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Abstract: Quaternary continental deposits record spatio-temporal changes of the landscape and offer
insights for drainage network analysis and paleoenvironmental reconstructions. This paper focuses
on the Turano River, a left tributary of the Velino River, which flows in the southwestern Abruzzo
area at the boundary with Lazio Region. Its basin preserves lithological and morphological field
evidence particularly suitable for reconstructing the long-term geomorphological evolution of the
Central Apennines and the drainage network development. In detail, the Turano River was investi-
gated through a drainage basin-scale analysis incorporating morphometric analysis, field mapping,
continental deposits analysis, and integrated drainage network analysis. This approach allowed
us to define a drainage network reversal process, clearly highlighted by the spatial arrangement of
continental deposits, spanning from Upper Pliocene to Holocene. The results also indicated tectonic
activity as the main factor driving incision and river inversion processes. The work contributes to
identifying and describing the main steps of the Quaternary landscape evolution of this mountainous
catchment and its morphoneotectonic framework. Therefore, it could represent a methodological tool
for multidisciplinary studies in similar mountainous catchments to support any territorial planning
activity, from large infrastructure localization (i.e., artificial dams) to sustainable land management.

Keywords: Plio-Pleistocene continental deposits; tectonics; paleo-drainage; landscape evolution;
Turano River; Central Apennines

1. Introduction

The present-day landscape results from the dynamic interaction between geological
and geomorphological processes that have contributed to its long-term evolution, providing
information on past morphogenetic events [1]. Landscape evolution appears complex
and diverse in space and time, especially in young and active mountain chains (such as
Central Apennines), mainly responding to tectonic events, geomorphological processes,
and environmental changes (i.e., volcanic events, climate oscillations, and related sea-
level changes) [2–5]. Central Apennines are an asymmetrical NW-SE-oriented mountain
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chain characterized by alternating calcareous ridges, valleys on pelitic-arenaceous deposits,
and intermontane basins filled by Quaternary continental deposits. This mountainous
environment is the result of the competition between tectonics and surface processes,
controlled by climate, eustasy, and lithology distribution [6–9]. In detail, the resulting
landscape is directly linked to a dynamic evolution that occurred in ensuing stages with
the interaction between morphostructural factors (i.e., conflicting tectonic activity and
regional uplift) and morphosculptural factors (i.e., drainage network development and
gravitational phenomena) [10–12]. The regional geological-geomorphological framework
has been widely studied by several authors [e.g., [11,13–19]]; however, the relationships
between paleo-drainage, continental deposits, and landscape dynamics are still not fully
understood, particularly with regards to the role played on drainage systems’ evolution.

Field evidence inherited from paleo-drainage (such as paleochannels and paleocur-
rents), integrated with lithological analysis, offers significant advances to decipher the
multitemporal evolution of drainage basins and floodplains [20,21]. Moreover, in tectoni-
cally active landscapes, drainage systems evolve in response to tectonic-geomorphological
changes and are highly sensitive to structural control [22–25]. The detailed analysis of
fluvial network rearrangements provides a key to understanding Quaternary landscape
evolution in these dynamic frameworks. Moreover, the multidisciplinary study of river
valleys, performed using GIS-based techniques, provides knowledge of the evolution of
the fluvial landscape and is a fundamental approach for understanding current geomor-
phological processes.

Starting from these general considerations, this work focuses on the investigation of
the drainage network evolution of the Turano River basin, located at the boundary between
Abruzzo and Lazio regions (Central Italy). It presents the results of a preliminary synthesis
and analysis of Plio-Pleistocene continental deposits, performed through detailed analysis
on essential data already available and recently verified by geological-geomorphological
field surveys. Morphometric analysis was carried out to better characterize drainage net-
work features. The resulting correlations between geological data and fluvial environment
allowed us to reconstruct the main steps of the Quaternary landscape evolution of this
mountainous catchment. The final aim of our study was the application of an integrated
and multidisciplinary methodology to improve knowledge about the relationships be-
tween paleo-drainage, continental deposits, and landscape dynamics, giving an additional
contribution to the general knowledge on the Central Apennines.

2. Study Area

The Turano River is a left tributary of the Velino River valley, located in Central
Italy at the boundary between the Lazio and the Abruzzo Apennines (Figure 1a). A
mountainous landscape characterizes the Central Apennine chain area (with reliefs up
to 2900 m a.s.l. high; i.e., Sibillini Mts., 2476 m a.s.l.; Gran Sasso Massif, 2912 m a.s.l.;
Maiella Massif, 2793 m a.s.l.), interrupted by longitudinal and transversal river valleys and
wide intermontane basins (i.e., Rieti, L’Aquila, Fucino, and Sulmona basins). The chain
gently drops down to the hilly-piedmont areas (ranging from ~600 m a.s.l. to the coastline),
towards both the Adriatic and Tyrrhenian sides (Figure 1b).

The geological framework is the result of the Neogene–Quaternary evolution of an
orogenic system (chain–foredeep–foreland) migrating eastward [26]. The major thrust
systems, NW-SE and N-S-oriented and gently dipping towards SW, were stacked on each
other, involving different structural and paleo-geographical domains (carbonate platforms
and related margins, slope, and pelagic basin) featuring different tectonic orientations.
Since the Early Pleistocene, the orogen underwent regional uplifting and, contempo-
raneously, local extensional tectonics determined the development of several tectonic
basins, mainly bordered by NW-SE-oriented and SW-dipping normal to transtensional
faults [27–31]. Furthermore, in the same period, the coincidence of volcano-tectonic and
tectonic-sedimentary events contributed to the evolution of the Tyrrhenian hinterland,
including large peri-Tyrrhenian volcanic districts and basins [32–34]. The direct combina-
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tion of tectonic processes (i.e., Miocene–Pliocene thrusting and Quaternary extensional
tectonics), regional uplift, and geomorphological processes (e.g., slope, fluvial, karst, and
glacial processes) resulted in the reorganization of drainage systems and intermontane
basins, development of several valleys with flights of fluvial terraces, and formation of the
present-day landscape [5,7,16,35,36].
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The Turano River valley is a hilly-mountainous area with a wavy and irregular mor-
phology that progressively drops down in elevation, moving towards the Rieti Plain. The
Turano River flows in a SE-NW direction along one of the main drainage divides of the
chain area, between the Fucino and the Rieti basins. Its drainage basin shows an elongated
and irregular shape, and it is spatially limited by the reliefs belonging to the Carseolani,
Simbruini, and Sabini mountain chains. The Turano dam stands out in the middle sector
of the valley and blocks the river course, giving rise to the homonymous lake. It is an
integral part of a huge complex of hydroelectric plants located along the main course of
the neighbouring Nera and Velino rivers. It was designed during the 1920s and realized in
a brief period (from 1936 to 1938). The reservoir shows a storage capacity of 163 Mm3, and
it is hydraulically connected, with a 9 km long tunnel, to the artificial Salto Lake [37,38].
Moreover, an estimation of the total reservoir sedimentation (resulting from bathymetric
surveys in 1997–2005 time) amounted to 12.296 M m−3, with a calculated annual sediment
yield of about 1.537 M m−3, assuming a linear temporal distribution [39,40].

From a geological viewpoint, the study area is characterized by the outcropping
of carbonate shelf limestones and dolomites, slope limestones, basin limestone, and
marls, pertaining to Umbria-Marchean-Sabine and Simbruini-Ernici units. Sandy-pelitic
turbidites and clayey–sandy deposits, belonging to the Apennine foredeep units, are
mainly widespread in the central sectors of the area (Figure 1b). Plio-Pleistocene deposits
broadly characterize the Turano River basin and surrounding areas, as reported by several
studies concerning the stratigraphy of the main intermontane basins of Central Apen-
nines [9,28,41–45]. These deposits are widely present along the valley bottoms, the main
slopes, and in correspondence of the main basins (i.e., Carsoli and Rieti plains) [46–51]. In
detail, lithological successions were deposited in a transitional paleogeographic domain
between the Latium-Abruzzi carbonate platform and the Umbria-Marchean-Sabine pelagic
basins. Bedrock lithologies are predominantly composed of calcareous, marly-calcareous,
detrital marly deposits, and arenaceous-conglomeratic turbiditic deposits pertaining to
Meso-Cenozoic lithological sequences (Figure 2a). Continental deposits are distinguished
in different units (Synthems and/or Supersynthems) according to their lithological charac-
teristics and related ages. They consist of sandy and silty-clayey deposits with heterometric
calcareous and arenaceous gravels, mainly referable to fluvio-lacustrine environments,
talus, scree slopes, and alluvial domains (Figure 2b).

The present-day regional tectonic setting is mainly dominated by extensional tectonics
still active in the axial part of the Apennines chain, which has been affected by both
historical and recent strong seismicity [52]. In detail, the area strongly resented the shaking
effects induced by several earthquakes with Mw up to 7.0 (e.g., Fucino 1915; L’Aquila 2009;
Central Italy 2016–2017).
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Figure 2. (a) Simplified lithological map of the Turano River Basin (modified and integrated
with [41,47]). Seismicity—CPTI15 catalogue [52] and ISIDe database [53] (black square); (b) strati-
graphic scheme of the Plio-Pleistocene continental deposits of the Turano River basin and surrounding
areas (modified from [54]). Note: (*) colour refers to Lithological unit 1. This unit includes several
sub-units: UTR, UCT, UPG, GNT, UTA, and UCR; (**) colours mainly refer to lithological unit 2. This
unit includes several sub-units: UFC, UGR, UOB, and UMS.
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3. Materials and Methods

The Turano River Basin was investigated through a drainage network analysis incor-
porating (i) morphometric analysis, (ii) field mapping, (iii) continental deposits analysis,
and (iv) integrated drainage network analysis. It was carried out using topographic
maps (1:25,000–1:5000 scale), retrieved from Open Geodata Portal of Lazio and Abruzzo
Region, and supported by the use of a 10 m TINITALY Digital Elevation Model (http:
//tinitaly.pi.ingv.it/ [55,56]-accessed on 5 September 2020). Morphometric analysis was car-
ried out in geographic information system (GIS) software (ArcMap® 10.6, ESRI, Redlands,
CA, USA). The orographic analysis was based on the definition of the main orographic
parameters, such as elevation and slope (first derivate of elevation [57]). The hydrographic
analysis was focused on the detailed definition of the drainage network features. Basin
boundaries and drainage lines were automatically derived from DEM data using “Hydrol-
ogy Tool” in ArcMap and verified by means of topographic maps and air photos (Google
Earth, 2019). According to Strahler [58], the drainage network was hierarchized, and
the azimuthal orientations of drainage lines were derived by automatic GIS procedures.
Then, according to the length of the streams (lines’ segmentation at each stream junction,
as obtained from GIS analysis—allowing the actual distribution to be better detected),
they were analyzed using frequency-weighted rose diagrams [59,60]. Field mapping was
conducted at an appropriate scale (1:5000–1:10,000), according to Italian geological guide-
lines [61] and the thematic literature concerning geological-geomorphological mapping, as
well as field-based and numerical analysis [62–68]. It focused on mapping and describing
the spatial distribution of continental deposits and tectonic elements, omitting bedrock
lithologies. According to thematic literature [28,69,70], Plio-Pleistocene stratigraphic frame-
works have been recognized as a fundamental tool to chronologically constrain geological
paleo-events, with significant implications in neotectonics and in the reconstruction of
different paleoenvironments. Therefore, a detailed analysis of Plio-Pleistocene continental
deposits of the basin and surrounding areas was performed. These deposits were defined
as UBSU, combining our lithological units with those previously recognized in the thematic
literature [41,47,50,71] and by means of stratigraphic correlations between geological sheets
of CARG Project [72–76]. The more detailed field surveying scale allowed us to clearly map
continental deposits’ outcrops and define some tectonic and stratigraphic features. Field
surveys were integrated with literature data and stratigraphic observations to constrain
and correlate continental deposits and their spatial distribution throughout the basin.

The drainage network development was discussed and analysed by realising a gener-
alized longitudinal profile segment of the present-day Turano River, projecting the spatial
arrangement of continental deposits to show the main drainage directions graphically.
Different continental deposits were mapped according to their relative height above the
bottom valley and their morphological continuity. Each feature is located along with the
profile according to its distance from the outlet, and the symbols are plotted considering
the projected angle with the valley axis [77–79]. Discretely preserved deposits’ remnants
have been correlated along the Turano River with locations displayed in the distance from
source [km] and elevations above sea level [m]. This approach allowed us to correlate the
relationships between present-day drainage network, anomalies in the distributions of
continental deposits, and tectonic elements, providing geomorphological constraints in the
timing of landscape evolution and drainage network reversal process.

4. Results
4.1. Morphometric Analysis

The study area reaches its maximum altitude on the relief of Mt. Tarino (1961 m a.s.l.),
along the southeastern divide, while to the north, the morphology slopes down gradually
towards the Carsoli Plain and the Turano Lake; then, it drops down to a minimum of
370 m a.s.l. in the southern sector of Rieti Plain.

Different physiographic sectors can be recognized in the study area, through the
analysis of landscape morphological features (such as elevation and slope; Figure 3). The

http://tinitaly.pi.ingv.it/
http://tinitaly.pi.ingv.it/
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southern sector is characterized by a typical mountainous landscape, whose orography is
dominated by the main ridges, NW-SE-oriented, representing the divide of the basin and
including the main reliefs of the area (i.e., Mt. Midia, 1737 m a.s.l.; Mt. Morbano, 1823 m
a.s.l.). Slope values’ distribution is strictly homogenous (values between 20◦ and 45◦), and
the highest values (>55◦) are concentrated along the southwestern slopes of Mt. Morbano
ridge. The central sector shows a hilly-mountainous landscape with elevations ranging
from 500 to 1500 m a.s.l., and it is dominated and interrupted by wide flat areas (Carsoli
Plain and Turano lake area) and isolated reliefs (i.e., Mt. Navegna, 1508 m a.s.l.; Mt. Cervia,
1438 m a.s.l.; Mt. Aquilone, 1337 m a.s.l.). The Carsoli Plain is roughly elliptical and shows
an altitude ranging between about 560 m and 690 m a.s.l., while the lake area is located at
530 m a.s.l. Slope values range from ~5◦, in correspondence of planar surfaces, to 35◦ in
areas of slight incline next to the Carsoli Plain, with highest values (>60◦) along the steep
slopes surrounding the lake and the minor and ephemeral stream channels, which flow in
the W-E direction.
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Figure 3. Physiographic features of the study area: (a) elevation map; (b) slope map.

The northern sector extends itself from the Turano dam towards the Rieti Plain, with
elevations ranging from 400 to 1200 m a.s.l. It shows a wavy and irregular morphol-
ogy interrupted by ridges and isolated reliefs (i.e., Mt. Macchia Porrara, 1202 m a.s.l.;
Mt. Rotondo, 841 m a.s.l.), and the meandering course of the river. Slope values range from
~5◦, in the Rieti Plain, to 30◦ in areas of a slight incline, with the highest values (>55◦) along
the steep slopes of minor stream channels, which flow in E-W direction in correspondence
of the eastern division.

4.2. Continental Deposits

Continental deposits were classified into 17 separate units spanning from Upper
Pliocene to Holocene, as graphically shown in Figure 4. These units were identified,
mapped, and correlated throughout the basin by combining lithological features, age,
depositional environment, and different behaviours towards drainage network processes.
Therefore, the outcropping deposits were distinguished as follows:
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• Upper Pliocene-Lower Pleistocene deposits (units from 2e to 2a);
• Middle Pleistocene deposits (units from 1n to 1l);
• Upper Pleistocene-Holocene deposits (units from 1i to 1a).
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The first continental depositional event corresponds to conglomeratic and sandy units,
spanning from Upper Pliocene to Lower Pleistocene, which includes deposits pertaining
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to different environments related both to the fluvial system and lacustrine environment.
Heterometric gravels and conglomerates with intercalated fine-grained sediments repre-
sent fluvial system-related deposits (Figure 5a,b). Well-sorted arenaceous to calcareous
conglomerates supported by sandy-silty matrix (Figure 5c) mainly outcrop along the mean-
dering course of the Turano River, interbedded with lacustrine sands, sandy-silty marls,
clays, and thin calcarenite layers. Massive calcareous breccias, interbedded at several strati-
graphical levels, are also present. These deposits are well preserved in the northwestern
sector of the basin moving towards the Rieti Plain, in correspondence with the wavy and
irregular morphology interrupted by the N-S-oriented C.le Cariondo-C.le Sant’Angelo
ridge and the isolated reliefs of Rocca Sinibalda; while in the southeastern sector, they
outcrop discontinuously, near Turania and the southwestern flank of Mt. Cervia. Lacustrine
environment is highlighted by the presence of fine-grained (silt and clay) sediments. These
units are organized in well-stratified alternates of grey-blue clayey-silty and yellowish
silty-sandy layers (Figure 5d). They represent the most ancient continental deposits within
the Carsoli Plain, outcropping with a certain continuity in its northwestern and central
sectors. Limited outcrops can also be observed in the northern sector of the basin, near
Mt. Rotondo.
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Figure 5. Photo documentation of continental deposits. (a) Coarse loose conglomeratic deposits—2e; (b) heterometric
gravelly and conglomeratic deposits—2c; (c) heterometric conglomeratic deposits supported by sandy-silty matrix—2b;
(d) alternances of grey-blue clayey-silty and yellowish silty-sandy deposits—2a; (e) fine to coarse grey cineritic with
heterometric carbonate clasts—1m; (f) clast-supported massive conglomeratic deposits—1h; (g) heterometric calcareous
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Numbers (2e, 2c, 2b, 2a, 1m, 1h, 1d, 1b, 1a) refer to the legend in Figure 4.
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Middle Pleistocene deposits are mainly characterized by coarse-grained (gravel and
sand) sediments, referring to fluvial and lacustrine environments. Heterometric and poorly
sorted gravels with silty-clayey or sandy levels locally outcrop in the northernmost sector
of the Carsoli Plain. A peculiar sequence of volcanic deposits, dated about 0.531 My–
0.540 My [3], shows a complex sequence of pyroclastic flow, surge, and airfall products.
These pyroclastic deposits are local products connected with the evolution of a Middle
Pleistocene intrapenninic monogenic volcanism. From a lithological viewpoint, these
deposits are mainly characterized by a rhythmic succession of coarse and fine gray cineritic
tuffs (Figure 5e) with lapilli and heterometric angular carbonate clasts, followed by reddish
tuffs characterized by a dense alternation of fine and coarse cinerite levels. Significant
outcrops are present in the southernmost sector of the plain at Bosco di Oricola. Coarse-
grained gravel deposits with sandy-silty matrix rich in volcanic femic minerals widely
outcrop in Prati area.

Upper Pleistocene-Holocene deposits are arranged in different units, mainly repre-
sented by coarse- (gravel, conglomerate, and sand) to fine-grained (silt and clay) deposits.
Each unit incorporates deposits referable to different genetic geomorphological processes
(i.e., slope, landslide, fluvial, alluvial fan, colluvial, and glacial). In detail, they are charac-
terized by gravelly deposits, with heterometric, subangular to subrounded, carbonate clasts
and sandy-silty levels, passing laterally to alluvial fan deposits consisting of clast-supported
massive conglomerates (Figure 5f). Heterometric coarse calcareous gravels, generally in
a sandy matrix, with intercalated silty sands and dark clayey-sandy silts (Figure 5g), are
widespread in the central and eastern sector (near Pereto) of the Carsoli Plain.

Holocene deposits can be distinguished in eluvial-colluvial deposits made up of sands,
silts, and gravels containing alternating brown sands and well-rounded calcareous con-
glomerates from centimetric to decimetric size; slope and landslide deposits composed
of gravel and loose heterometric conglomerates with sub-rounded calcareous clasts and
chaotic material (Figure 5h). They are widely present throughout the basin in correspon-
dence with the slopes of the main reliefs, as well as recent fluvial and alluvial deposits made
up of silts, sands, and gravels with centimetric pebbles, largely present in the Rieti Plain, in
the Turano River plain (Figure 5i), and along minor and ephemeral stream channels.

4.3. Tectonic Elements

The present-day tectonic setting is the result of different tectonic phases, occurring
from Miocene to recent times, which mainly include a Mio-Pliocene compressional phase
and a Pleistocene post-orogenic extensional phase, still active in the axial sector of Cen-
tral Apennines [80]. More in detail, the Turano River basin is located at the transition
zone between two interfering regional structural domains: the Umbro-Sabina transitional
units (with a main N-S trend) and the Latium-Abruzzi carbonate platform (with NW-SE
trends; [81]). These two structural domains are in tectonic contact along a series of thrust
fronts known in the literature as the “Olevano-Antrodoco” line [82,83]. Strike-slip tec-
tonics is also commonly documented in the study area. It contributed to defining the
complex tectonic setting, deforming the compressional tectonic units, in addition with
later extensional tectonic events. Available literature data indicate overall slip rates up
to 0.5 mm/year, in agreement with information from paleosismological analyses, fault
traces’ monitoring, as well as geological data [9,29,84]. The main tectonic elements in the
study area are represented by both thrust and normal faults, mainly arranged in N-S, E-W,
NW-SE, and NE-SW-oriented fault systems. Based on abundant geological and structural
literature information integrated with acquired field data and GIS-based techniques, it
was possible to identify and map Plio-Pleistocene faults, as previously shown in Figure 4,
distinguishing them into two categories: pre-Pleistocene and Pleistocene faults.

Pre-Pleistocene faults are mainly represented by thrust fronts, which trend roughly
N-S and NW–SE in the northern and central-southern sectors, respectively. These tectonic
elements are often not clearly observable, but their existence can be inferred through minor
in-field exposures.
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Pleistocene faults broadly characterize the southernmost sector of the basin and the
northernmost one, especially towards the Rieti Plain. In detail, the central and southern
sectors are characterized by main fault system NW-SE, N-S, and E-W-oriented, referable to
normal faults and faults of uncertain type. Important tectonic elements can be identified,
as follows: the main fault system, roughly NW-SE-oriented in the southern sectors, which
shows a complex tectonic evolution, as clearly highlighted in thematic literature [85];
the Ascrea fault, an NNW-SSE to N-S-oriented tectonic element with prevalent normal
kinematics (Figure 6a,b, [86]), whose trend can be recognized with a clear continuity in the
central sector of the basin along the southwestern flank of Mt. Cervia. Instead, the tectonic
setting of the northernmost sector is denoted by the E-W boundary fault system that offsets
the Upper Pliocene-Lower Pleistocene fluvio-lacustrine deposits towards the Rieti Plain
(Figure 6c). Several normal faults are also labelled with movements in Pleistocene times,
showing an intense tectonic fragmentation, possibly due to the superimposition of different
tectonic phases.
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4.4. Drainage System Development

The drainage system evolution is strictly related to the tectonic framework and geo-
morphological evolution of the area, allowing to define the main steps of the Quaternary
landscape evolution. The relationships between anomalies in the distributions of conti-
nental deposits, tectonic elements, and present-day drainage network provided significant
evidence and constraints in the timing of drainage system development. This latter can
be summarized in two main steps, spanning from Upper Pliocene to recent times, as
graphically shown in Figures 7 and 8.

During Upper Pliocene-Lower Pleistocene, extensional tectonics, along NW–SE to
NNW–SSE normal faults of Central Apennines, induced the development of several intra-
montane basins, outlining both an exoreic and endorheic drainage system [7].

In the Turano River basin, continental deposits are characterized by coarse-grained
(gravel and conglomerate) deposits, mainly pertaining to a fluvial system, and fine-grained
(silt and clay) deposits related to lacustrine environment. The combination of lithological
features, depositional processes, and facies data allowed us to define the presence of an
alluvial fan system and related paleolakes that filled the southern sector of the Rieti Plain
and the Carsoli Plain. Moreover, a detailed drainage network analysis showed the central
importance of paleoenvironmental settings in this first temporal step. Lithological and
paleocurrent data (derived from clast imbrication and paleochannels) showed a direct
correlation between conglomeratic deposits and alluvial fan systems and their initial
channelization towards existing morphological depressions. According to the azimuthal
orientation of paleocurrent data and the spatial distribution of continental deposits, the
drainage pattern followed the main paleocurrent direction (NW-SE trend), evolving into a
centripetal one in the Carsoli Plain.
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Furthermore, a GIS-based analysis, carried out to map and correlate continental de-
posits, pointed out that conglomeratic deposits (units from 2e to 2b; for detail, see legend
in Figure 7) preserve an overall SE-oriented sense of flow. This assumption, combined
with lithological features of lacustrine deposits outcropping at Bosco di Oricola (unit 2a;
for detail, see legend in Figure 7), allowed us to infer an initial evolution of the Turano
drainage system dominated by an NW-SE-oriented paleo-drainage, moving from the Ri-
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eti Plain towards the Carsoli Plain. During Middle Pleistocene, the dynamic interaction
between tectonic processes, regional uplifting, and geomorphological processes resulted
in a strong drainage system rearrangement. In the Turano River basin, this geological-
geomorphological framework is testified by significant changes in the depositional environ-
ments (from alluvial fan to fluvial plain) and in the paleo-drainage pattern (from NW-SE to
SE-NW). In detail, continental deposits are mainly referable to fluvial and volcanic envi-
ronments. Fluvial deposits are characterized by gravels, sands, and silts (1n and 1l units;
for detail, see legend in Figure 4). Volcanic deposits, dated about 0.531 My–0.540 My ago
(Bosco di Oricola [3] and Cupaello [87]), are characterized by a sequence of pyroclastic flow,
surge, and airfall products (unit 1m; for detail see legend in Figure 4), connected with a
Middle Pleistocene intrapenninic monogenic volcanism. The drainage system underwent
an abrupt change from an endorheic drainage system to an open through-going drainage
system outlined by river incision and the development of fluvial terraces entrenched within
the basin and surrounding areas.

The present-day drainage network mainly reflects the landscape evolution that oc-
curred from the Upper Pleistocene to recent times (Figure 8). It is strictly related to the
drainage system development that confirms the drainage network reversal process from
an NW-SE-oriented paleo-drainage to the current SE-NW trend. In detail, continental
deposits record a slight or accentuated gradient towards NW, confirming an NW sense
of flow. Furthermore, it is possible to correlate these coarse- to fine-grained deposits to
different genetic geomorphological environments (i.e., slope, fluvial, alluvial fan, and
eluvial-colluvial), pointing to a complex landscape evolution. It results from dynamic
interrelations between morphostructural factors linked to tectonic activity (compressive,
strike-slip, and extensional tectonics) and regional uplift and morphosculptural factors
linked to drainage network linear down-cutting and slope gravity processes.

The Turano River first flows in an E-W direction, receiving numerous contributions
from secondary streams and minor ephemeral channels. Then, in correspondence of the
Carsoli Plain, it flows linearly in the SSE-NNW direction, up to the Turano Lake, moving
with a meandering course towards the Rieti Plain. Its drainage basin covers an area of
~447 km2, showing different types of drainage patterns: a mainly trellis drainage pattern in
the southernmost mountainous sector and a generally sub-dendritic one in the remaining
portions. Moreover, its hierarchical drainage system organization is characterized by
drainage lines ranging from the first to seventh order, according to [58] (Figure 8).

Frequency-weighted rose diagrams of first- and second-order streams mainly show an
SW-NE direction; starting from the third order, the main trends are NW-SE (third, fourth,
and fifth); the sixth and seventh order streams mainly reflect the present-day Turano River
sense of flow, showing an average N-S azimuthal orientation with directions ranging from
SW-NE to SE-NW trends (Figure 8).

5. Discussion

The study of drainage network rearrangements provides the key to understand-
ing past and future landscape evolution. Drainage network evolves as a dynamic sys-
tem, adjusting itself in response to perturbations in the landscape, generally associated
with tectonic activity [88,89]. Continental deposits record such spatio-temporal perturba-
tions; hence, Plio-Pleistocene stratigraphic frameworks have been generally recognized
as fundamental elements to constrain geological paleo-events chronologically. Even if
the reconstruction of ancient drainage systems is often hampered by the scattered distri-
bution of poorly preserved outcrops of continental deposits, integrated geomorpholog-
ical and morphometric investigations offer insights for drainage network analysis and
paleoenvironmental reconstructions.

Previous studies have been carried out to reconstruct lithostratigraphic features,
tectonic setting, and paleoenvironmental evolution of this mountainous sector of Cen-
tral Apennines. Most aimed to characterize and describe the Plio-Pleistocene continen-
tal sequences in their entire thickness, disposition, and horizontal and vertical geome-
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tries [50,90–95]. However, existing relationships between paleo-drainage, continental de-
posits, and landscape evolution are still not completely understood. Here, we attempted to
understand the impact on changes in fluvial behaviour and drainage system evolution of
the Turano River basin (Central Apennines). Drainage network evolution was investigated
through a preliminary synthesis and analysis of continental deposits based on essential
data already available, recently verified by geological-geomorphological field surveys.
An integrated GIS-based drainage network analysis allowed us to correlate geological
data and fluvial environment in order to reconstruct the main steps of the Quaternary
landscape evolution.

The generalized Turano River longitudinal profile of Figure 9 summarizes continental
deposits’ spatial and temporal arrangement, spanning from Upper Pliocene to Holocene.
This simplified reconstruction was performed by plotting the discretely preserved spatial
distribution of continental deposits from the upper stream toward the Rieti Plain. These
deposits were correlated along the Turano River with locations displayed in the distance
from source [km] and elevations above the sea level [m]. This approach allowed us to
identify and recognize two different drainage directions over time.
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This simplified reconstruction was performed plotting the spatial arrangement of continental deposits from the uppermost
stream, near Mt. Tarino (see also Figure 4), to the Velino River junction, within the Rieti Plain.

Taking into account the continental deposits’ spatial distribution (as graphically shown
in Figure 4), the upper segment of the paleo-drainage basin located at the northern sector of
the Turano River basin presents a wide distribution and good preservation of old alluvial
units, dating back to the upper Pliocene, while the lower segment preserves younger fluvial
and alluvial units, dating back to the Middle to lower Pleistocene. This preservation pattern
is contrast to the normal trend of deposition, usually accumulating in the down-stream
segment, offering valuable suggestions to delineate the drainage network reversal process.
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Continental deposits can be generally divided into an NW-SE-oriented drainage
direction, testifying a paleo-drainage towards the Carsoli Plain, and an SE-NW-oriented
drainage direction, describing the present-day drainage towards Rieti Plain. Continental
deposits related to the SE sense of flow can be grouped into different units, including
fluvial (from 2e to 2b; for detail, see legend in Figure 4) and lacustrine deposits (2a; for
detail, see legend in Figure 4). On the other hand, continental deposits related to NW
sense of flow include 12 units (from 1n to 1a; for detail see legend in Figure 4), mainly
referable to different depositional environments (i.e., slope, landslide, alluvial fan, eluvial-
colluvial, glacial, and volcanic). These deposits mainly consist of heterometric calcareous
and arenaceous gravels, conglomerate, and breccias with sandy and silty levels.

Considering lithological features and paleocurrent data, it was possible to perform
a detailed investigation of the drainage network evolution. In detail, Upper Pliocene-
Lower Pleistocene conglomeratic deposits preserve an overall SE-oriented sense of flow.
An analysis of clasts imbrications, indicating S-oriented paleocurrents, combined with
lithological features of lacustrine deposits outcropping at Carsoli Plain, allowed us to
infer an initial evolution of the Turano drainage system dominated by an NE-SW-oriented
paleo-drainage, moving from the Rieti Plain towards the Carsoli Plain. From Middle
Pleistocene to Holocene, continental deposits outcrop with a general NW direction, in the
same flow direction of the present day, suggesting that tectonic control acted as the main
factor driving drainage inversion in the area. Morphological evidence of this latter control,
slightly marked by simplified knickpoints, can also be derived by the spatial localization
of the main Pleistocene fault systems (Figure 9) along the generalized longitudinal profile
segment present-day Turano River.

The Turano River is a typical example of drainage network reversal, as clearly high-
lighted by analyzing the spatial arrangement of continental deposits. A thick continental
deposits layer, which is found in the Carsoli Plain, can suggest an opposite paleo-drainage
network. The three oldest units of continental deposits refer to an alluvial fan environment
belonging to a Paleo-Turano River.

In fact, until the late Lower Pleistocene, the drainage direction followed an NW-SE
trend towards the Carsoli Plain filled by a paleolake, as evidenced by the presence of
lacustrine deposits. Then, the drainage changed, flowing towards the Rieti Plain, with an
NW direction [7,47,92]. In Lower-Middle Pleistocene, owing to the rapid tectonic uplift that
affected the entire chain area of the central Apennines [41], there was a substantial increase
in linear erosion of the rivers, with a rapid deepening of the valley engraving [4]. Probably
owing to regressive erosion, the Paleo-Turano River reaches the banks of the Carsoli Plain,
opening a passage in the northern area [47], causing the emptying of the paleolake and
leading to the development of a drainage network flowing in an NW-direction. In fact,
from Upper Pleistocene to recent times, continental deposits record a slight or accentuated
gradient towards NW, confirming an NW sense of flow.

In conclusion, the resulting correlations and analysis allowed us to confirm a south-
ward flow of an earlier Turano River, opposite to the present northward gradient, providing
better geomorphological constraints in the timing of this mountainous landscape evolution,
clearly interested by a significant drainage network reversal. The adopted multidisciplinary
approach allowed us to identify and describe the main steps of the Plio-Pleistocene land-
scape evolution of the Turano River basin. Moreover, this integrated approach (involving
continental deposits analysis and geological-geomorphological field surveys) allowed
us to better delineate the geomorphological and morphoneotectonic framework of the
study area useful to support future territorial planning activities, especially for the Turano
dam’s management.

6. Conclusions

Morphogenetic study of river valleys provides knowledge of the evolution of the
fluvial landscape, and it is a practical approach to understand current geomorphological
processes. Continental deposits and morphological field evidence inherited from paleo-
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drainage record helpful information on landscape changes, offering insights for drainage
network analysis and paleoenvironmental reconstructions. Investigating such fluvial
landscapes is an opportunity to understand the Quaternary geomorphological dynamics
and the processes that could determine drainage network rearrangements. The Turano
River basin, located in the southwestern Abruzzo area at the boundary with Lazio Re-
gion, preserves lithological evidence particularly suitable for reconstructing the long-term
geomorphological evolution of the Central Apennines.

The main aim of this work was to define the relationships between the present-day
drainage network, the spatial distribution of continental deposits, and tectonic elements,
providing geomorphological constraints in the timing of landscape evolution. In detail,
a drainage basin-scale analysis that incorporates morphometric analysis, field mapping,
continental deposits analysis, and integrated drainage network analysis was performed.
This methodological approach allowed us to better define the drainage network reversal
process, which characterized this mountainous landscape as clearly highlighted by the
spatial arrangement of continental deposits, spanning from Upper Pliocene to Holocene.
Several previous thematic studies [4,7,11,12,19,36] widely describe both regional uplift and
active extensional deformation with large-scale geological-structural, geomorphological,
and tectonic analysis. According to these works, tectonic activity and regional uplift, which
affected the entire chain area of the central Apennines, contributed as factors driving
incision and river inversion in the landscape evolution of the area. The work contributes
to understanding the geomorphological evolution of the area to identify and describe the
main steps of the Plio-Pleistocene landscape evolution of the Turano River basin and its
morphoneotectonic framework. Finally, it represents a scientific and methodological tool
for multidisciplinary studies (incorporating Quaternary geology, applied geomorphology,
and morphotectonics) in similar mountainous catchments, useful to support any territorial
planning activity, from large infrastructure localization (i.e., artificial dams) to sustainable
land management.
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