
geosciences

Article

A Predictive Model for Maceral Discrimination by Means of
Raman Spectra on Dispersed Organic Matter: A Case Study
from the Carpathian Fold-and-Thrust Belt (Ukraine)

Andrea Schito 1,2,* , Alexandra Guedes 3 , Bruno Valentim 3 , Natalia A. Vergara Sassarini 1

and Sveva Corrado 1

����������
�������

Citation: Schito, A.; Guedes, A.;

Valentim, B.; Vergara Sassarini, N.A.;

Corrado, S. A Predictive Model for

Maceral Discrimination by Means of

Raman Spectra on Dispersed Organic

Matter: A Case Study from the

Carpathian Fold-and-Thrust Belt

(Ukraine). Geosciences 2021, 11, 213.

https://doi.org/10.3390/

geosciences11050213

Academic Editors: Ian Coulson and

Jesus Martinez-Frias

Received: 24 March 2021

Accepted: 7 May 2021

Published: 14 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Dipartimento di Scienze, Sezione Scienze Geologiche, Università degli Studi di Roma Tre, Largo San Leonardo
Murialdo, 1, 00146 Rome, Italy; amanda.vergara@uniroma3.it (N.A.V.S.); sveva.corrado@uniroma3.it (S.C.)

2 Department of Geology and Petroleum Geology, School of Geosciences, University of Aberdeen,
Aberdeen AB24 3UE, UK

3 Insituto da Ciências da Terra e Departamento de Geosciências, Ambiente e Ordenamento do Territòrio,
Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal; aguedes@fc.up.pt (A.G.);
bvvalent@fc.up.pt (B.V.)

* Correspondence: andrea.schito@abdn.ac.uk

Abstract: In this study, we propose a predictive model for maceral discrimination based on Raman
spectroscopic analyses of dispersed organic matter. Raman micro-spectroscopy was coupled with
optical and Rock-Eval pyrolysis analyses on a set of seven samples collected from Mesozoic and
Cenozoic successions of the Outer sector of the Carpathian fold and thrust belt. Organic petrography
and Rock-Eval pyrolysis evidence a type II/III kerogen with complex organofacies composed by the
coal maceral groups of the vitrinite, inertinite, and liptinite, while thermal maturity lies at the onset
of the oil window spanning between 0.42 and 0.61 Ro%. Micro-Raman analyses were performed, on
approximately 30–100 spectra per sample but only for relatively few fragments was it possible to
perform an optical classification according to their macerals group. A multivariate statistical analysis
of the identified vitrinite and inertinite spectra allows to define the variability of the organofacies and
develop a predictive PLS-DA model for the identification of vitrinite from Raman spectra. Following
the first attempts made in the last years, this work outlines how machine learning techniques have
become a useful support for classical petrography analyses in thermal maturity assessment.

Keywords: Raman spectroscopy; dispersed organic matter; vitrinite reflectance; principal component
analysis; partial least square discriminant analysis; machine learning

1. Introduction

The analysis of coals and dispersed organic matter (DOM) is an irreplaceable tool in
thermal maturity assessment and environmental studies of sedimentary successions [1]. In
thermal model calibration for petroleum exploration and basin analysis, vitrinite reflectance
is still the most accurate and reliable indicator [2–5]. On the other hand, vitrinite discrimina-
tion among different organic facies has always been a critical issue for a correct assessment
of thermal maturity [6,7], in particular when other low reflecting macerals occur [8–11].
Given this and the occurrence of other pitfalls that can interfere with vitrinite reflectance
assessment (e.g., suppression and retardation [12,13] and references therein), alternative
methods have been proposed, such as palynomorph darkness index (PDI, [14,15]), FT-IR
spectroscopy [16–20], NMR [21], XPS [22], or Raman spectroscopy [23–33].

In the last years, an increasing interest in the application of Raman spectroscopy for
thermal maturity assessment in catagenesis and metagenesis [24,26,27,29,31,34–38] has
been observed. The majority of articles focused on the analysis of single macerals, mainly
vitrinite in coals [24,26,27], whereas other ones on bulk kerogen [29,34,38]. Nevertheless,
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only a few authors dealt with the heterogeneity that can characterize organic facies [23,32]
or even a single organoclast [37,39].

Most of the works dealing with Raman spectra of kerogen use a classic band fitting
approach that in many cases can result in biased results, as recently outlined [36,40]. Thus,
different automatic approaches have been proposed based on simplified band deconvo-
lution [31,38,41] or on a multivariate analysis chemometric scheme [34,36] for the spectra
analysis, proposing a challenging approach for geological studies. In particular, a prin-
cipal component analysis (PCA)–partial least square (PLS)-based multivariate analysis
has been recently proposed [34,36] to correlate predictive parameters from PLS regression
against vitrinite reflectance. Moreover, Schito et al. [32] demonstrated how a partial least
square discrimination analysis (PLS-DA) allows to define and predict the differences be-
tween vitrinite and sporomorphs on the base of their Raman spectrum for a given thermal
maturity degree.

In this work, we test a similar approach on a set of seven samples collected in the Outer
sector of the Carpathian Fold and Thrust belt (Ukraine), in order to define quantitatively the
differences in Raman spectra between vitrinite and inertinite group macerals and predict
them with the aim to provide a more robust dataset for thermal maturity assessment.

2. Materials and Methods
2.1. Materials

Samples were collected from black shales at various stratigraphic intervals (Early
Cretaceous to Early Miocene) cropping out in the Outer Carpathians, in SW Ukraine,
close to the Romania border (Figure 1). This portion of the fold-and-thrust belt shows an
imbricate fan architecture made up of a series of NE-verging thrust sheets [42] in which
three tectonic units are recognized (Boryslav-Pokuttia tectonic Unit, Skiba tectonic Unit
and Chornogora tectonic Unit, Figure 1). In detail, five samples (PL 93.1, PL 93.2, PL 95,
PL 97, PL 101.1) come from organic-rich levels of the Melinite shales (Oligocene to Lower
Miocene) cropping out in the Skiba Unit. Sample PL 102 was collected in a pelitic bed of the
Eocene-Oligocene succession of the Globigerina Marls in the Skiba Unit, whereas sample
PL 103 comes from an organic-rich level of the Hauterivian-Albian Spas-Shypot formation
in the Chornogora Unit (Figure 1).

Geosciences 2021, 11, x FOR PEER REVIEW 2 of 18 
 

 

been observed. The majority of articles focused on the analysis of single macerals, mainly 
vitrinite in coals [24,26,27], whereas other ones on bulk kerogen [29,34,38]. Nevertheless, 
only a few authors dealt with the heterogeneity that can characterize organic facies [23,32] 
or even a single organoclast [37,39]. 

Most of the works dealing with Raman spectra of kerogen use a classic band fitting 
approach that in many cases can result in biased results, as recently outlined [36,40]. Thus, 
different automatic approaches have been proposed based on simplified band 
deconvolution [31,38,41] or on a multivariate analysis chemometric scheme [34,36] for the 
spectra analysis, proposing a challenging approach for geological studies. In particular, a 
principal component analysis (PCA)–partial least square (PLS)-based multivariate 
analysis has been recently proposed [34,36] to correlate predictive parameters from PLS 
regression against vitrinite reflectance. Moreover, Schito et al. [32] demonstrated how a 
partial least square discrimination analysis (PLS-DA) allows to define and predict the 
differences between vitrinite and sporomorphs on the base of their Raman spectrum for a 
given thermal maturity degree. 

In this work, we test a similar approach on a set of seven samples collected in the 
Outer sector of the Carpathian Fold and Thrust belt (Ukraine), in order to define 
quantitatively the differences in Raman spectra between vitrinite and inertinite group 
macerals and predict them with the aim to provide a more robust dataset for thermal 
maturity assessment. 

2. Materials and Methods 
2.1. Materials 

Samples were collected from black shales at various stratigraphic intervals (Early 
Cretaceous to Early Miocene) cropping out in the Outer Carpathians, in SW Ukraine, close 
to the Romania border (Figure 1). This portion of the fold-and-thrust belt shows an 
imbricate fan architecture made up of a series of NE-verging thrust sheets [42] in which 
three tectonic units are recognized (Boryslav-Pokuttia tectonic Unit, Skiba tectonic Unit 
and Chornogora tectonic Unit, Figure 1). In detail, five samples (PL 93.1, PL 93.2, PL 95, 
PL 97, PL 101.1) come from organic-rich levels of the Melinite shales (Oligocene to Lower 
Miocene) cropping out in the Skiba Unit. Sample PL 102 was collected in a pelitic bed of 
the Eocene-Oligocene succession of the Globigerina Marls in the Skiba Unit, whereas 
sample PL 103 comes from an organic-rich level of the Hauterivian-Albian Spas-Shypot 
formation in the Chornogora Unit (Figure 1). 

 
Figure 1. Geographic and geologic setting of the studied area: (a) Simplified tectonic sketch of the Carpathians, in the 
square the b map location. PKB: Pieniny Klippen Belt. (b) Geological map of the sampled area. Black dots indicate sampled 
sites. Redrawn from the “Geological map of the outer Carpathians: borderland of Ukraine and Romania. 1:200,000” [43]. 

Figure 1. Geographic and geologic setting of the studied area: (a) Simplified tectonic sketch of the Carpathians, in the
square the b map location. PKB: Pieniny Klippen Belt. (b) Geological map of the sampled area. Black dots indicate sampled
sites. Redrawn from the “Geological map of the outer Carpathians: borderland of Ukraine and Romania. 1:200,000” [43].



Geosciences 2021, 11, 213 3 of 19

2.2. Rock-Eval Pyrolysis

Rock-Eval pyrolysis is a traditional quantitative method for kerogen characterization,
based on the relative intensity and distribution of three fluid peaks (S1, S2, S3), artificially
generated at different lab temperatures from a whole rock specimen containing kerogen.
Free hydrocarbons (S1) in the rock and the amount of hydrocarbons (S2) expelled during
pyrolysis and TOC were measured using a Rock-Eval 6 equipment at ENI laboratories [44].

2.3. Vitrinite Reflectance Analysis

Samples were prepared for petrographic analysis via HCl-HF digestion to remove
carbonates and silicates [45] and after, concentrated organic residue was prepared as
polished blocks following ASTM standards [46]. The vitrinite mean random reflectance
was measured at the University of Porto (Portugal) on a reflected light Leitz microscope
coupled to a Diskus-Fossil System following ASTM standard D7708-14 [47].

2.4. Raman Spectroscopy

Micro-Raman spectroscopic analyses were performed on organic particles, some of
them identified as vitrinite or inertinite, observed under reflected light on polished sections.
Micro-Raman spectroscopy was carried out at the University of Porto (Portugal) using a
Horiba Jobin-Yvon LabRam XploRATM system in a backscattering geometry, in the range
of 700–2300 cm−1 using a 1200 grooves/mm spectrometer gratings and CCD detector. The
instrument is equipped with 50× and 100× objective lens, and an excitation wavelength of
532 nm from a Nd:YAG laser at a power of 25 mW. To avoid laser-induced degradation
of kerogen and reduce the fluorescence background to minimal values, laser power was
adjusted below 0.4 mW, using optical filters and the Raman backscattering was recorded
after an integration time of 20 s for 6 repetitions. Each organic particle was analysed with an
about 1 µm diameter spot using a 50× optical power objective, and about 30–100 measures
for samples were performed depending on the abundance of organic particles.

Raman spectra of organic matter appear in the first order region between 1000 cm−1

and 1800 cm−1, whereas bands in the second order region, between 2000 cm−1 and
3500 cm−1, were not detected since they are weak in low matured organic matter and can be
only detected using shorter Raman excitation wavelengths (e.g., less than 488 cm−1). The
first order Raman spectra consists of two main bands known as the D and the G bands [48]
and by other bands depending on the degree of the coal rank [49,50]. The G band is related
to the in-plane vibration of the carbon atoms in the graphite sheets, while the D band at
1350 cm−1 becomes active in disordered graphite and has been interpreted as a results of a
double resonant Raman scattering process [51–53] or alternatively as the ring breathing
vibration in the graphite sub-unit or polycyclic aromatic compounds (PAHs; [54–58]). On
the other hand, no general consensus has been reached regarding the assignment of the
other bands that compose the first order Raman spectra of carbonaceous materials. Two
bands at 1150 cm cm−1 and at 1250 cm cm−1 (S and Dl in [29,58]) were assigned by [59]
(called in their work D4 and D5 bands, see Table 1) to C-H species in aliphatic hydrocarbon,
while other authors [55,58] assigned them respectively to polyacetylene-like structures and
low size aromatic domains. Moreover, band at 1465 cm−1 and 1380 cm−1, which represent
the “overlap” between D and G (Dr and Gl bands in [29,58]), were assigned mainly to
amorphous carbon structures in char (D3 band by [60]), small ring systems (e.g., with
3–5 fused benzene rings) by [55] and [58] and polyacetylene-like structures. Alternatively,
a band at around 1500 cm−1 was assigned to trapped hydrocarbons by [61] (D5 band in
their work). See Table 1 for a complete review.
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Table 1. First-order Raman bands and vibration modes reported by different authors. Raman shift
are approximated and bands name can change according to different authors interpretations.

Raman Shift (cm−1) Band Vibrational Mode Authors

~1580 cm−1 G

In-plane vibration of the
carbon atoms

in the graphene sheet
(E2g-symmetry)

Tuinstra and Koening, 1970
Reich and Thomsen, 2004

~1500 cm−1

Gl Polyacetylene like structures Rebelo et al., 2016

D3
Out-of-plane tetrahedral

carbons in
amorphous carbon

Sadezky et al., 2005

~1400 cm−1 Dr Low size aromatic domains Castiglioni et al., 2001

D5 Trapped hydrocarbons Romero-Sarmiento et al., 2014

~1350 cm−1

D1 Disordered graphitic lattice
(A1g symmetry) Tuinstra and Koening, 1970

D Ring breathing vibration
in PAHs Castiglioni et al., 2001

D1 Double resonant Raman
scattering process Reich and Thomsen, 2004

~1300 cm−1
Dl Low size aromatic domains Castiglioni et al., 2001

D5 C-H species in aliphatic
hydrocarbon chains Ferralis et al.,2016

~1200 cm−1

S Polyacetylene like structures Rebelo et al., 2016

D4 Disordered graphitic lattice
(A1g symmetry) or polyene Sadezky et al., 2005

D4 C-H species in aliphatic
hydrocarbon chains Ferralis et al.,2016

2.5. Multivariate PCA and PLS-DA Analyses on Raman Spectra

Statistical principal component analysis (PCA) and partial least square discriminant
analysis (PLS-DA) were performed in the range of Raman spectra between 1000 cm−1 and
2000 cm−1. The ranges between 700 and 1000 cm−1 and between 2000 and 2300 cm−1 in
the original spectra have been excluded from the PCA analysis since they do not contain
relevant information and can only add a further source of error. Before performing PCA
and PLS-DA, all spectra were pre-processed for spike removal and spectra normalization
(relatively to the maximum intensity of the G band). The PCA routine of MATLAB R2017b
software (The MathWorks, Natick, MA, USA) was used. The main purpose of PCA is to
reduce the dimensionality of a multivariate dataset by explaining the variance-covariance
structure of the data using a linear combination of the original variables to form principal
components (PCs), minimizing the information loss. In this work we use the PCA to
examine the qualitative differences within Raman spectra finding the maximum differences
among them in the PC space (the space where the component scores correspond to the
coordinates of each observation). In the case of Raman spectra, observations are represented
by the number of measurements for each sample and the original variables (frequencies of
the Raman spectra, in this case 1021 for each spectrum). The projection of the observations
on the PC space is called “component score”, while the weight of each original variable in
the new space is called “loading”. A score plot gives information about the relationship
between observation (spectra), while loading explains which variables (i.e., frequencies)
are responsible for the separation observed in the score plot.

PLS-DA was used to develop classification rules for macerals that cannot be optically
ascribed to a maceral group. A spectral dataset, consisting of optically identified vitrinite
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and inertinite spectra, was used as the training set to develop a calibration model and find
the predicting parameters that were used to classify a testing set. The testing set here is
represented by the whole dataset of Raman spectra for which an optical classification was
impossible in terms of recognisable macerals. PLS-DA on the training set, is a supervised
classification since it is based on an external a priori classification (dependent variable). In
this case the dependent variable is represented by the belonging to two different groups
(group 1 for the vitrinite, and group 2 for the inertinite). The calibration of the training set
produces a set of regression coefficients from which the predicted values of the dependent
variables are computed. The relation between independent and dependent variables
in the training set is given by the beta coefficients. Multiplying the beta coefficient by
the independent variables allows to predict the unknown dependent variables for the
testing set.

Figure 2 shows an example of the workflow developed in this work. Starting from the
raw spectra, we use the PCA score plot to identify the distribution of our data. Then, we
identify where the optically recognized macerals fall in the score plot and improve their
number through PLS-DA analysis. Finally, all Ro% equivalent values are calculated for the
identified macerals. In Figure 2, we show as an example also the reflectance equivalent
values of inertinite, while the focus of this work is to find reflectance equivalent values
only for vitrinite fragments (see discussion section).
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Figure 2. Workflow of the supervised classification used to identify vitrinite spectra. Original spectra have been plotted
after PCA analysis on a score plot where identified macerals (vitrinite and inertinite) have been put in evidence before
and after PLS-DA analysis (red dots for vitrinite and yellow dots for inertinite). Frequency histogram to the right shows
reflectance equivalent values calculated before and after PLS-DA on different macerals (red bins for vitrinite, yellow bins
for inertinite).

3. Results
3.1. Rock-Eval Pyrolysis

Results from Rock Eval pyrolysis and TOC are listed in Table 2 and plotted in Figure 3
on a pseudo-Van Krevelen diagram based on HI and Tmax measurement [62].
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Table 2. Sample coordinates, geology and Pyrolysis Rock Eval data collected in the area. Acronyms: TOC—total organic carbon; HI—hydrogen index; Ol-LM: Oligocene to Lower Miocene;
E-Ol: Eocene to Oligocene; Ht-Al: Hauterivian to Albian; LKb: Lower Krosno beds; UKb: Upper Krosno beds; Mb: Melinite beds; Gmrl: Globigerina marls; Sb: Shypots beds; stdv:
standard deviation; n◦: number of measurements.

Sample Coordinates Tectonic
Unit Age Formation Rock

Type
TOC

(%Wt) S1 (mg/g) S2 (mg/g) HI Tmax (◦C) Type of
Kerogen Ro% (n◦) stdv

PL 93.1 N48,034
E24,92101 Skiba Unit Ol-LM LKb Pelite 4.55 0.30 12.18 268 421 Mixed

II/III 0.46 (50) 0.03

PL 93.2 N48,034
E24,92101 Skiba Unit Ol-LM LKb Pelite 11.29 1.21 41.26 365 422 II 0.42 (31) 0.03

PL 95 N48,094
E24,98933 Skiba Unit Ol-LM UKb Black

Shale 6.61 0.52 18.69 283 427 Mixed
II/III 0.45 (27) 0.05

PL 97 N48,145
E25,07269 Skiba Unit Ol-LM Mb Pelite 2.92 0.32 9.54 327 433 II 0.44 (11) 0.03

PL 101.1 N47,9107
E25,251883 Skiba Unit Ol-LM UKb Pelite 1.25 0.03 1.35 108 439 III 0.51 (50) 0.03

PL 102 N47,878
E25,22077 Skiba Unit E-Ol UKb/Mb/Gmrl Pelite 0.58 0.04 0.91 157 433 III 0.45 (32) 0.04

PL 103 N47,803
E25,15563

Chornogora
Unit Ht-Al Sb Black

Shale 3.13 0.43 9.15 292 436 Mixed
II/III 0.61 (30) 0.07
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where Tmax vs. HI derived from Rock-Eval Pyrolysis are plotted (redrawn after [62]).

As shown in Table 2 and Figure 3, the Rock-Eval results indicate type II - III kerogen.
TOC and HI, ranging between 0.58 and 11.29% and 108 and 365, respectively, are typical of
good to excellent source rocks. The highest TOC and HI values characterise pelites and
black shales from the Krosno Beds and Lower Cretaceous Shypot formation (Chornogora
Unit). Tmax values range between 421 ◦C and 439 ◦C indicating roughly the immature and
the early stages of HC generation.

3.2. Organic Petrography and Vitrinite Reflectance (Ro%)

Concentrated organic matter concentrates, observed under incident light, is composed
by different macerals with different reflectance values (Figure 4c,d as an example and
Supplementary Figures in Plate A).
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In reflectance histograms comprising all macerals (Figure 4c as an example and
Supplementary Materials Plate A for all results), Ro% values span across a wide range
between about 0.2% and 2.0%. The lowest values (0.2 < Ro% < 0.35) were measured on
dark grey fragments with low contrast to inorganic matrix under white light, which were
interpreted as liptinite. These fragments often show a heterogeneous texture and can be
sometimes confused with vitrinite fragments, but they can be distinguished thanks to their
brown fluorescence, under fluorescent blue-light (Figure 4b).

Vitrinite fragments were recognized on the base of morphological features and re-
flectance distribution in frequency histograms. Ro% values range between about 0.40%
and 0.60% (Table 1).

The histograms showing reflectance values from all macerals (Supplementary Materials
Plate A) indicate that vitrinite is the most abundant maceral in almost all the samples, with
exception for samples PL 95 and PL 97.

High reflectance values can correspond to reworked vitrinite but also to macerals
belonging to the inertinite group (es. semifusinite and fusinite). Fusinite generally shows
reflectance higher than 1.0% while reflectance values around 0.7–0.8%, in some cases close
to those of vitrinite fragments (e.g., sample PL 103), correspond to semifusinite.
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3.3. Micro-Raman Spectroscopy
3.3.1. Raman Spectra and Raman Parameters

The normalized Raman spectra of each sample are shown in Figure 5a,b and in
Supplementary Materials Plate B. As shown in the figures, there is a high heterogeneity in
Raman spectra. Most of them show a high fluorescence background, a wide G band and a
low intensity D band (high D/G intensity ratio). Nevertheless, spectra with a narrow G
band and a D band shifted toward lower wavenumbers and lower fluorescence background
are also present.
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Micro-Raman measurements were performed on discrete organic particles. The identi-
fication of different macerals was not easy using an air-immersion objective such as those
mounted on the Raman equipment and it was not possible for most of the measured
fragments. Nevertheless, in some cases, optical recognition of macerals was possible, as
shown in Figure 5c,e,g,i.

Generally, vitrinite fragments appear as low-relief dark-grey ones, usually with a
squared or a triangular shape (Figure 5c) with a high to moderate fluorescence, depending
on the maturity of the sample and a large G band generally more prominent than the D
band (Figure 5d). Fragments darker than vitrinite (when observed under the same lighting)
with a heterogeneous texture and higher fluorescence Raman spectra could be interpreted
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as liptinite (Figure 5e,f). Nevertheless, the classification of liptinite is prevented by the
dark colour being similar to the surrounding matrix and by the high fluorescence that
overwhelms the spectrum in most of the cases.

Inertinite fragments are relatively easy to identify but are heterogeneous: semifusinite
is more easily recognizable because of its intermediate shade of grey between vitrinite and
fusinite and some preserved cell structures, but not as much as in fusinite (Figure 5g). Its
spectra (Figure 5h) show low fluorescence with respect to vitrinite and well-defined D and
G bands. Fusinite fragments show a light shade of grey, well preserved cell structure and a
similar spectrum to the one of semifusinite, but with lower fluorescence and a narrower G
band (Figure 5i,j).

Table 3 shows the results of the mean values of Raman parameters for each sample
derived from a separate deconvolution of the D and G band, according to [38].

Table 3. Mean values of Raman parameters for each sample, calculated by means of the automatic deconvolution proposed
by Schito and Corrado (2018). pD, position of the D band (cm−1); pG, position of the G band (cm−1); wD, full width at the
maximum height of the D band (cm−1); wG, full width at half maximum of the D band (cm−1); aD, integrated area of the D
band; aG, integrated area of the G band; ∆D–G: difference between G band and D band position (cm−1); ID/IG, intensity
ratio between the D and G bands; aD/aG, area ratio between the D and G bands; wD/wG, ratio between the full width at
half maximum of D and G bands.

Sample pD s.d pD pG s.d.
pG wD s.d.

wD wG s.d.
wG aD s.d. aD aG

PL 93.1 1359.59 5.62 1616.91 1.43 225.96 47.16 117.75 6.64 14,441.28 7881.37 15,052.34
PL 93.2 1361.29 9.06 1617.37 2.55 192.30 56.52 118.65 6.89 30,166.66 30,653.46 27,534.29
PL 95 1356.94 8.70 1616.65 1.84 222.11 49.24 132.87 7.90 48,153.24 14,578.57 73,846.22
PL 97 1364.53 3.62 1616.60 2.67 182.02 34.33 119.99 6.50 28,237.92 15,814.34 28,118.21

PL 101.1 1351.85 4.44 1607.29 4.30 252.44 57.36 143.24 15.57 32,410.07 15,889.49 50,086.10
PL 102 1353.76 3.92 1612.22 2.64 206.50 53.44 129.51 13.46 42,512.17 27,135.25 61,250.41
PL 103 1344.60 5.81 1609.86 2.47 246.83 46.97 120.14 6.97 76,033.64 37,048.33 93,230.31

Sample s.d. aG ∆D-G s.d. ∆D-G ID/IG s.d.
ID/IG aD/aG s.d.

aD/aG wD/wG s.d.
wD/wG

Ro%
equivalent

s.d. Ro%
equivalent

PL 93.1 7082.74 257.32 5.77 0.40 0.06 0.96 0.20 1.94 0.48 0.51 0.18
PL 93.2 18,645.36 256.08 7.59 0.47 0.05 1.01 0.35 1.63 0.52 0.43 0.23
PL 95 23,325.32 259.71 9.56 0.40 0.04 0.66 0.13 1.68 0.42 0.50 0.22
PL 97 11,977.36 252.07 3.49 0.48 0.07 1.01 0.30 1.52 0.31 0.35 0.07

PL 101.1 23,709.26 255.43 6.89 0.36 0.06 0.65 0.20 1.75 0.35 0.46 0.13
PL 102 29,505.44 258.46 4.57 0.43 0.10 0.72 0.27 1.62 0.48 0.48 0.15
PL 103 43,684.14 265.26 6.66 0.41 0.06 0.82 0.17 2.06 0.40 0.67 0.14

The mean Ro% value is highest in sample PL 103 and lowest in sample PL 97 (Table 3).
However, the standard deviation calculated from all values is quite high, reflecting the
maceral heterogeneity described above.

The variability of the Ro% equivalent calculated from Raman data can be observed in
the histograms in Supplementary Figures S13–S16 in Plate C and Supplementary Figures
S10–S12 in Plate D.

3.3.2. Multivariate Analysis on Raman Spectra

PCA was carried out on each sample building a matrix where each row corresponds
to a different spectrum and each column to the intensity at different Raman shift. The
goodness of the PCA model is expressed by the percentage of explanation for each PC. In
our samples, the first two PCs components explain between the 88% and the 98% of the
variance in the original matrix (Supplementary Figures S5–S8 in Plates C and Figures S4–S6
in Plate D). Generally, values higher than 80% in the first three PCs indicate acceptable
models.

Plotting the two first PCs on the score plots (Supplementary Figures S1–S4 in Plates C
and Figures S1–S3 in Plate D), data are usually distributed into two or three clusters with a
trend along the x axis (i.e., first principal component).
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Loading plots in (Supplementary Figures S9–S12 in Plate C and Figures S7–S9 Plate B)
indicate the frequency at which major changes in the Raman spectrum occur. Values close
to zero mean that almost no changes occur, while maximum values depict the greatest
variation among spectra. In our spectra the greatest variations always occur at around
1350 cm−1 and 1600 cm−1 that is the region of the D and G bands and for higher
wavenumbers (>1650 cm−1), reflecting the increasing/decreasing fluorescence among
different macerals.

In Figures 6 and 7b,f,j the optically recognized vitrinite and inertinite spectra are
shown on the score plots (red and yellow dots respectively). The figure shows that most of
the vitrinite fragments fall in the main cluster (except for sample PL 103), while depending
on the sample, inertinite usually falls in a second cluster, but shifted towards lower or
higher first PC values.
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Based on this evidences, a multivariate classification via the PLS-DA technique
was used to derive prediction parameters for the classification of vitrinite and inerti-
nite group macerals. In a first step, vitrinite and inertinite spectra were used as a training
set to build a calibration model, whose goodness was validated by means of statistic
tests (see Supplementary Materials Plate E). Two statistics tests were then performed
(Supplementary Materials Plate E): test (1) “Percentage of variance versus Number of
PLS components”; test (2) “Mean squared prediction error (MSEP) versus Number of PLS
components”. Test 1 results show that three first PLS components explained between 60%
to 98% of the variance (only in samples PL 101.1 and PL 103 the first three components
explain less than the 80% of the variance; Supplementary Figures S4 and S6 in Plate E).
Test 2 results show that the MSEP is higher for the first two components and then decreases
up to its minimum in almost all samples, except for sample PL 102 (Supplementary Figure S5
in Plate E). Thus, a statistically significant number of PLS components for the training
model is three, since it explains a high percent of variance with the minimum error.

Once found the right number of factors, PLS-DA was run on the training set to
establish the classification parameters for each class. The obtained beta factors were
applied to the test set to categorize the remaining unclassified spectra into one of the two
classes. This results in an increased number of the recognized vitrinite to be measured
for thermal maturity. Table 4 shows the mean reflectance equivalent values and number
measurements found for recognized vitrinite macerals and for the vitrinite macerals found
only after the PLS-DA analysis.
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Table 4. Measured vitrinite reflectance equivalent from Raman parameters for each sample before
and after PLS-DA analyses.

Observed After PLS-DA
Sample Ro%eq s.d. Counts Ro%eq s.d. Counts

PL 93.1 0.45 0.09 15 0.45 0.09 24
PL 93.2 0.39 0.08 14 0.39 0.11 26
PL 95 0.42 0.07 11 0.44 0.08 25
PL 97 0.40 0.07 5 - - -

PL 101.1 0.57 0.10 26 0.54 0.11 58
PL 102 0.43 0.07 11 0.42 0.07 15
PL 103 0.57 0.09 15 0.60 0.11 19

s.d.: standard deviation.

The analysis was not performed on sample PL 97 (where only vitrinite has been
recognized) since PLS-DA analysis cannot be performed on a single class.

Table 4 and Figures 6 and 7 indicate that the number of measurements on vitrinite
increased from a minimum of 26% in samples PL 102 and PL 103 up to a maximum of
123% in sample PL 101.1, whereas the mean Ro%eq values are very similar with a slightly
increase in the standard deviation values (Table 4).

4. Discussion
4.1. Source Rocks Quality, Organic Facies and Thermal Maturity

The area of interest in this study is part of the wider flysch belt of the Outern Carpathi-
ans, which is one of the oldest oil-producing regions in the world [63]. In particular, the
Melinite shales, buried in the Boryslav-Pokuttya tectonic unit, acted as the main oil-bearing
succession in the Carpathian region and have been widely studied, in particular in the
polish sector [63]. In the area analysed in this work, belonging to the Ukranian sector, less
data are available and the source rocks are not fully characterized.

The quality of the outcropping source rocks can be pointed out by means of TOC,
HI, and S2 values (Figure 3), whereas the degree of thermal maturity has been accurately
assessed by double checking Ro% values from organic petrography with Tmax from Rock-
Eval Pyrolysis. Via these methods, we can state that black shales of the Shypot beds in the
Chornogora Unit, acted as a “good to very good” mixed gas and oil prone source rock with
a thermal maturity falling at the oil window onset. As well, the Krosno beds in the internal
portion of the Skiba unit, show an excellent oil-prone potential according to pyrolysis data
(samples PL 93.1, PL 93.2, and PL 95), whereas Tmax and Ro% values for samples PL 101.1
indicate both good gas and oil generation potential in the window of oil generation. On
the other hand, thermal maturity of samples PL 93.1, PL93.2, and PL 95 indicate immature
source rocks (Table 2; Figures 3 and 4). Samples PL 97 and PL 103 from the Melinite shales,
located in the external part of the Skiba Unit and Chornogora Unit respectively, show
good oil potential. However, Tmax and Ro% values point out different thermal maturity
levels suggesting that maximum temperatures were acquired in each tectonic unit due to a
tectonic loading during the formation of the chain rather than at the end of sedimentation.

The petrographic analysis of the polished blocks, via incident light microscopy, re-
vealed a complex assemblage of macerals for all samples (Figure 4). A significant number
of suitable vitrinite particles was found for reflectance measurements in all samples except
in sample PL 97 (only 11 suitable particles). In this sample, as well as in samples PL 93.2,
PL 95, and to minor extent in samples PL 102 and PL 101.1, thermal maturity assessment
was complicated by the diffuse presence of macerals with similar appearance, but having
weak fluorescence, lower reflectance and darker shades of grey than vitrinite and have
been interpreted to belong to the liptinite group. A further complication was given by the
presence in all samples of higher reflectance macerals (>0.5–0.6 Ro%; Figure 4), which were
identified as inertinite and in some cases as reworked vitrinite fragments. The inertinite
particles were grouped into semifusinite (Ro = 0.6–0.8%) and fusinite (Ro > 1%).
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Vitrinite reflectance (Ro = 0.42–0.46%) and Tmax data (421 ◦C–433 ◦C) indicate that
most of the samples are in the immature stage of hydrocarbon. However, samples PL 101.1
and L 103 lie at the oil window onset with reflectance values of 0.51% and 0.61% and Tmax
of 439 and 436, respectively.

4.2. Raman Spectroscopy and Vitrinite Reflectance Equivalent (Ro%eq)

The presence of different Raman spectra shapes in each sample can be interpreted as
the coexistence of in situ and reworked materials and/or of different particles of organic
matter (Figure 4). Such Raman spectrum differences (Figure 5) result, after a two-band
fitting deconvolution, in higher values of the distance between the G and D bands and of
the area, intensity and FWHM ratio of the D and G bands (Table 4). These differences are
mainly due to a red-shift and a D band area and width increase accompanied by a decrease
of the G band width, which are the result of an increase of larger aromatic clusters, passing
from disordered to more ordered materials [29,32,57,58,64,65], in this case, a progressive
ordered structure: liptinite particles (when registered)< vitrinite < inertinite.

Comparing the histograms of the Ro%eq of the undifferentiated particle spectra
(Supplementary Materials Plate C Figures S13–S16 and Plate D Figures S10–S12) with
the Ro% histograms (Supplementary Materials Plate C Figures S17–S20 and Plate D
Figures S13–S15), we can observe that their main modes are centred almost at the same
values except for samples PL 95 and PL 97 or in PL 103 where, on the other hand, vitrinite
is not the most abundant maceral. In samples PL 95 and PL 97 the Ro% histograms are
slightly shifted toward lower values with respect Ro%eq, due to the higher number of
measurements probably made on liptinites. In sample PL 103, semifusinite is the most
abundant maceral, with Ro% values very similar to those of vitrinite, and an overlap in
the reflectance histogram with vitrinite in Ro%eq conversion (Figure 7). Ro%eq values
on inertinite are usually higher than vitrinite and mostly agree with optically reflectance
values measured on the same maceral. Nevertheless, we did not focus on them since the
assessment of inertinite equivalent reflectance from Raman is beyond the aim of this work
and useless for thermal maturity assessment and basin modeling.

4.3. Multivariate Analyses on Raman Spectra

Raman spectroscopy has become a promising tool for thermal maturity evaluation
of coals and dispersed organic matter in diagenesis (see [66] for a comprehensive review).
However, working with dispersed organic matter, the inability to couple optical observation
under oil immersion, seriously limit Raman organic petrographic analyses as evidenced by
the fact that only few works focus on single macerals measurements [23,32,37,57,67]. In
this work we show how a multivariate analysis on Raman spectra can help in macerals
description and identification when dealing with particularly complex organofacies.

Looking at the score plots derived from our samples, a linear trend can be generally
seen, moving from negative to positive values on the first principal component axis, with
a cluster of maximum density generally centered around 0 (Supplementary Materials
Plate C Figures S1–S4 and Plate D Figures S1–S3). On the other hand, the variance on
the second PCs axis is always limited with respect to the first. In these plots, outliers
are easily recognized and can be excluded from the maturity conversion. Moreover, the
score plots show two or more clusters of data. Samples with similar scores are similar and
each cluster corresponds to particles with spectra showing similar “aromatization degree”.
When optically identified, vitrinite and inertinite macerals are plotted on the score plot
(Figures 6 and 7) and vitrinite usually falls in the main cluster whereas inertinite falls in
the most external part toward both more positive or negative values, depending on the
relative abundance of different macerals.

Loadings plots (Supplementary Materials Plate C Figures S9–S12 and Plate D
Figures S7–S9), on the other hand, show that major changes in Raman spectra among
different macerals, occur at around 1350 cm−1 and 1600 cm−1 (e.g., D and G band region)
and after 1700 cm−1. These changes can be related to a shift in the D band position, a G
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band narrowing and a fluorescence decrease moving from hydrogen-rich to more aromatic
organic matter [32].

Once defined the different classes of spectra in the samples, the PLS-DA analysis
confirms that similar macerals fall in the same cluster on the score plot allowing to classify
most of the remaining spectra.

In this way the number of vitrinite fragments increase, providing a more robust
thermal maturity assessment (Figures 6 and 7). In Figure 8 the average Ro%eq values
calculated from the Raman spectra of vitrinite (red circles) and for the sum of vitrinite and
PLS-DA derived vitrinite (blue circles) are plotted against the microscopic determination
of vitrinite reflectance (Ro%) together with the average Ro%eq calculated on the whole
macerals composition (green diamonds). Despite a slight increase of the standard deviation
from Ro% to Roeq% calculated from Raman (Figure 8, Table 3), a better correlation between
the mean values of both methods was found, together with an important increase of
measurements after PLS-DA. The higher standard deviation of Ro%eq with respect to
Ro% should be considered as an intrinsic limitation of the conversion equation given that
the confidence interval of the equation indicates that an error higher than ± 0.05 can be
expected for each measurement (see [38]), and thus the sum of the errors in a certain
thermal maturity interval probably led to a relatively high standard deviation as those
observed in our samples. More detailed studies based on further datasets are needed in
future to provide a more effective tool.
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Figure 8. The diagram shows the correlation between the microscopic determination of vitrinite reflectance (Ro%) and the
reflectance equivalent of vitrinite (Roeq%) macerals calculated by means of Raman parameters, according to [38], for values
obtained before (red circles) and after (blue circles) PLS-DA analysis. The size of the circles depends on the number of
measurements for each sample. Green diamonds show Roeq% values calculated on all macerals composition.

Given this, the high correlation in such a small range of thermal maturity (between
about 0.4 and 0.6 Ro%) confirms Raman spectroscopy as an accurate thermal maturity tool
also in low diagenesis.

5. Conclusions

In this work organic petrography, Raman micro-spectroscopic and Rock-Eval pyrolysis
analyses were performed on a set of samples collected from Mesozoic and Cenozoic
successions of the Outer sector of the Carpathian fold and thrust belt, in Ukraine.
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Organic petrography and Rock-Eval pyrolysis evidence a type II/III kerogen with
complex composition characterized by the presence of macerals of the vitrinite, inertinite
and liptinite groups. According to Tmax and Ro% data thermal maturity lies at the onset of
the oil window spanning between about 0.40 and 0.60 Ro% (based on 30–50 measurements
on vitrinite for most of the samples).

Micro-Raman analyses were performed on a higher number of organic fragments
giving back from about 30 to about 100 spectra on each sample but, only for relatively few
fragments was possible an optical classification according to their macerals group. For this
reason, we performed a multivariate statistical analysis in order to define the variability of
the organic facies and develop a predictive PLS-DA model for the identification of vitrinite
from Raman spectra.

Results demonstrate that the PLS-DA model allows to successfully classify macerals
on the basis of their Raman spectrum, considerably increasing the number of fragments
that can be used for thermal maturity assessment.

Following the first attempts of [32,34,68,69], this work outlines how machine learning
techniques can be a powerful support to classical organic petrography analyses in thermal
maturity assessment on sediments where organic fragments are finely dispersed.
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PCs; Figures S9–S12: PCA loadings plots; Figures S13–S16: Roeq% histograms; Figures S17–S20: Ro%
histograms. Plate D: PCA results and Ro% and Roeq% histograms for samples PL 101.1, PL 102 and
PL103. Figures S1–S3: PCA Score plots; Figures S4–S6: PCA explained values for each PCs; Figures
S7–S9: PCA loadings plots; Figures S10–S12: Roeq% histograms; Figures S13–S15: Ro% histograms.
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PLS components.
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