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Abstract: The Conceição river basin, in Quadrilátero Ferrífero (Iron Quadrangle), Brazil, has a
long mining history which dates back to the late 17th century, with large gold and iron mines.
These activities may be associated with river sediment contamination by trace elements, which
were evaluated in this paper by the enrichment factor (EF) and contamination factor (CF). Potential
ecological risks, assessed by combining sediment quality control guidelines (SQCG) and potential
ecological risk indexes (Er and RI), are presented. Anomalous values for As (92.5 mg·kg−1), Cd
(22.49 mg·kg−1), Cr (2582 mg·kg−1), Cu (65.9 mg·kg−1), Pb (58.6 mg·kg−1) and Zn (133.4 mg·kg−1)
are observed. The EF and CF indexes indicate contamination by Cd, Cr, Fe, Mn, Ni and Zn in at
least one site, with the highest values for Fe and Mn downstream of the iron mines, and Cr and Ni
close to the gold mines. According to the SQGC and Er, As, Cd, Cr, and Ni are the most probable
to result in adverse effects on sediment-dwelling organisms in this study. The results of principal
component analysis (PCA) indicate distinct lithological units as sources of the analyzed elements,
which, associated with the indexes, made it possible for the first time to delimit and classify the high
concentrations of some analyzed elements as contamination in the Conceição river basin.

Keywords: trace elements; sediments; contamination factor; enrichment factor; principal component
analysis; Conceição river basin

1. Introduction

Contamination of aquatic environments by trace elements such as heavy metals have
attracted particular attention due to their abundance and persistence, which may cause
biological accumulation [1] and potential adverse effects on biota [2,3]. Compared with
naturally occurring metals, anthropogenic metals on sediments have high mobility, bioavail-
ability, and adverse effects on aquatic organisms [2,3]. In this context, understanding the
spatial distribution of heavy metals, differentiating the human contribution, and deter-
mining possible ecological risks are essential for assessing the quality of sediments and
protecting the aquatic environment [3].

Located in the Quadrilátero Ferrífero region, the Conceição river basin is an important
tributary of one major Brazilian river, the Doce River. The area is one of the most important
mining provinces in Brazil, with intense gold, iron, and manganese mining activity, espe-
cially Brucutu, Capanema and Gongo Soco iron mines and Córrego do Sítio and São Bento
gold mines. Anthropogenic impacts in this basin are recognized mainly due to mining
activities [4–6] and due to the disposal of domestic and industrial effluents, since this basin
includes the municipalities of Barão de Cocais, Santa Barbara, Catas Altas and São Gonçalo
downriver, with 70,000 inhabitants.

Statistical analyses, such as Pearson’s correlation and principal component analysis
(PCA) are very useful for identifying correlations and sources of heavy metals [1,7,8].
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The enrichment factor (EF) and contamination factor (CF) are methods widely used for
quantifying heavy metal contamination [1,3,9,10]. Sediment quality control guidelines
(SQCG) and potential ecological risk indexes (Er and RI) have been proposed to assess the
potential ecological risk associated with heavy metals in sediments [11,12].

Despite the large amount of mining activity in the Conceição river basin, which may
suggest major contamination in this area, this has never been studied in detail. Some
authors have analyzed sediment and water samples from the main course of the Conceição
river basin [4,5], but have not taken into account their main tributaries, and the limits used
for the basin do not correspond to those determined by the National Water Agency. Thus,
little is known about the actual trace element contamination in fluvial sediments of the
Conceição river basin.

To fill this gap, the concentrations of Al, As, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn were
determined in 51 sediment samples from the Conceição river basin, with the specific aims
to: (1) investigate the spatial distribution of elements analyzed in the region; (2) quantify
contamination levels and identify potential sources using multivariate statistical analysis
and EF, CF methods; and (3) assess potential ecological risks of trace elements by combining
SQCG, Er, and RI indexes.

2. Study Area

The Conceição River Basin (Figure 1) (43◦18’20”–43◦41’40” W, 20◦13’20”–20◦48’20” S)
has an area of approximately 783 km2, covering the municipalities of Barão de Cocais, Santa
Bárbara, Catas Altas and São Gonçalo downriver, with more than 70,000 inhabitants [13].
It has an altimetric amplitude of 1530 m, with the highest elevations over 2000 m above sea
level (Figure 1).

Located in the NE portion of Quadrilátero Ferrífero, the geology of the Conceição river
basin is defined mainly by three main lithostratigraphic units, namely, from the bottom
to the top, metamorphic complexes, the Rio das Velhas Supergroup and the Minas Super-
group, (Figure 1) [14–18]. The Rio das Velhas Supergroup consists of meta-sedimentary and
metavolcanic-sedimentary rocks, subdivided into three groups: Quebra Osso, Nova Lima
and Maquiné [19,20]. The Quebra Osso Group consists of meta-ultramafic rock bodies
around the rocks of Nova Lima Group, which occurs in the central part of the basin and
consists of metavolcanic-sedimentary rocks, mafic and ultramafic rocks, carbonate shales,
banded iron formations, metacherts and phyllites. The Maquiné Group is characterized
by meta-conglomerates at the base, overlapped by quartzite layers with different particle
size and percentage of clay minerals, which occur in the southwest portion [20]. Rocks of
the Minas Supergroup are concentrated on both borders of the Conceição river basin, high-
lighting the presence of the Caraça Group, which consists of phyllites and fine quartzites;
the Itabira group, consists of itabirites, schist, and phyllite; the Piracicaba Group, which is
composed of ferruginous quartzite hyllite; and the Sabará Group, which consists of schist
and metagraywackes [21].

Mining activities have been recorded in the study region since the 17th century, mainly
gold, iron, and manganese exploration. Around 20% of Brazil’s gold production in 2016 was
extracted from the “Córrego do Sítio” mine [22]. These deposits are of the orogenic type,
associated with hydrothermal alteration structurally controlled, dominated by silicification
and sulfide [21]. Brucutu mine, also located in the study region, is the most extensive
active iron ore mine in the state of Minas Gerais, with a production capacity of around
30 million tons [23]. The iron ore deposits are hosted within the Cauê Formation, in the
Itabira Group (Figure 1), a typical banded iron formation (BIF) of the Lake Superior type,
locally known as itabirites, are metamorphosed, and are strongly oxidized [21]. Several
other smaller mining activities are reported in the study area, including iron and gold
mines, with a total legal mining area of 170 km2 [22], about of 20% of the entire basin area,
as well as numerous illegal mines (Figure 2). In addition, the region has industries such as
steelmaking, livestock and agriculture.
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Figure 2. Location of mining concession areas for bauxite, marble, iron, manganese, and gold [22],
and main mining activities of the Conceição river basin.

3. Materials and Methods
3.1. Sampling and Chemical Analysis

Fifty-one sediment samples were collected from 3rd-order basins between 2010 and
2014, according to the methodology proposed by [24], resulting in a sample density of
one sample for every 15 km2 over the 782 km2 area of the Conceição river basin. These
locations were determined using ArcGIS software through the manipulation of topographic,
hydrographic and hypsometric, maps of the region on a 1: 25,000 scale, available from
the Minas Gerais Institute for Water Management (IGAM) and the Brazilian Geological
Survey (CPRM).

A composite sampling of the sediments was carried out along 300 to 500 m of the
channel. The subsamples were homogenized in the field according to the protocol pro-
posed by [25] and were dried at room temperature and sieved. The <63 µm fraction was
submitted for aqua regia digestion (3:1 HCl: HNO3), performed at the Laboratory of Envi-
ronmental Geochemistry, Federal University of Ouro Preto (Lgqa). Aqua regia digestion
is called partial or pseudo-total digestion and allows the extraction of elements associ-
ated with the non-silicate fraction, for trace element concentrations in chemical forms of
environmental concern [26–28]

Metal concentrations of As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Ti, and Zn in sediments were
determined by Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES),
Spectro/Ciros CCD Model. The certified reference material, LKSD-01 [29], was used
for QA/QC with results between 94 and 106% (Table 1). In addition, a duplicate was
performed for every 9 samples.

3.2. Methodologies for Trace Elements Assessment

Several methods are known to quantify and represent the degree of heavy metal en-
richment in sediments from contaminated areas [12,30,31]. Three methodologies described
in the sections below were used.
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Table 1. Recovery rates percentage for elements in the standard reference material (LKSD 01-Canada).

Value Measured
(mg kg−1)

Reference Material
LKSD 01-Canada

(mg kg−1)
Recovery Rate

As 29.4 ± 0.8 30 98.1
Cd 1.16 ± 0.02 1.2 96.7
Cr 11.3 ± 0.3 12 94.1
Ni 11.7 ± 0.4 11 106.4
Cu 45.3 ± 1.2 44 102.9
Pb 83.8 ± 2.6 84 99.7
Zn 330.7 ± 9.3 337 97.9
Mn 453.6 ± 10.5 460 98.5

3.2.1. Enrichment Factor (EF)

A widespread approach for estimating anthropogenic impacts on sediments is to
calculate an enrichment factor (EF), normalized by local background values [31–33]. This
method normalizes the concentrations of heavy metals in relation to another reference
metal, such as Fe or Al [34], since Fe and Al oxydroxides are commonly associated with
clays, which can act as sponges concentrating metals [35].

As the background Fe value in Quadrilátero Ferrífero current sediments is 196,000 ppm [6],
which is almost 5 times higher than that of the upper crust [36], and as high Fe values tend to
underestimate EF, it was therefore decided to use Al as a normalizing element, since Al has
low natural mobility in the environment and high concentration in the Earth’s crust [37,38].

EF is calculated according to the following equation:

EF =

(
Metal

Al

)
Sample(

Metal
Al

)
Background

(1)

Enrichment factors can provide tools to differentiate an anthropogenic source from a
natural process. The EF values close to 1 indicate the crustal source, whereas values greater
than 10 are related to anthropogenic sources and processes [39]. In addition, the EF can
also assist in determining the degree of metal contamination [40,41], as shows Table 6.

3.2.2. Contamination Factor (CF) and Pollution Load Index (PLI)

The CF is obtained from the quotient between the concentration of each metal and its
local reference value (background).

The PLI for a sediment sample is calculated as the geometric mean of the concentration
factors (CF) of metals [42], and environments with PLI > 1 are classified as polluted, while
PLI < 1 indicates no pollution.

CF and PLI can be calculated as follows:

CF =
Metal Concentration

Metal Background
(2)

and
PLI (sample) = n

√
CF1×CF2×CF3×CFn (3)

The CF values were interpreted as follows: CF <1 indicates low contamination;
1 < CF < 3 moderate contamination; 3 < CF < 6 considerable contamination; and CF > 6
very high contamination [12].
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3.2.3. Ecological Risk Assessment (RI)

The ecological risk index (RI) was used to assess the ecological risk of heavy metals
present in sediments [12] and can be calculated according to the equations below:

RI =
n

∑
i=1

Er (4)

Er = Ti ×
Ci

Bi
(5)

where Er is the potential ecological risk of a contaminant; Ti is the toxic metal response
(As = 10; Cu = Pb = 5; Zn = 1; Cr = Ni = 2; Cd = 30); Ci is the concentration of metal “i” in the
sediment; and Bi is the the regional reference value of metal “i” in the sediment [12,43,44].

The limits used for the interpretation of Er and RI values are expressed in Table 2.

Table 2. Er and RI Classification [12].

Er Ecological Risk
Potential RI Ecological Risk for Heavy

Metals Analyzed

Er < 40 Low RI < 150 Low
40 < Er < 80 Moderate 150 < RI < 300 Moderate

80 < Er < 160 Considerable 300 < RI < 600 Considerable
160 < Er < 320 High RI > 600 Very High

Er > 320 Very High

3.2.4. Sediment Quality Control Guidelines

Sediment quality control guidelines (SQCG) are widely used for assessing the degree
of contamination and how these concentrations can negatively affect aquatic organisms.
SQCG values have been used in numerous applications, including monitoring projects, in-
terpretation of historical data, and above all, for a detailed sediment quality assessment [1].

In this study, SQCG were used to assess the possible risks of heavy metal contam-
ination in the Conceição river basin, along with the other previously discussed indexes.
In general, SQCG consist of a threshold effect concentration (TEC), below which no ad-
verse effects on biota are expected to occur, and a probable effect concentration (PEC),
above which adverse effects on biota are expected to occur more frequently [45,46]. To
this end, the concentration of the metal in the sediment samples was compared with the
SQCG-valued for the same metal [11].

3.3. Statistical Analyses

To understand the possible sources of heavy metals and to determine the association
and differences in concentrations between different locations in the sediments, principal
component analysis (PCA) was performed.

3.4. Spatial Representation of Geochemical Data

Geochemical maps were made from the results obtained from geochemical analyses
and using the ArcGis® 10.5 software. For this, the geostatistical tool of interpolation IDW
(inverse distance weighted) was used, choosing 12 points as neighbors [6,28].

4. Results and Discussions
4.1. Distribution of Trace Elements in Sediments

The basic statistics as well as the local reference values [6] and TEC and PEC values [11]
are expressed in Table 3. In general, concentrations of all elements above local reference
values [6] are observed. Cadmium, Cr, Ni and As concentrations are, at some sites, 25, 20,
16 and 15 times higher, respectively, than the local reference values.
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Table 3. Statistical data of metal concentrations in sediments of the Conceição river basin. Local reference values (LRV) [6]
and SQCG values [11].

(mg·kg−1) Al As Cd Cr Cu Pb Zn Ni Fe Mn

Minimum 40.00 1.63 0.39 0.2 0.3 1.04 7.93 0.7 1911 0
Maximum 50,893 92.5 22.49 2582 65.9 58.6 133.4 679 453,521 22,450

Mean 18,183 13.44 2.103 230.5 23.65 22.33 54.04 62.3 177,117 3539
Median 12,841 1.63 1.004 76.9 25.12 18.67 51.1 22.6 145,369 1203

LRV 34,000 6.1 0.9 128 33 32 60 43 196,000 1766
TEC / 9.8 0.99 43.4 31.6 35.8 121 22.7 / /
PEC / 33 5 111 149 128 459 48.6 / /

Spatially, metal concentrations have different distributions (Figure 3). Arsenic, Cr
and Ni show higher levels in the central and southwest areas where gold mining activities
are located close to rural communities; the highest Fe, Mn, and Pb concentrations are
observed throughout the upper basin, where the major Fe mining activities of the region
are concentrated. The wide distribution of Cu and Zn throughout the basin area and Cd
concentration in the extreme southern portion are also observed.

Comparing the concentrations of heavy metals with other rivers in the world which
present some type of anthropogenic contamination, from domestic effluent discharge
to industrial and mining effluents (Table 4), it was observed that the maximum As
(92.5 mg·kg−1) and Cd (22.49 mg·kg−1) values found in this study are no higher than
the concentrations found in the sediments of the Danube [47] and Rimac [48] rivers, while
Cr (2582 mg·kg−1) concentrations in the Conceição river basin are much higher than those
observed in these rivers.

Table 4. Heavy metal concentrations in sediment samples from other locations worldwide and average crust (mg·kg−1).

Location As Cd Cr Cu Pb Zn References

Liaohe River, China 9.9 1.2 35.1 17.8 10.6 50.2 [49]
Luanhe River
Estuary, China 3.4–13.6 0.020–0.240 11.6–76.2 9.6–35.6 22.6–43.7 12.9–94.7 [50]

Yangtze River
Estuary, China 9.1 0.2 79.1 24.7 23.8 82.9 [51]

Tigris River, Turkey 2–8.5 0.7–3 28.4–163.4 11.2–297.2 62.3–392.4 60.1–247 [1]
Danube River, Europe 8.1–388 1.1–32.9 26.5–556.5 31.1–8088 14.7–541.8 78–2010 [47]

Axios River, Greece 1–40 1–11 39–180 14–93 11–140 42–271 [52]
South Platte River, USA 2.8–31 0.1–22 33–71 18–480 19–270 82–3700 [53]

Rimac River, Peru 21–1543 0.5–31 24–71 51–796 62–2281 160–8076 [48]
Luan River, China 2.08–12.90 0.03–0.37 28.7–152.73 6.47–178.61 8.65–38.29 21.09–25.66 [54]

Average Continental Crust 1.7 0.1 126 25 14.8 65 [36]

Arsenic, Cd, Cr, and Ni concentrations exceeded the proposed PEC values for each
element in 9%, 4%, 26% and 14% of samples, respectively. None of the samples presented
Cu, Pb, and Zn concentrations higher than PEC values; however, 31%, 28%, and 4% of
samples presented levels between TEC and PEC for these respective elements (Table 5).

Table 5. Comparison between heavy metal concentrations (mg·kg−1) of all samples with sediment
quality control guidelines and PEC ratio values.

As Cd Cr Cu Pb Zn Ni

% samples < TEC 66 47 27 69 72 96 51
% samples between

TEC-PEC 25 49 47 31 28 4 35

% samples > PEC 9 4 26 0 0 0 14
% (sample /PEC) < 0.5 76 76 33 100 100 88 63
% (sample/PEC) > 1.5 8 4 17 0 0 0 10
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A toxicity risk index was also calculated based on the ratio between sample concen-
trations and PEC values for each element. Sediment samples are expected to be non-toxic
when PEC ratios are <0.5 [11]. In contrast, when PEC ratios are >1.5, the sample is con-
sidered toxic to aquatic life. In this study, PEC ratios ranged from very close to 0 to 23.4,
which is the highest ratio observed for a 2582 mg·kg−1 Cr sediment sample located near the
Córrego do Sítio and São Bento gold mining complex (Figure 4). At this same sample site,
Ni/PEC > 1.5 was also observed, and this pattern is repeated; that is, all Ni/PEC > 1.5 sam-
ples also correspond to Cr/PEC > 1.5, and all are located on the metavolcanic-sedimentary
rocks of the Nova Lima Group (Figure 4). It is noteworthy that about 8% of samples had
PEC > 1.5 for As, 4% for Cd, and the PEC ratios of these two elements also coincide with
Cr/PEC > 1.5 samples, highlighting the wide distribution and concentration of this element
in the region. On the other hand, no sample presented PEC > 1.5 for Pb, Cu, and Zn
(Table 5).
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4.2. Enrichment Factor

The distribution of the EFs of elements is shown in Figures 5 and 6. In general, the
mean EF values are ranked as follows: (Cd) > EF (Fe) > EF (Mn) > EF (Cr) > EF (Ni) > EF
(Zn) > EF (Pb) > EF (Cu) > EF (As) (Table 6). In this same context, some authors suggest
that EF values greater than 10 are related to no crustal sources [46,54,55]. These values
are observed for Cd in approximately 27.5% of samples, and are located in the southern
portion of the basin (Figure 6), with an average value of 7.36 and a maximum value of
94.2. For Ni and Cr, EF > 10 is observed for 8% of samples at the same sampling sites, with
maximum values of 41.81 and 44.01, respectively. Manganese and Fe had EF > 10 in about
16% of samples with very similar spatial distribution, especially in the mid-northern part
of the study area (Figure 5). Although As, Cu, and Pb do not have EF values > 10, some
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authors suggest that EF values greater than 1.5 indicate the contribution, although small,
of non-crustal, or non-weathering materials as a source of these elements [46], which is
observed in Figure 5 and Table 6.
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Table 6. Percentage of samples observed in each EF class by element and basic statistical values of
sediment samples from the Conceição river basin.

Percentage of Element Samples by Class

EF Parameter As Cd Cr Cu Fe Mn Ni Pb Zn

Enrichment deficiency
(EF < 2) 100 35.3 68.6 56.9 56.9 56.9 70.6 49.01 52.94

Moderate enrichment
(2 < EF < 5) 0 21.6 23.5 41.1 19.5 9.8 19.5 50.99 35.29

Significant enrichment
(5 < EF < 20) 0 41.1 0 2 9.8 27.4 5.9 0 9.8

Very high enrichment
(20 < EF < 40) 0 0 5.9 0 11.8 5.9 2 0 2

Extremely high
enrichment (FE > 40) 0 2 2 0 2 0 2 0 0

Average Value 0.96 7.36 3.77 1.8 6.66 4.78 3.47 2.24 2.94
Maximum Value 1.95 94.2 44.01 7.34 46.22 30.69 41.81 4.98 21.99
Minimum Value 0.66 0.3 0.02 0.03 0.13 0.01 0.09 0.1 0.28

Compared to other rivers in the world, the maximum EF values obtained for metals
analyzed in this study are higher than those of the Tigris River, Turkey, where a maximum
EF value of 31.34 was observed for Cr [1], in New Zealand, where a maximum EF of 15.2
was obtained for Cd [56], and the Danube River, Europe, where a maximum EF of 100.4 for
Cd was obtained [47], close to the maximum value for this element in this study.

4.3. Contamination Factor and Pollution Load Index

The contamination factor results show that several elements have values >3 (i.e., mod-
erate to high contamination level), including 25% for As, 23% for Cd, 10% for Cr, 8% for Ni,
and 15.7% for Mn (Figure 7).
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The pollution load index (PLI) was also calculated as a function of metals discussed
above, indicating that 14 of the 51 analyzed have some type of pollution. The PLI interpola-
tion (Figure 8) shows the distribution of pollution, representing about 27% of the Conceição
river basin area. The central region of the basin, where the Córrego do Sítio and São Bento
gold mining are concentrated, showed the largest polluted area. Other zones classified
as polluted are found in the southern portion, near Capanema mine and in the northern
region, close to the Brucutu and Gongo Soco mines.
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4.4. Ecological Risk Assessment

The ER values range from 2.67 to 151.64 for As, 13.0 to 749.7 for Cd, 0.01 to 40.34 for
Cr, 0.05 to 9.98 for Cu, 0.16 to 9.15 for Pb and 0.13 to 2.22 for Zn, with mean values of 22.03,
70.10, 3.60, 3.58, 3.49 and 0.9, respectively. Based on the ecological risk potential levels
for a single metal (Table 2), risks associated with Cr, Cu, Pb, and Zn are low for the most
part. Arsenic and Cd were the metals with the highest EF values, with 23.5% of samples
presenting moderate to considerable ecological risk potential for As, and 41% of samples
ranging from moderate to very high ecological risk for Cd.

The RI values ranged from 17.1 to 760.8, with an average value of 103.7. Regarding the
proposed RI levels (Table 2), low to high ecological risk levels are observed for sediments
from the Conceição river basin. Spatially, it was observed that areas with the greatest
ecological risk potential for the analyzed metals are located in the central and southernmost
portion of the Conceição river basin, with a contour very similar to previously discussed
PLI (Figure 9).
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4.5. Multivariate Statistical Analysis

The possible anthropogenic and/or detrital sources of heavy metals in sediments of
the Conceição river basin were explored by combining the spatial distribution patterns of
metals with multivariate statistical results. The PCA reduced the number of variables to
three principal components (PCs) (Table 7, Figure 10), which explain 67.365% of the data.
PC1 explains 29.54% of the data and is largely dominated by Fe, Mn, Pb, and Zn. PC 2 is
governed by Ni, Cu, and Cr, explaining 25.21% of data variations, with it being possible to
associate element As with this factor as well. PC 3 is mainly dominated by Cd and explains
12.609% of data variation.

Table 7. PCA components.

Metals
Rotated Component Matrix

PC 1 PC 2 PC 3

As −0.11 0.35 0.02
Cd 0.14 0.01 0.84
Cr −0.03 0.92 −0.07
Cu 0.08 0.70 0.16
Fe 0.87 −0.22 −0.08
Mn 0.41 −0.06 −0.64
Ni −0.05 0.92 −0.07
Pb 0.88 −0.22 0.07
Zn 0.83 0.34 −0.08

Initial eigenvalues 2.66 2.27 1.13
% of variance 29.54 25.21 12.61
Cumulative % 29.54 54.75 67.36Geosciences 2021, 11, x FOR PEER REVIEW 15 of 18 
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Although PCA explains only 67.36% of data variation, it is possible to correlate PCs
with the lithological diversity observed in the Conceição river basin. The rocks of the Minas
Supergroup host Fe and Mn deposits, where traces of Zn and Pb are observed, which are
explained by PC1. Gold mineralization in the Rio das Velhas Supergroup rocks is often
related to the presence of metavolcanic-sedimentary rocks that present Ni, Cr, and Cu.
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On the other hand, Cd presents a wide geographical distribution in the study basin and
does not show a statistically correlated pattern with another element explained by PC3. It
is also known that Cd may be related to the use of pesticides, waste, and industrial and
domestic sewage, and is also derived from the erosive product of sulfide minerals and
rocks mineralized by hydrothermal processes [57].

5. Conclusions

The average As, Cd, Cr, Ni, and Mn concentrations in sediments of the Conceição
river basin are generally higher than the local background and average crust values. The
study reveals anomalies of selected elements where, so far, no anomalous concentrations
have been reported. According to SQCG As, Cd, Cr, and Ni are more likely to result
in harmful effects on sediment-dwelling organisms due to their high concentrations. In
general, average EF (Cd) > EF (Fe) > EF (Mn) > EF (Cr) > EF (Ni) > EF (Zn) > EF (Pb)
> EF (Cu) > EF (As) values are observed, and values for Cd, Cr, Ni, Fe, Mn, and Zn
are related to anthropic sources. The spatial EF distribution of these elements indicates
contributions from major mining activities in the region, especially Capanema, Gongo Soco,
Brucutu, Córrego do Sítio and São Bento mines. Combining EF with PCA, it is possible
to assign the same source to As, Ni, Cu and Cr. The wide Cd distribution throughout
the Conceição river basin helps to interpret its position in the PCA diagram, where this
element appears isolated, unrelated to another analyzed metals, thus suggesting distinct
sources, such as mining processes, agricultural pesticides, and/or industrial and domestic
effluent discharges. The PLI indicates that around 27% of the basin area has some level
of pollution due to the metals analyzed, concentrated in the central and southernmost
parts of the basin, areas where gold, iron, and manganese mining activities are observed,
respectively. Er and RI parameters indicate ecological risk to the environment mainly due
to the high As and Cd concentrations, with the areas of highest risk being the same as those
defined by the PLI parameter.

In general, the combination of multivariate statistical analysis and sediment con-
tamination, pollution, and quality assessment indexes allowed the distinction of three
elementary groups: Fe, Pb, Mn, and Zn (PC1), Ni, Cr, Cu and As (PC2) and Cd (PC3). The
first group is mainly related to the Minas Supergroup lithologies, with the occurrence of Fe
and Mn mineral deposits, eventually observing Pb and Zn as traces, of which the presence
of iron mining increases the concentrations; the second is explained by the metavolcanic
rocks of the Rio das Velhas Supergroup, which present Ni, Cr, and Cu as characteristic
elements, and As as a trace element related to hydrothermal gold deposits. Finally, Cd has
a wide distribution in the basin not associated with a specific lithostratigraphic unit.
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