mica
crystals in rock fragments is 20%. The quartz fraction contains on average only 3% polycrys-
talline grains. The catchment area is mostly composed of metamorphic rocks, particularly
in the upper part of the river system; carbonate rocks occur only to a minor degree in the
catchment [47]. Thus, also in this study, the carbonate clasts are overrepresented.

Both the high carbonate content and the high amount of sand-sized quartz, feldspar,
and mica in rock fragments in the Henares River study [47] cause a quartz-richer apparent
composition for Gazzi–Dickinson-method than Indiana-method results (Figure 4). The low
amount of polycrystalline quartz leads to a minor difference when only monocrystalline
quartz (of Gazzi–Dickinson-method-based data) is part of the quartz pool (Figure 4). If
a large amount of quartz, feldspar, and mica in rock fragments are treated as proper
rock fragments in Gazzi–Dickinson-based discrimination schemes (because of the use
of a different counting method), an arc-related depositional environment can falsely be
assumed (Figures 1 and 4).

The two cases not only illustrate that apparent compositional differences based on
the definition of the lithic/rock-fragment pool may be unrelated to geological processes
but also the overrepresentation of carbonate clasts [46,47] illustrates that local erosion of
chemically and mechanically unstable material can cause a source-unbalanced sediment
composition. The exclusion of carbonate clasts for provenance interpretation may, in some
cases, thus better represent the area of interest, but this provides that the extrabasinal part
of the interior of the continental landmass is the main target of the study. Then, local
carbonate contributions may be invisible in the data, although such information can lead
to a more complete provenance interpretation (cf. [46]). In such cases, carbonate clasts may
necessitate special attention because extrabasinal and intrabasinal carbonate components
need to be differentiated for proper sediment-transport models (e.g., [75,77]).
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3.5.3. Cases 3a and 3b—Apparent Compositional Bias: Chert

The continental to shallow-marine Triassic Barents Sea deposits of Mørk [33] contain
more cherty grains in the Eastern than in the Western Barents Sea with mainly feldspatho-
quartzose and litho-feldspatho-quartzose arenite (or subarkose and arkose) in the west
and feldspatho-litho-quartzose, litho-feldspatho-quartzose and lihto-quartzose arenite (or
lithic arkose, lithic subarkose, and subarkose) in the east (Figure 2). The differences in
chert abundance give the total sandstone set a larger apparent compositional spread in
Garzanti’s [23] than in McBride’s [56] scheme (Figure 2). Therefore, optically also the com-
positional east-west difference seems to overlap less in Garzanti’s [23] classification scheme.
Based on the chert, other petrographic differences, heavy-mineral analysis, and garnet
compositions, the deposits in the Eastern Barents Sea were concluded to be transported
from the Uralides by Mørk [33], whereas the Western Barents Sea also includes Caledonian
and other components [33]. Therefore, the large apparent compositional spread in the
classification scheme of Garzanti [23] mirrors the provenance differences of the Barents Sea
material better than the scheme of McBride [56].

Similar to the Barents Sea case, the also chert-rich (and carbonate-rich) Cretaceous
gravity-flow sandstone from the Alps of von Eynatten and Gaupp [34] was interpreted
to derive from two different sources. These were metamorphic and sedimentary, and
both included carbonate, as well as ultramafic rocks and obducted oceanic crust. The
source identifications were based on proportions of mafic minerals and rock-fragment
components [34]. Neither of the petrographic classifications seem to obviously mirror two
different source areas, despite the high content of cherty grains (Figure 2).

The two cases with chert illustrate the advantage of treating chert separately from
other quartz components in some studies. They also demonstrate a common need for more
specific rock-fragment investigations or other provenance methods.

4. Geological Bias
4.1. Sorting and Facies

Sediment sorting during transport is effective as soon as particles enter the transport
system. Therefore, it is basically impossible to sample sedimentary material that represents
the non-sorted composition of the detritus. Grus and material from local continental
areas such as alluvial fans may be exceptions [13], but such deposits will give provenance
information only on a local scale (e.g., [78–80]). Therefore, Ingersoll et al. [13] stressed that
interpretations of the tectonic setting on a continental scale should be performed on “major
river systems, deltas and submarine fans”. Thus, facies may affect what provenance signal
is investigated, and comparison of petrographic results from different depositional settings,
or sub-settings, may therefore artificially indicate different provenance (e.g., [11,81,82]).

Aeolian transport provides a larger density difference between the transport medium
(air) and the transported material (sand grains) than for aqueous transport. Thus, grain-
grain collisions will have a larger abrasional impact than in water, and this increases the
plausibility for the formation of sub-sand-sized feldspar grains due to the low hardness
(compared to quartz) and the cleavage planes of feldspar [83]. Similarly, Garzanti et al. [82]
observed that heavy minerals are significantly abraded by air, but not by water, during
coastal transport along the present-day Namib Desert. The study illustrates rapid com-
positional maturity for aeolian sand but insignificant compositional change after >1000
km of aqueous transport. A similar lack of mineralogical maturation during longshore
transport has been observed for the light-mineral content of coastal sand [84]. Fluvial
quartz-feldspar-rich sand also tends to be more feldspar-rich than littoral sand [25]. This is
because in marine environments, the main break-up of feldspar and mechanically unstable
rock fragments, including carbonate clasts, occurs along the coast (e.g., [85]). A similar
trend has been observed for recent high-stand sand, whereby much of the increased matu-
rity was explained by the abrasion of mechanically unstable volcanic lithic fragments [86].
Less difference in composition of fluvial and coastal low-stand sand was explained by
sediment bypass [86]. Similarly, Critelli et al. [14] explained the observation that marine
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mass-flow sand might have a mineralogically less mature composition than coastal sand
with sediment bypassing the coastal area.

Grain-size and facies trends often appear together. In aeolian environments, selective
entrainment of the small feldspar particles causes efficient mineral sorting [83], and there-
fore, aeolian feldspar grains may rather be of silt size, which can explain a low feldspar
content for coarser material. Alternatively, Garzanti et al. [87] challenged the abrasional the-
ory for diagenetic material and assumed that more feldspar is dissolved in high-permeable
coarse-grained than in fine-grained sand, causing a compositional facies and grain-size
trend. Nevertheless, numerous studies of Holocene fluvial sand have proven that the
feldspar content often increases with decreasing grain size also without a diagenetic effect
(e.g., [18,21,54,88]). Thus, the petrographic analysis of materials of different grain sizes in
different samples, facies, regions, or stratigraphic positions may lead to erroneous prove-
nance or climate interpretations that, in reality, are due to sorting effects (e.g., [81,89,90]).
As an example, lithic to quartzo-lithic arenitic sand of the Waipaoa River system in New
Zealand contains more feldspar and quartz (mostly monocrystalline grains) in the finest
than in the coarsest sand fractions [29]. The lithic fragments are dominated by pelitic grains
that were interpreted to be sourced from clay-mineral-rich rocks in the upper part of the
catchment area. The feldspar and quartz grains in the fine fractions rather were assumed
to derive from sandy deposits, thus postulating mixing between two sources of different
lithology [29]. Hence, the grain-size trend was tied to sorting due to lithological variations
in the catchment area.

4.2. Compaction of Clay-Mineral-Rich Clasts

The change in framework composition and texture that occurs during diagenesis
of sandy deposits, including compaction of clay-mineral-rich clasts, may obscure the
petrographic provenance signal (e.g., [91–93]). The differentiation between extrabasinal
claystone (pelite) clasts and intrabasinal clay clasts is straightforward when pelite clasts are
fairly round and similar in size to other detrital grains and when clay clasts are elongated
and oversized (e.g., [94–96]). The difference in size and shape is due to the little compacted
state of the low-density clay clasts, whereby the platy clay minerals lead to preferred crystal
orientation, and the cohesive effect of them causes slow clast disintegration in flowing
water (e.g., [94,96]). During mechanical compaction, the soft clay clasts commonly deform
ductilely and are squeezed into intergranular pore spaces (e.g., [97]). Pelite clasts have a
higher density and keep together more easily such that the grains can be transported longer
distances, be abraded to a rounder shape than clay clasts, and be deposited together with
similarly sized feldspar and quartz grains. During mechanical compaction, the rigid pelite
clasts are fractured (e.g., [98]). However, similar to clay clasts, pelite clasts from poorly con-
solidated claystone—and clay-mineral-replaced feldspar and volcanic clasts—may compact
ductilely and form a pseudomatrix that can be mistaken for a matrix or deformed intra-
clasts, and thus cause inappropriate provenance interpretations [53,91,93,99,100]. In line
with this, Cox and Lowe [93] concluded that petrographic investigations for provenance
research preferably should include all sandstone components, not only the detrital ones.

4.3. Feldspar Dissolution and Replacement

Feldspar, one of the main components in siliciclastic sandstone, is prone to dissolution
or replacement during diagenesis, just like other chemically unstable components (e.g.,
finely crystalline lithic or rock fragments, mafic minerals, carbonate; e.g., [101–103]). The
total amount of feldspar or fractions of different feldspar minerals in sandstone often is
used in petrographic provenance studies (e.g., [1,26,104]). Nevertheless, their chemical
instability commonly leads to dissolution, albitisation, or replacement by clay minerals,
thus changing the petrographic provenance signal (e.g., [26,102,105]). Recalculation to the
depositional framework composition may thus improve provenance interpretations. This
can be done (1) based on geochemical mineral normalisations coupled to petrographic
investigations of the same rocks [93], (2) by counting of all framework and diagenetic
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components and textures [106], or (3) in addition by estimating both the present-day and
original feldspar composition [102]. Based on optical observations, De Ros et al. [106]
showed that present-day quartz-rich sandstone originally had higher feldspar contents
due to secondary porosity, replaced grains, and diagenetic kaolinite that could be related to
former feldspar. However, much feldspar dissolution may cause compaction of secondary
pores during burial diagenesis without significant traces on a thin-section scale [101,107].
Furthermore, Wilkinson and Haszeldine [108] assumed, based on deeply buried sandstone
from the North Sea, that aluminium is mobile during diagenesis such that observed
kaolinite and illite contents only could explain a minor part of 30% reduction in feldspar
content from 3.2 km to 4.5 km burial in their study. Thus, reconstructions may, in some
cases, underestimate the original feldspar content, such that they rather represent minimum
than absolute values [101,102,109]. Still, minimum feldspar values based on thorough
observations of diagenetic features are valuable for provenance studies as they prove that
quartz-richer original compositions are implausible.

Simplified reconstructions of original feldspar contents are here attempted based on
the less detailed data available from the original publications in the data set. For a first
recalculation (original composition I), all feldspar cement, kaolinite, and intragranular (or
secondary) porosity are assumed to be formed from feldspar. The reason is that feldspar
dissolution, for instance during near-surface diagenesis, may lead to the crystallisation of
feldspar overgrowths, although feldspar cement tends to be a minor component volumet-
rically (e.g., [110,111]). It is more crucial that intragranular secondary porosity often can
be tied to feldspar dissolution based on pore shapes or feldspar remnants (e.g., [102,103]).
However, as petrographic estimations based only on the amount of secondary porosity
tend to underestimate the original feldspar content [108], also kaolinite is included here.
Kaolinite is a common product associated with feldspar dissolution, although it may form
from mica as well [112], and although it does not necessarily crystallise in the space of
the former feldspar grains. For a second recalculation (original composition II), all illite is
additionally assumed ultimately to be formed due to feldspar dissolution. Illite often is a
replacement product of potassium feldspar and kaolinite, or smectite [113,114], although
it frequently also is detrital or possibly an altered infiltrated clay mineral (cf. [115–117]).
This step is done to accommodate for cases where most illite ultimately resulted from
feldspar dissolution.

The petrographic data of De Ros et al. [35] provide a quality check for the restora-
tion methods as they recalculated the present-day quartzarenitic to subarkosic and sub-
litharenitic (or quartzose arenitic) composition of Silurian to Devonian fluvial sandstone
in the Paraná Basin of Brazil to its plausible depositional composition. From their dia-
genetic study, they could differentiate kaolinitised feldspar from kaolinitised mica and
pseudomatrix. They also observed signs of dissolved feldspar and illitised kaolinite and
concluded that the sandstone originally was composed of 10–15% more feldspar in the
framework and had a subarkosic composition. With the simplified recalculations, the same
data indicate 10–30% more depositional feldspar than today and a subarkosic to quartz-rich
arkosic (or feldspatho-quartzose arenitic) composition with original composition I. Original
composition II indicate originally 20–30% more feldspar and feldspar-richer subarkose to
arkose (or feldspar-richer feldspatho-quartzose arenite; Figure 5). The main reason is that
the Silurian–Devonian sandstone partly has undergone much kaolinitisation of mica and
pseudomatrix (sometimes 10–20%), and in other places, it is strongly affected by illitisation
of pseudomatrix (sometimes approximately 10%). Therefore, recalculations I and II give
larger original compositional ranges than the recalculations of De Ros et al. [35], sometimes
even pointing to a less feldspar-rich composition than in the original publication. Thus,
the simplified recalculations particularly are applicable for studies that do not track all
provenance-relevant diagenetic processes. Then, sandstone samples should be treated as a
group rather than individually, as the individual data may spread significantly.
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4.4. Cases Studies on Geological Bias
4.4.1. Cases 4a, 4b and 4c—Compaction and Dissolution

The Cretaceous alluvial-fluvial sandstone of Caja Rodríguez [45] mainly is feldspatho-
quartzose and litho-feldspatho-quartzose arenite (or subarkose and lithic subarkose; Figure 2).
Rock fragments compose up to approximately 20% of the framework, and these clasts
are dominated by pseudomatrix. Photographic images illustrate compacted, plastically
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deformed material that has filled the interstices between more competent material; the
original grain size and shape are destroyed due to the deformation. The pseudomatrix
was stated to originate from metasedimentary rock fragments [45], possibly because it
contains microscopic mica crystals. With an estimated maximum burial temperature of
65 ◦C, the pseudomatrix also could be differentiated from soft clay intraclasts [45], which
commonly is observed in fluvial deposits. Thus, a detrital origin indeed is plausible for the
pseudomatrix. Therefore, all rock fragments (except for very few carbonate grains) are of
metamorphic or plutonic origin [45].

Without diagenetic investigations of the rocks, sericite in pseudomatrix potentially
may lead to the assumption of diagenetically formed mica and that the pseudomatrix were
of sedimentary origin (cf. [99,118,119]). This would cause the illusion of dominance of
sedimentary (Figure 6) instead of metamorphic clasts in the Cretaceous sandstone of Caja
Rodríguez [45]. In addition, a misinterpretation of the pseudomatrix as proper matrix or
intraclasts in the Cretaceous study would lead to an illusive larger influence of igneous
material in the sandstone as many rock fragments then would seem to be of plutonic origin
(Figure 6).
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The recent sand from the Henares River in central Spain of Arribas et al. [47] is
composed mainly of feldspatho-litho-quartzose arenite (or litharenite and feldspathic
litharenite; Figure 2). Rock fragments represent >40% of the framework (15–25% lithic
fragments with the Gazzi–Dickinson method). The rock-fragment fraction is dominated by
sedimentary and metamorphic clasts; very few igneous (in this case: volcanic) grains were
reported (Figure 6). The sedimentary rock-fragment population is dominated by carbonate
clasts, and clay-mineral-rich clasts are represented by shale fragments [47].

If the shale fragments incorrectly would have been identified as intraclasts (for
instance, in similar but mechanically more compacted deposits than in the study of
Arribas et al. [47]), the ratio between metamorphic and sedimentary clasts would increase
only slightly. Nevertheless, carbonate clasts may dissolve and further reduce the amount
of detrital sedimentary rock fragments. Thus, with compaction of the shale clasts and
dissolution of the carbonate grains in the Henares River sand, the deposits would seem to
lack sedimentary rock fragments, and solely metamorphic source areas would be assumed
(Figure 6). Hence, these two hypothetical cases illustrate how compaction and carbonate
dissolution may lead to either an overestimation or an underestimation of sedimentary
and other clast types.

Compositionally different, the mineralogically mature sandstone of Lorentzen et al. [42,43]
from the Cambrian of Scandinavian Baltica provides samples mostly with quartzarenite
(or pure quartzose arenite [59]). The sandstone contains on average 20% quartz cement, 3%
illite, and 1% kaolinite of the total rock volume [42,43]. In addition, a dominance of concave-
convex grain-grain contacts, abundant stylolites, and some ductilely deformed grains were
observed. Porosity is mostly absent, but rare intragranular pores were detected. The
kaolinite was suggested to be eodiagenetic at shallow depths [42], and consequently, some
feldspar reduction was interpreted to be due to kaolinitisation and chemical compaction,
although most sand maturation was assumed to have taken place already during sediment
reworking [42,43]. In addition, the illite partly was interpreted as a product of the reaction
between feldspar and kaolinite during burial. The near absence of intragranular pores
potentially may partly be due to compaction of secondary pores and export of dissolved
aluminium in an open diagenetic system. Recalculation to original composition II leads
to subarkosic to quartzarenitic (or feldspatho-quartzose to quartzose arenitic) original
compositions (not illustrated in this contribution) that may indicate a former higher original
feldspar content in line with the diagenetic features.

4.4.2. Case 5—Facies vs. Climate

Lippmann [36] provided petrographic data that represent a transition from Permian
and Triassic continental to Jurassic and Palaeocene marine deposits in the North Sea.
The climate evolved, with some smaller-scale fluctuations, from arid conditions during
Permian and Triassic time [120,121] to higher humidity during Jurassic and Palaeogene
time [122,123]. The North Sea study was diagenetic, so the sediment-transport routes were
not reconstructed. Still, the location of the studied wells in the Central Graben allows for
Permian to Jurassic and Palaeocene sediment transport directly or as sedimentary recycled
material from the Scandinavian and British Caledonides, although the provenance partly
is poorly constrained (e.g., [124–126]).

The deposits are mostly feldspatho-quartzose and quartzose arenite (or arkose, sub-
arkose and quartzarenite; Figure 2). A grain-size trend seems absent, but Permo–Triassic
continental, mostly fluvial, deposits are rather feldspar-rich with 20–60% feldspar in the
framework. Differently, post-Triassic marine, mostly shoreface, deposits are composed
of <20% feldspar (Figure 7). No difference was detected in the amount of lithic/rock
fragments (<15% of the framework). A low number of counted lithic/rock fragments (on
average eight grains per sample) does not allow for a provenance-relevant differentiation
of them.
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The higher mineralogical maturity of the shoreface than fluvial deposits is in line with
the expected difference between fluvial and littoral sand or sandstone due to break-up of
feldspar and other mechanically unstable grains in the coastal realm before further marine
transport that is rather unlikely to modify the composition much (e.g., [25,82,85]). However,
the compositional trend also reflects the climate change from arid to humid conditions.
The compositional evolution thus possibly illustrates both a facies shift towards shoreface
settings and towards more humid conditions. The difference between mineralogically
immature fluvial sandstone and mature shoreface sandstone is actually similar to the
difference between fluvial sand of plutonic detritus in arid and humid areas, as shown by
Suttner et al. [21], although it is unclear if comparable counting methods have been used.
Thus, in this case, the effects of sorting and climate on the petrographic composition cannot
be differentiated.

4.4.3. Case 6—Sorting and Feldspar Dissolution vs. Provenance

The diagenetic studies of Weibel and Friis [38], Beyer [39], and Olivarius et al. [37]
provide petrographic data from continental Triassic sandstone in Denmark and Germany.
At the time, the area of deposition, the Central European Basin, is estimated to have
been arid with supermonsoons and with a transition to sub-humid conditions during the
late Olenekian [127]. Mostly, the sandstone represents feldspatho-quartzose arenitic (or
subarkosic to arkosic) compositions. Only the data of Beyer [39] from Germany illustrate
a minor grain-size trend with the highest feldspar contents for the finest sand sizes and
with a facies trend with less feldspar in aeolian than lacustrine sandstone; sandflat deposits
bridge the two end-members (Figure 7). Beyer’s [39] data from approximately 450–900 m
depth in well Rockensußra 2/83, Germany, illustrated similar grain-size and facies trends
for feldspar as his complete data set (Figure 3). In addition, aeolian sandstone has the
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highest lithic/rock-fragment contents (for samples in which such grains were identified)
and the lowest contents of monocrystalline quartz in the quartz fraction (Figure 3). The
aeolian sandstone is coarser-grained than the lacustrine sandstone (Figure 3). Thus, both
grain-size and facies trends are present. Irrespective of facies and grain size, the proportions
of monocrystalline quartz increase up-section from sandstone deposited in arid conditions
to sandstone from sub-humid climate, and the feldspar content increases with depth
(Figure 3).

Time-equivalent sandstone from south-westernmost Jutland in Denmark [37,38] nei-
ther reveals a grain-size nor a facies trend, but the sandstone above 1700 m is richer in
feldspar and lithic/rock fragments than below 1700 m, irrespective of the geological unit
and facies (Figure 8). Similar to the German sandstone, the amount of monocrystalline
quartz grains in the quartz fraction seems higher in the youngest unit, but the data are too
scarce for a high-probability statement (Figure 8).

The higher feldspar content for lacustrine and finest-grained sandstone than aeolian
and coarser sandstone in Germany is in line with mineral sorting and most feldspar
abrasion in aeolian environments. In the deeper Danish wells, the lack of a similar trend
may be due to feldspar and lithic/rock-fragment dissolution, as indicated by the decreasing
trends with depth for such components. It also indicates that the climate change from arid to
more humid in the upper section is not detected in the feldspar and rock-fragment contents.

The low amount of monocrystalline quartz in aeolian sandstone theoretically may
be due to several reasons: (1) Mechanical and chemical abrasion of quartz grains and
quartz-prone lithic fragments during weathering and transport can lead to the break-up of
large grains along crystal boundaries with an increase in monocrystalline grains the finer-
grained the material is [7,54,85,88]. The data support this as the aeolian deposits in general
are coarser-grained than the aqueous sandstone and also has the lowest relative amounts
of monocrystalline grains. (2) Transport from different source rocks may also lead to the
preferential formation of sand grains of monocrystalline or polycrystalline quartz. This
would assume that the quartz types illustrate a slight shift in provenance. The source-rock
explanation is in line with a suggested provenance trend of Olivarius et al. [128] that is
based on ages of detrital zircon grains. Therefore, a sorting effect cannot be differentiated
from a provenance effect for the quartz proportions alone in this case.
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Figure 8. Grain-size and facies compositional trends for Early Triassic sandstone in wells Tønder-3, Tønder-4, and Tønder 5
(Denmark) based on data from Weibel and Friis [38] (coloured symbols) and Olivarius et al. [37] (white and grey symbols).
Samples from the same depth are connected with dotted lines (best visible in the left-most diagrams). Samples from both
studies were used together to evaluate compositional trends as care was taken to make the results from the two operators
coherent [129]. Among the few rock fragments, sedimentary and plutonic or unspecified igneous grains dominate [37,38].
F: feldspar; L: lithic/rock fragments (poly-mineralic grains only; no carbonate clasts were detected); Q: quartz (both
monocrystalline and polycrystalline grains); Qm: monocrystalline Q.

4.4.4. Cases 7—Facies vs. Diagenesis vs. Tectonic Setting

The Cretaceous Barents Sea sandstone of Ärlebrand [40] is dominated by litho-
quartzose to feldspatho-litho-quartzose arenite (or sublitharenite to lithic subarkose) with
up to 15% lithic fragments. Very fine sandstone is more feldspar-rich than coarser sand-
stone (Figure 7). Independent of the grain size, also a marine facies trend is present with
more lithic fragments in deltaic sandstone than in slope-to-basin-floor deposits of plausibly
the same sedimentary system (Figure 7). Thus, the facies trend indicates a reduction in
lithic-fragment content from shallow to deep areas (Figure 7). Most lithic fragments were
interpreted as pelite clasts, including pseudomatrix. Ärlebrand [40] defined pseudomatrix
as deformed clay-mineral-rich material in a restricted area on a thin-section level (sec-
ondary matrix to pseudomatrix as defined by Valloni et al. [99]). Its origin was interpreted
as mudstone clasts, and other clay-mineral-rich material was considered as matrix. The
pseudomatrix was illustrated as a clay-mineral-rich mass that plastically has engulfed more
competent material [40]. The pseudomatrix dominates in the pelite-clast pool.

The facies and grain-size trends partly prevail after recalculations to original depo-
sitions I and II (Figure 5). Therefore, the grain-size trend may at first glance seem to be
due to sorting, but Ärlebrand [40] interpreted it to reflect true provenance variations based
on different amounts of chert and pelite clasts. Nevertheless, if the pseudomatrix (that
is included in the pelite fraction) in reality represents deformed and ductile intrabasinal
clay clasts, the deposits are dominated by metamorphic rather than sedimentary clasts
(Figure 6). This has the potential to change both the source-rock and sediment-transport
interpretation. Assuming correct classification of the pseudomatrix, the maturity difference
between mass-flow and deltaic sandstone can be explained by the tectonic surroundings
because a fault complex is situated between the proposed source area and the depositional
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basin [130]. Faulting may either imply too short a time scale for sediment transport from
source to sink for maturation in the coastal area for the deltaic deposits (cf. [11]), or that the
mass-flow deposits were affected by abrading wave action during coastal reworking before
their final deposition in deeper water. Then, the deltaic sandstone was mostly exposed to
less abrasive currents in the fluvial system. Hence, an interplay between tectonic processes
and sorting may explain the differences observed for the deltaic and mass-flow deposits.

5. Conclusions and Recommendations

The cases that illustrate geological and non-geological biases that may affect prove-
nance interpretations lead to these conclusions and recommendations for petrographic
investigations of sand and sandstone:

Data from different operators should not be compared directly unless their operator
bias is coherent and standardised. Instead, only one operator should count all samples in
single studies, or several operators should count all samples.

It is recommended to use a point-counting method that is appropriate for the goal
of the study. Alternatively, the use of enough compositional and textural categories to
allow for recalculation between different counting methods gives large flexibility for the
presentation of petrographic data.

Only diagrams that are constructed for the applied counting method should be used.
This is particularly relevant for diagrams with discriminative lines, including sandstone-
classification diagrams that have been defined on a set of data that was produced with a
specific counting method. Preferably, the counting method and matrix-size cut-off should
be specified, or described, in the study.

Sub-groups of rock fragments give more specific provenance information than the
relative amounts of quartz, feldspar, and lithic/rock fragments. However, compositional
diagrams, with or without discriminative fields, should be chosen such that the uncertainty
for the result is small; hence, the number of counts for the included categories should be
high. Therefore, a separate count only for rock fragments may be needed for sandstone
with a low content of rock fragments in order to quantify sub-groups of them.

Misinterpretation of pseudomatrix as intraclasts or rock fragments may lead to under-
estimation or overestimation of the original rock-fragment content. Similarly, incorrect inter-
pretation of the origin of rock fragments or detrital pseudomatrix (most likely sedimentary
vs. volcanic vs. metasedimentary origins) may lead to incorrect provenance assumptions.

Absolute source indications based on the petrographic composition of sandstone may
improve by estimations of the depositional composition from diagenetic features. This can
be done by recalculations after interpretation of the diagenetic processes that have affected
the sandstone composition.

Finally, the comparison of material of similar grain size and facies may be advanta-
geous to avoid sorting and facies bias. Stratigraphic visualisation of compositional data
may aid the quantification of bias, including diagenesis, as well as identifying probable
compositional variations due to climate and provenance changes. Thus, all extrabasinal
and intrabasinal processes that are relevant for a provenance study should be considered.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/geosciences11050205/s1, Table S1: petrographic data.
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