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Abstract: Given its apparent limitations, various attempts have been made to develop alternative
testing approaches to the standardized rolling-thread plastic limit (PLRT) method (for fine-grained
soils), targeting higher degrees of repeatability and reproducibility. Among these, device-rolling
techniques, including the method described in ASTM D4318/AASHTO T90 standards, based on
original work by Bobrowski and Griekspoor (BG) and which follows the same basic principles
as the standard thread-rolling (by hand) test, have been highly underrated by some researchers.
To better understand the true potentials and/or limitations of the BG method for soil plasticity
determination (i.e., PLBG), this paper presents a critical reappraisal of the PLRT–PLBG relationship
using a comprehensive statistical analysis performed on a large and diverse database of 60 PLRT–
PLBG test pairs. It is demonstrated that for a given fine-grained soil, the BG and RT methods produce
essentially similar PL values. The 95% lower and upper (water content) statistical agreement limits
between PLBG and PLRT were, respectively, obtained as −5.03% and +4.51%, and both deemed
“statistically insignificant” when compared to the inductively-defined reference limit of ±8% (i.e.,
the highest possible difference in PLRT based on its repeatability, as reported in the literature).
Furthermore, the likelihoods of PLBG underestimating and overestimating PLRT were 50% and 40%,
respectively; debunking the notion presented by some researchers that the BG method generally tends
to greatly underestimate PLRT. It is also shown that the degree of underestimation/overestimation
does not systematically change with changes in basic soil properties; suggesting that the differences
between PLBG and PLRT are most likely random in nature. Compared to PLRT, the likelihood of
achieving consistent soil classifications employing PLBG (along with the liquid limit) was shown to
be 98%, with the identified discrepancies being cases that plot relatively close to the A-Line. As such,
PLBG can be used with confidence for soil classification purposes.

Keywords: fine-grained soil; liquid limit; plastic limit; soil classification; statistical agreement limit;
thread-rolling device

1. Introduction

Since their inception in the early 1910s, the liquid limit (LL) and plastic limit (PL)
remain among the most commonly specified soil parameters in geotechnical engineering
practice. These limits, originally introduced by Atterberg [1,2] and later standardized
for use in geoengineering applications by Terzaghi [3,4] and Casagrande [5,6], describe
changes in the consistency states (and hence mechanical behavior) of fine-grained soils
with respect to variations in water content. The LL and PL, together with their arithmetic
difference, the plasticity index (PI), have been successfully incorporated into the soil
mechanics framework, serving a variety of useful purposes, including their adoption for
routine soil classification purposes [7–10], as well as their widespread applications for
predicting useful soil properties (e.g., compactability, permeability, compressibility, and
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shear strength) for performing preliminary geotechnical designs [11–25]. Both the LL and
PL tests are conventionally performed on the soil fraction passing the 425-µm sieve size.

The LL is conceptually defined as the water content at which fine-grained soil transi-
tions from the liquid state to the plastic state. The LL magnitude is strongly dependent
on the soil gradation, composition, mineralogical properties (of the clay fraction), and
the quantity of interlayer water in the case of expanding clay minerals such as montmo-
rillonite [26–28]. The Casagrande percussion-cup (PC) and the fall-cone (FC) tests are
standard methods conventionally employed for LL determinations of fine-grained soils;
the former being the preferred method in the USA [29,30], while the latter is favored in
the UK [31,32], the Eurocodes, and elsewhere, including Australia [33]. Since no sudden
definite change in behavior can be associated with the transition from liquid to plastic
consistency states, the LL is determined as the water content corresponding to an arbitrarily
chosen (low) shear strength on a continuum of ever-weakening behavior with increasing
water content [34]. As such, the designation of the LL for a given fine-grained soil is
somewhat arbitrary, with its value also dependent on the measurement technique (PC or
FC apparatus), the definition for LL determination, and the testing standard employed [34].
For instance, the standard PC test (ASTM D4318 [30]) involves manipulating the water
content of a soil specimen such that 25 blows of the specimen cup would be required for the
closure of a standard groove (formed by drawing a standard grooving tool through the soil
paste specimen on a line joining the highest point to the lowest point on the rim of the cup)
over a length of 13 mm. As it is almost impossible to achieve the required groove-closure
condition at exactly 25 blows, several trials at varying water contents w and corresponding
numbers of blows Nb (for groove-closure) are performed, and the results are plotted in
the semi-logarithmic space of w:log10Nb, from which the water content corresponding to
Nb = 25, defined as the LLPC, can be determined from the fitted best-fit line. Following the
British Standard (BS) FC test (BS 1377–2 [31]), the LL is defined as the water content for
which an 80 g–30◦ cone, with its tip just contacting the top surface of the soil paste specimen,
is able to penetrate into the specimen to a depth of d = 20 mm before coming to rest; this
state equating to an undrained shear strength value of approximately 1.7 kPa [14,34,35].
Data from several trials for a range of water contents covering d = 15–25 mm are plotted
in the arithmetic space of w:d, from which the water content corresponding to d = 20 mm,
defined as the LLFC following the BS, can be established.

The PL of a fine-grained soil material is recognized as the water content at which it
transitions from plastic (or ductile) to brittle consistency. The rolling-thread (RT) method
is conventionally employed for PL determination of fine-grained soils. Following the RT
test, the water content at which a uniform thread formed from the soil, with a starting
diameter of about 6 mm, first begins to crumble (likely due to air entry or cavitation
within the soil thread [36]) when manually rolled out (by hand) on a glass plate to about
3.0 mm [31,32,37] or 3.2 mm [30,38] in diameter is defined as the PLRT. Unlike the LL,
which can be determined with confidence (with the FC test arguably producing higher
degrees of repeatability and reproducibility), the standard (hand rolling) RT test can be
associated with high degrees of subjective variability—that is, measuring the PLRT (by
hand-rolling) can be overly dependent on operator performance and judgments [39–44].

Given its apparent limitations, various attempts have been made to develop alternative
testing approaches to the standard hand-rolling PLRT method, targeting higher degrees of
repeatability and reproducibility. Most suggestions in this context are essentially strength-
based methods, executed using FC or reverse-extrusion devices, which mainly work on
the premise of associating the PLRT with a set value of undrained shear strength (a more
detailed review of these methods is given in O’Kelly et al. [34], Vardanega and Haigh [45]
and O’Kelly [46,47]). However, several studies have demonstrated that when considering
a range of different fine-grained soils, the PLRT (onset of brittleness) does not correspond
to a fixed value of undrained shear strength [22,34,36,37,48–50]. In other words, while
strength-based “PL” determination methods arguably benefit from higher degrees of
repeatability and reproducibility, they cannot replicate the standard PLRT testing condition,
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which assesses soil plasticity (toughness) behavior/properties. Attempts to improve on the
standard hand-rolling PL test itself, particularly in terms of reproducibility by minimizing
the uncertainties associated with the rolling out (by hand) procedure (i.e., rate of rolling,
the hand pressure and/or the initial and final thread diameter criteria), include various
device-rolling techniques [51–58]. These methods mainly follow the same basic principles
as the standard (hand-rolling) RT test. In particular, the device-rolling technique proposed
by Bobrowski and Griekspoor (BG) [52] (a thread-rolling device consisting of two acrylic
flat plates covered with unglazed paper), which was subsequently adopted as an alternate
PLRT determination method in the USA (by ASTM D4318 [30] and AASHTO T90 [38];
see Figure 1), appears to be highly underrated and hence demands further attention. In
performing the ASTM/AASHTO rolling device method for PL determination (i.e., PLBG),
downward force is simultaneously applied (via the rigid top plate) to the soil thread
with the back and forth rolling motion, until the top plate comes into contact with the
3.2-mm-deep side rails. Apart from this standardized method, none of the other proposed
device-rolling techniques have been adopted more widely. Note that, in addition to
device-rolling techniques, other methods developed based on the “onset of brittleness”
concept for improved PL determination include the likes of the indentation test [59] and
the thread-bending technique [60–62].
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Figure 1. Schematic illustration of the ASTM/AASHTO rolling device for PL determination (modified
from [30]).

Further, there seems to exist a general belief among some researchers that the PL
deduced using the BG-type rolling device (i.e., PLBG) generally tends to (greatly) underesti-
mate the PLRT; possibly due to heterogeneity of the soil thread caused by the contacting
paper during the rolling out procedure (i.e., the outside of the soil thread becoming drier
than its core) [58,63,64]. Although the published results to support this claim (i.e., typically
PLBG < PLRT) are limited, and mainly derived from statistical analyses performed on
small (and rather uniform) datasets, this preconception appears to have hindered the more
widespread acceptance of the PLBG testing approach (as presented in ASTM D4318 [30] and
AASHTO T90 [38] standards), as well as its adoption in other PL determination standards;
this alone highlighting the need for further investigations.

To better understand the true potentials and/or limitations of the ASTM/AASHTO
device-rolling technique for soil plasticity determination, this study presents a critical
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statistical appraisal of the PLRT–PLBG relationship (employing the largest and most diverse
PLRT–PLBG database compared to those previously investigated in the literature). The
validity of the PLBG parameter is investigated by quantifying and critically examining its
statistical level of agreement with the standard PLRT. An attempt, for the first time, is also
made to assess the accuracy of PLBG in the context of soil classification (based on the BS
soil plasticity-chart framework).

2. Database of PLRT–PLBG Tests

A large and diverse database of 60 PLRT–PLBG test results, conducted on 60 fine-grained
soils (obtained from natural deposits, as well as commercially produced kaolinite- and
bentonite-based blends), was assembled to examine the level of agreement between the
PLRT and PLBG measurements. A detailed description of the assembled database is presented
in Table 1. The database consisted of 51 PLRT–PLBG data pairs sourced from the research
literature (designated by Test IDs S1–S51) [52,63–65], as well as original test results of nine
fine-grained soils investigated by the authors (Test IDs S52–S60). As demonstrated in Table 1,
the database soils, in addition to their geographical diversity, cover reasonably wide ranges
of surface texture, plasticity and mineralogical properties—that is, f clay (<2 µm) = 8.9–59.5%,
f silt (2–75 µm) = 7.0–72.7%, LLFC = 24.6–141.1%, PLRT = 11.9–53.4%, PIFC-RT = LLFC − PLRT
= 8.1–101.6%, and AFC = PIFC-RT/f clay = 0.49–1.85 (where f clay, f silt, LLFC, PLRT, PIFC-RT
and AFC denote clay content, silt content, BS fall-cone liquid limit, standard rolling-thread
plastic limit, plasticity index deduced from the FC and RT test results, and soil activity
index, respectively). Since the assembled database employed in this investigation is, to
date, the largest and most diverse of its kind, it provides a solid basis for a critical statistical
appraisal of the PLRT–PLBG relationship.

Figure 2 illustrates the database soils, with the exception of S18–S22 (for which the
LLPC or LLFC values were not reported), plotted on the BS soil plasticity chart. As demon-
strated in this figure, all of the investigated soil materials plot below the U-Line, indicating
that the assembled database conforms to the general correlation framework proposed by
Casagrande [66]. Following the BS soil plasticity-chart classification framework, employing
their LLPC or LLFC and PLRT values, the database soils consisted of 46 clays and 9 silts
(note that soils S18–S22 could not be classified since their LLPC or LLFC values were not
reported), covering all of the five soil plasticity level classes defined in BS 5930 [9].
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Figure 2. The database soils (excluding S18–S22 for which the LLPC or LLFC values were not reported)
plotted on the standard soil plasticity chart, as per BS 5930 [9].
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Table 1. Detailed description of the compiled database of PLRT–PLBG test results.

Source Source ID/Description New ID f clay (%) f silt (%) LLPC (%) LLFC (%) PLRT (%) PLBG (%) PIPC-RT (%) PIFC-RT (%) APC AFC

[52]

1 S1 — — 17.0 — 13.0 13.0 4.0 — — —
2 S2 — — 24.0 — 16.0 14.0 8.0 — — —
3 S3 — — 27.0 — 17.0 15.0 10.0 — — —
4 S4 — — 33.0 — 17.0 17.0 16.0 — — —
5 S5 — — 33.0 — 13.0 13.0 20.0 — — —
6 S6 — — 41.0 — 14.0 13.0 27.0 — — —
7 S7 — — 49.0 — 14.0 14.0 35.0 — — —
8 S8 — — 56.0 — 17.0 16.0 39.0 — — —
9 S9 — — 63.0 — 19.0 18.0 44.0 — — —

[63]

Sample A S10 — — — 73.1 47.1 43.4 — 26.0 — —
Sample B S11 — — — 56.9 29.8 29.0 — 27.1 — —
Sample C S12 — — — 64.5 30.9 31.8 — 33.6 — —
Sample D S13 — — — 45.5 30.0 27.0 — 15.5 — —
Sample E S14 — — — 44.6 23.2 21.0 — 21.4 — —
Sample F S15 — — — 74.4 51.1 45.0 — 23.3 — —
Sample G S16 — — — 88.1 45.2 38.0 — 42.9 — —
Sample H S17 — — — 71.6 34.9 45.0 — 36.7 — —

[64]

Agronomy Farm S18 13.0 63.0 — — 23.0 20.0 — — — —
Lalmai S19 26.0 40.0 — — 21.1 21.0 — — — —
Gaghra S20 28.4 66.0 — — 25.3 24.3 — — — —
Bhaluka S21 43.0 38.0 — — 27.8 26.5 — — — —

Bhoraduba S22 44.0 36.0 — — 29.9 30.0 — — — —

[65]

DK2 S23 22.0 7.0 41.4 42.0 20.9 23.1 20.5 21.1 0.93 0.96
DK3 S24 28.9 8.8 48.5 46.6 20.2 22.5 28.3 26.4 0.98 0.91
DK4 S25 44.6 12.2 62.0 60.4 25.3 28.9 36.7 35.1 0.82 0.79
CH1 S26 22.0 53.7 35.6 37.2 20.6 19.7 15.0 16.6 0.68 0.75
CH2 S27 48.1 35.8 78.7 77.4 53.4 54.3 25.3 24.0 0.53 0.50
CH3 S28 59.5 36.6 71.3 70.3 36.3 33.7 35.0 34.0 0.59 0.57
CH4 S29 16.7 29.6 29.1 30.6 19.6 19.3 9.5 11.0 0.57 0.66
CH5 S30 26.6 41.3 38.9 39.3 18.9 19.3 20.0 20.4 0.75 0.77
DE1 S31 22.0 25.4 30.4 32.9 20.4 18.9 10.0 12.5 0.45 0.57
DE2 S32 13.7 25.9 27.0 27.5 19.4 20.3 7.6 8.1 0.55 0.59
DE3 S33 50.1 26.5 51.3 50.1 18.3 18.5 33.0 31.8 0.66 0.63
DE4 S34 23.5 33.3 39.0 38.6 22.5 23.8 16.5 16.1 0.70 0.69



Geosciences 2021, 11, 247 6 of 15

Table 1. Cont.

Source Source ID/Description New ID f clay (%) f silt (%) LLPC (%) LLFC (%) PLRT (%) PLBG (%) PIPC-RT (%) PIFC-RT (%) APC AFC

[65]

BE1 S35 13.8 60.1 30.9 31.6 19.3 19.3 11.6 12.3 0.84 0.89
BE2 S36 13.3 65.2 30.1 31.7 17.3 19.0 12.8 14.4 0.96 1.08
BE3 S37 10.5 69.7 29.6 30.6 20.0 20.2 9.6 10.6 0.91 1.01
BE4 S38 12.0 67.3 29.0 30.5 19.3 20.0 9.7 11.2 0.81 0.93
PK1 S39 17.9 28.4 27.5 29.5 17.3 17.2 10.2 12.2 0.57 0.68
PK2 S40 24.4 72.7 38.3 40.9 24.0 23.0 14.3 16.9 0.59 0.69
PK3 S41 46.3 44.7 51.6 51.1 20.9 20.6 30.7 30.2 0.66 0.65
PK4 S42 21.8 26.8 23.0 24.6 11.9 12.6 11.1 12.7 0.51 0.58
PK5 S43 31.0 30.5 38.4 39.9 15.9 18.7 22.5 24.0 0.73 0.77
PK6 S44 30.8 40.2 37.4 39.3 16.5 19.3 20.9 22.8 0.68 0.74
UA1 S45 22.2 27.9 35.3 36.2 22.0 21.8 13.3 14.2 0.60 0.64
UA2 S46 8.9 9.4 35.6 36.3 22.3 24.2 13.3 14.0 1.49 1.57
GH S47 41.4 8.3 61.0 59.2 14.8 13.7 46.2 44.4 1.12 1.07
CN1 S48 28.6 36.3 40.6 40.8 23.2 22.3 17.4 17.6 0.61 0.62
CN2 S49 12.0 51.0 43.3 43.2 21.3 21.4 22.0 21.9 1.83 1.83
NO S50 23.6 36.0 46.6 45.9 26.2 26.2 20.4 19.7 0.86 0.83
JP S51 33.6 26.3 50.7 48.6 30.7 30.9 20.0 17.9 0.60 0.53

Present
Study

Kilkenny, South Australia S52 43.0 37.0 — 34.3 13.1 14.0 — 21.2 — 0.49
Inkerman, South Australia S53 37.0 32.0 — 39.3 14.4 12.6 — 24.9 — 0.67

Kaolinite S54 49.8 49.4 — 41.4 13.6 13.3 — 27.8 — 0.56
Kaolinite + 5% Bentonite S55 50.4 48.7 — 48.7 16.2 17.4 — 32.5 — 0.64

Kaolinite + 10% Bentonite S56 51.0 48.1 — 59.9 19.0 22.1 — 40.9 — 0.80
Kaolinite + 15% Bentonite S57 51.7 47.4 — 69.3 22.7 20.3 — 46.6 — 0.90
Kaolinite + 20% Bentonite S58 52.3 46.7 — 84.3 27.7 24.4 — 56.6 — 1.08
Kaolinite + 30% Bentonite S59 53.6 45.3 — 107.4 34.8 36.0 — 72.6 — 1.35
Kaolinite + 40% Bentonite S60 54.8 44.0 — 141.1 39.5 35.6 — 101.6 — 1.85

Note: f clay and f silt = clay (<2 µm) and silt (2–75 µm) contents, respectively; LLPC and LLFC = percussion-cup and BS fall-cone liquid limits, respectively; PLRT and PLBG = standard thread-rolling (by hand) and
device-rolling plastic limits, respectively; PIPC-RT = plasticity index deduced from the PC and RT tests (=LLPC − PLRT); PIFC-RT = plasticity index deduced from the FC and RT tests (=LLFC − PLRT); and APC or
AFC = soil activity index (defined as the PI-to-clay content ratio and hence calculated as APC = PIPC-RT/f clay or AFC = PIFC-RT/f clay).
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3. Results and Discussion
3.1. Statistical Appraisal of the PLRT–PLBG Relationship

Figure 3a illustrates the variations of PLRT against PLBG for the compiled database of
N = 60 fine-grained soils. As is evident from this figure, the two PL measurement methods
are strongly correlated with each other, exhibiting a linear relationship in the form of
PLRT = 1.01 PLBG − 4.66 × 10−2 (with R2 = 0.943), essentially suggesting that PLRT ≈ PLBG.
The average error associated with the PLRT ≈ PLBG trendline shown in Figure 3a was
quantified by the mean absolute percentage error (MAPE calculated by Equation (1) [67])
and the normalized root-mean-squared error (NRMSE calculated by Equation (2,3) [68]),
which resulted in MAPE = 6.5% and NRMSE = 5.9% (note that MAPE and NRMSE are
both dimensionless quantities expressed in %). These values, which are lower than the
usual 5–10% reference limit, indicate an average variation of 5.9–6.5% between the PLRT
and PLBG measurements.

MAPE =
1
N

N

∑
n=1

∣∣∣∣∣PLRT(n) − PLBG(n)

PLRT(n)

∣∣∣∣∣× 100% (1)

NRMSE =
RMSE

PLRT(max) − PLRT(min)
× 100% (2)

RMSE =

√√√√ 1
N

N

∑
n=1

(
PLRT(n) − PLBG(n)

)2
(3)

where RMSE = root-mean-squared error (in % water content); PLRT(max) and PLRT(min)
= maximum and minimum of PLRT data, respectively; n = index of summation; and
N = number of investigated PLRT–PLBG test pairs (N = 60).
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Figure 3. Comparison of PLRT and PLBG for the compiled database of N = 60 fine-grained soils: (a) PLRT–PLBG correlation
plot; and (b) PLBG–PLRT Bland–Altman plot. Note: LAL and UAL denote lower and upper agreement limits, respectively.

The excellent graphical correlation (high R2) and low MAPE or NRMSE values ob-
tained for the PLRT ≈ PLBG trendline outlined in Figure 3a would normally lead to accept-
ing the PLBG as a suitable replacement for the PLRT. However, the statistical “limits of
agreement” between these two PL measurement methods should also be quantified (and
critically examined) to better perceive the true implications of the PLBG parameter for rou-
tine geoengineering applications, including its potential use in the many well-established
empirical correlations reported between the PLRT or the PLRT-deduced PI and other geome-
chanical parameters (e.g., shear strength, compressibility, permeability, and compactability).
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This was achieved by performing the Bland–Altman (BA) analysis [69], which involves
developing an x:y scatter plot, with the y-axis representing the difference between the two
measurement techniques (i.e., DBA = PLBG − PLRT) and the x-axis showing the average of
these measurements (i.e., MBA = [PLBG + PLRT]/2). Following the BA framework, the 95%
lower and upper agreement limits between the PLBG and PLRT can be, respectively, defined
as LAL = µD − 1.96 σD and UAL = µD + 1.96 σD (where µD and σD denote the arithmetic
mean and standard deviation of the DBA = PLBG − PLRT data, respectively). Note that
the calculated LAL and UAL must be examined against an inductively-defined limit, of-
ten selected as the highest possible (water content) difference/variation in the standard
measurement method (i.e., PLRT) based on its repeatability [65]. A review of the research
literature indicates that the maximum variation in the PLRT for a given fine-grained soil
(accounting for measurement variations across multiple operators) can be conservatively
taken as ±8% [34]. Accordingly, this water content limit was considered as a point of
reference to examine the LAL and UAL obtained in the present investigation.

The BA plot for the N = 60 pairs of PLBG–PLRT data is provided in Figure 3b. The
mean of differences between PLBG and PLRT was shown to be µD = −0.26%, implying that
the PLBG is on average 0.26% (water content) lower than the PLRT. The 95% agreement
limits between PLBG and PLRT were calculated as LAL = −5.03% and UAL = +4.51%,
indicating that 95% of the differences between these two PL measurement methods lie
between these lower and upper water content limits, both of which are less than (in terms
of magnitude) the chosen reference limit (for the present investigation) of ±8%. This
implies that the BG-based and RT methods are expected to produce similar PL values
for a given fine-grained soil investigated under identical testing conditions—that is, the
ASTM/AASHTO rolling device method can be deemed as a reliable PL determination
technique capable of alleviating the labor, time and possibly also some of the variability
associated with the conventional RT test. Referring to Figure 3b; those data pairs that plot
above/below the 95% agreement limits (which may count as potential outliers) were asso-
ciated with DBA = PLBG − PLRT = −6.1%, −7.2% and +10.1% (for S15–S17, respectively),
the magnitudes of which are still less than (or on par with) the reference water content
limit of ±8%.

Referring to Figure 3b; the likelihoods of underestimating (i.e., PLBG < PLRT) and
overestimating (i.e., PLBG > PLRT) the PLRT can be calculated as 50% and 40%, respec-
tively; allowing one to simply debunk the notion presented by some researchers that
the BG method generally tends to greatly underestimate the PLRT [58,63,64]. To further
examine this critical aspect, and to investigate whether the degree of underestimation or
overestimation is systematically related to fundamental soil properties (i.e., plasticity level
class, clay and silt contents, and soil mineralogy), the PLBG-to-PLRT ratio is plotted against
LLPC or LLFC, f clay, f silt, and APC or AFC (see Figure 4). As is evident from this figure, the
PLBG/PLRT ratio does not systematically increase or decrease with changes in soil type (or
behavior); suggesting that the differences between the PLBG and PLRT measurements are
most likely random in nature.

In view of the potential outlier DBA (= PLBG − PLRT) values obtained for S15–S17 (all
classified as silt with very high plasticity, MV, as per BS 5930 [9]), one may postulate that
the BG-based method is potentially less workable for less-cohesive soils (or silts). However,
given that the bulk of the compiled database consisted of clays, and the fact that other
silts within the database (i.e., S1, S10, S13, S27, S28 and S51) produced acceptable DBA
values (i.e., |DBA| < 8%), this early postulation should be taken with caution, demanding
further investigation.

3.2. Use of PLBG for Soil Classification

The LL (i.e., LLPC or LLFC), together with the PI (i.e., PIPC-RT = LLPC − PLRT or
PIFC-RT = LLFC − PLRT), are commonly employed with the Casagrande-style plasticity
chart for classifying fine-grained soils [7–10]. Accordingly, any alternate PLRT measurement
technique, such as the BG-based method, is expected to produce reliable soil classifications.
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To the authors’ knowledge, this critical requirement has not yet been examined (nor
discussed) for the PLBG parameter. Herein, an attempt is made to examine the validity of
the PLBG parameter in the context of soil classification using the BS soil plasticity-chart
framework, as per BS 5930 [9].

Geosciences 2021, 11, x FOR PEER REVIEW 8 of 15 
 

 

Referring to Figure 3b; the likelihoods of underestimating (i.e., PLBG < PLRT) and over-

estimating (i.e., PLBG > PLRT) the PLRT can be calculated as 50% and 40%, respectively; al-

lowing one to simply debunk the notion presented by some researchers that the BG 

method generally tends to greatly underestimate the PLRT [58,63,64]. To further examine 

this critical aspect, and to investigate whether the degree of underestimation or overesti-

mation is systematically related to fundamental soil properties (i.e., plasticity level class, 

clay and silt contents, and soil mineralogy), the PLBG-to-PLRT ratio is plotted against LLPC 

or LLFC, fclay, fsilt, and APC or AFC (see Figure 4). As is evident from this figure, the PLBG/PLRT 

ratio does not systematically increase or decrease with changes in soil type (or behavior); 

suggesting that the differences between the PLBG and PLRT measurements are most likely 

random in nature. 

 

 

Figure 4. Variations of the PLBG-to-PLRT ratio against fundamental soil properties for the compiled database: (a) LLPC or 

LLFC; (b) fclay; (c) fsilt; and (d) APC or AFC. Note: LB and UB denote lower and upper PLBG/PLRT boundaries, respectively; and 

L, I, H, V and E represent low, intermediate, high, very high and extremely high plasticity level classes, respectively. 

In view of the potential outlier DBA (= PLBG − PLRT) values obtained for S15–S17 (all 

classified as silt with very high plasticity, MV, as per BS 5930 [9]), one may postulate that 

the BG-based method is potentially less workable for less-cohesive soils (or silts). How-

ever, given that the bulk of the compiled database consisted of clays, and the fact that 

other silts within the database (i.e., S1, S10, S13, S27, S28 and S51) produced acceptable 

DBA values (i.e., |DBA| < 8%), this early postulation should be taken with caution, demand-

ing further investigation. 

  

P
L

B
G

/P
L

R
T

(%
)

0.6

0.8

1.0

1.2

1.4

0 25 50 75 100 125 150

S1–S9 (PC)

S10–S17 (FC)

S23–S51 (PC)

S23–S51 (FC)

S52–S60 (FC)

(a) LLPC or LLFC (%)

C
la

s
s
L

C
la

s
s
I

C
la

s
s
H

C
la

s
s
V

C
la

s
s
E

PLBG = PLRT

35 70 90

P
L

B
G

/P
L

R
T

(%
)

0.6

0.8

1.0

1.2

1.4

0 20 40 60 80 100

S18–S22

S23–S51

S52–S60

(b) Clay content, fclay (%)

PLBG = PLRT

LB: PLBG / PLRT = 0.87

UB: PLBG / PLRT = 1.18

P
L

B
G

/P
L

R
T

(%
)

0.6

0.8

1.0

1.2

1.4

0 20 40 60 80 100

S18–S22

S23–S51

S52–S60

(c) Silt content, fsilt (%)

PLBG = PLRT

LB: PLBG / PLRT = 0.87

UB: PLBG / PLRT = 1.18

P
L

B
G

/P
L

R
T

(%
)

0.6

0.8

1.0

1.2

1.4

0.0 0.5 1.0 1.5 2.0 2.5

S23–S51 (PC)

S23–S51 (FC)

S52–S60 (FC)

(d) Activity index, APC or AFC

Inactive
Kaolinite

PLBG = PLRT

Normal
Illite

Active
Montmorillonite

LB: PLBG / PLRT = 0.88

UB: PLBG / PLRT = 1.18

0.75 1.25

Figure 4. Variations of the PLBG-to-PLRT ratio against fundamental soil properties for the compiled database: (a) LLPC or
LLFC; (b) f clay; (c) f silt; and (d) APC or AFC. Note: LB and UB denote lower and upper PLBG/PLRT boundaries, respectively;
and L, I, H, V and E represent low, intermediate, high, very high and extremely high plasticity level classes, respectively.

Figure 5 illustrates the variations of the RT-deduced PI (PIPC-RT or PIFC-RT, written as
PIPC/FC-RT for simplicity) against the BG-deduced PI (PIPC-BG or PIFC-BG; i.e., PIPC/FC-BG)
for the compiled database (excluding S18–S22 for which the LLPC or LLFC values were
nor reported). As expected, the two PI parameters are strongly correlated, exhibiting a
linear relationship in the form of PIPC/FC-RT = 0.96 PIPC/FC-BG + 1.01 (with R2 = 0.980),
implying that the RT- and BG-deduced PI parameters are approximately equal. Note that
the MAPE and NRMSE associated with PIPC/FC-RT ≈ PIPC/FC-BG were shown to be 6.6%
and 2.3%, respectively.
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Figure 5. Variations of the RT-deduced PI (PIPC/FC-RT) against the BG-deduced PI (PIPC/FC-BG) for the compiled database
(excluding S18–S22 for which the LLPC or LLFC values were nor reported). Note: L, I, H and V represent low, intermediate,
high and very high plasticity level classes, respectively.

Making use of the LLPC and/or LLFC, together with the BG-deduced PI, only two
cases (out of 84 examined)—namely, S16 employing LLFC and S28 employing LLPC—were
shown to produce classifications different from those obtained based on the RT-deduced
PI; that is, in terms of deducing clay instead of silt when plotted on the BS soil plasticity
chart (see Table 2). Overall, this implies that compared to PLRT, the likelihood of achieving
consistent soil classifications employing the PLBG parameter stands at 98%. Quite clearly, if
the potential errors/variations associated with the PLRT measurements are also considered
in the analysis, the two classification discrepancies can be deemed acceptable; especially
when considering the small actual vertical distance for S16 and S28 from the A-Line,
which can be calculated as DA = PIPC/FC-RT − 0.73 (LLPC/FC − 20) = −6.81% and −2.45%,
respectively. In view of these results, it is concluded that the PLBG parameter can be used
with confidence for routine soil classification purposes.

Table 2. Summary of the soil classification results employing PLRT and PLBG for the compiled database (excluding S18–S22
for which the LLPC or LLFC values were not reported).

ID LLPC
(%)

LLFC
(%)

PLRT
(%)

PLBG
(%)

PIPC-RT
(%)

PIFC-RT
(%) USCSPC-RT USCSFC-RT

PIPC-BG
(%)

PIFC-BG
(%) USCSPC-BG USCSFC-BG

S1 17.0 — 13.0 13.0 4.0 — ML — 4.0 — ML —
S2 24.0 — 16.0 14.0 8.0 — CL — 10.0 — CL —
S3 27.0 — 17.0 15.0 10.0 — CL — 12.0 — CL —
S4 33.0 — 17.0 17.0 16.0 — CL — 16.0 — CL —
S5 33.0 — 13.0 13.0 20.0 — CL — 20.0 — CL —
S6 41.0 — 14.0 13.0 27.0 — CI — 28.0 — CI —
S7 49.0 — 14.0 14.0 35.0 — CI — 35.0 — CI —
S8 56.0 — 17.0 16.0 39.0 — CH — 40.0 — CH —
S9 63.0 — 19.0 18.0 44.0 — CH — 45.0 — CH —

S10 — 73.1 47.1 43.4 — 26.0 — MV — 29.7 — MV
S11 — 56.9 29.8 29.0 — 27.1 — CH — 27.9 — CH
S12 — 64.5 30.9 31.8 — 33.6 — CH — 32.7 — CH
S13 — 45.5 30.0 27.0 — 15.5 — MI — 18.5 — MI
S14 — 44.6 23.2 21.0 — 21.4 — CI — 23.6 — CI
S15 — 74.4 51.1 45.0 — 23.3 — MV — 29.4 — MV
S16 — 88.1 45.2 38.0 — 42.9 — MV — 50.1 — CV
S17 — 71.6 34.9 45.0 — 36.7 — MV — 26.6 — MV
S23 41.4 42.0 20.9 23.1 20.5 21.1 CI CI 18.3 18.9 CI CI
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Table 2. Cont.

ID LLPC
(%)

LLFC
(%)

PLRT
(%)

PLBG
(%)

PIPC-RT
(%)

PIFC-RT
(%) USCSPC-RT USCSFC-RT

PIPC-BG
(%)

PIFC-BG
(%) USCSPC-BG USCSFC-BG

S24 48.5 46.6 20.2 22.5 28.3 26.4 CI CI 26.0 24.1 CI CI
S25 62.0 60.4 25.3 28.9 36.7 35.1 CH CH 33.1 31.5 CH CH
S26 35.6 37.2 20.6 19.7 15.0 16.6 CI CI 15.9 17.5 CI CI
S27 78.7 77.4 53.4 54.3 25.3 24.0 MV MV 24.4 23.1 MV MV
S28 71.3 70.3 36.3 33.7 35.0 34.0 MV MV 37.6 36.6 CV MV
S29 29.1 30.6 19.6 19.3 9.5 11.0 CL CL 9.8 11.3 CL CL
S30 38.9 39.3 18.9 19.3 20.0 20.4 CI CI 19.6 20.0 CI CI
S31 30.4 32.9 20.4 18.9 10.0 12.5 CL CL 11.5 14.0 CL CL
S32 27.0 27.5 19.4 20.3 7.6 8.1 CL CL 6.7 7.2 CL CL
S33 51.3 50.1 18.3 18.5 33.0 31.8 CH CH 32.8 31.6 CH CH
S34 39.0 38.6 22.5 23.8 16.5 16.1 CI CI 15.2 14.8 CI CI
S35 30.9 31.6 19.3 19.3 11.6 12.3 CL CL 11.6 12.3 CL CL
S36 30.1 31.7 17.3 19.0 12.8 14.4 CL CL 11.1 12.7 CL CL
S37 29.6 30.6 20.0 20.2 9.6 10.6 CL CL 9.4 10.4 CL CL
S38 29.0 30.5 19.3 20.0 9.7 11.2 CL CL 9.0 10.5 CL CL
S39 27.5 29.5 17.3 17.2 10.2 12.2 CL CL 10.3 12.3 CL CL
S40 38.3 40.9 24.0 23.0 14.3 16.9 CI CI 15.3 17.9 CI CI
S41 51.6 51.1 20.9 20.6 30.7 30.2 CH CH 31.0 30.5 CH CH
S42 23.0 24.6 11.9 12.6 11.1 12.7 CL CL 10.4 12.0 CL CL
S43 38.4 39.9 15.9 18.7 22.5 24.0 CI CI 19.7 21.2 CI CI
S44 37.4 39.3 16.5 19.3 20.9 22.8 CI CI 18.1 20.0 CI CI
S45 35.3 36.2 22.0 21.8 13.3 14.2 CI CI 13.5 14.4 CI CI
S46 35.6 36.3 22.3 24.2 13.3 14.0 CI CI 11.4 12.1 CI CI
S47 61.0 59.2 14.8 13.7 46.2 44.4 CH CH 47.3 45.5 CH CH
S48 40.6 40.8 23.2 22.3 17.4 17.6 CI CI 18.3 18.5 CI CI
S49 43.3 43.2 21.3 21.4 22.0 21.9 CI CI 21.9 21.8 CI CI
S50 46.6 45.9 26.2 26.2 20.4 19.7 CI CI 20.4 19.7 CI CI
S51 50.7 48.6 30.7 30.9 20.0 17.9 MH MI 19.8 17.7 MH MI
S52 — 34.3 13.1 14.0 — 21.2 — CL — 20.3 — CL
S53 — 39.3 14.4 12.6 — 24.9 — CI — 26.7 — CI
S54 — 41.4 13.6 13.3 — 27.8 — CI — 28.1 — CI
S55 — 48.7 16.2 17.4 — 32.5 — CI — 31.3 — CI
S56 — 59.9 19.0 22.1 — 40.9 — CH — 37.8 — CH
S57 — 69.3 22.7 20.3 — 46.6 — CH — 49.0 — CH
S58 — 84.3 27.7 24.4 — 56.6 — CV — 59.9 — CV
S59 — 107.4 34.8 36.0 — 72.6 — CE — 71.4 — CE
S60 — 141.1 39.5 35.6 — 101.6 — CE — 105.5 — CE

Note: LLPC and LLFC = percussion-cup and BS fall-cone liquid limits, respectively; PLRT and PLBG = standard thread-rolling (by hand) and
device-rolling plastic limits, respectively; PIPC-RT = LLPC − PLRT; PIFC-RT = LLFC − PLRT; PIPC-BG = LLPC − PLBG; PIFC-BG = LLFC − PLBG;
and USCS = Unified Soil Classification System, as per BS 5930 [9].

4. Summary and Conclusions

In view of its apparent shortcomings, several attempts have been made to devise
alternative testing approaches to the standard hand-rolling PLRT method, targeting higher
degrees of repeatability and reproducibility. Among these, device-rolling techniques,
which mainly follow the same basic principles as the standard thread-rolling (by hand) test
(i.e., PLRT), have been highly underrated by some researchers and hence demand further
attention. Furthermore, there seems to exist a general belief among them that the “PL”
deduced from such devices, including the well-established PLBG parameter obtained from
the ASTM D4318/AASHTO T90 rolling device method, which is based on the original
work by Bobrowski and Griekspoor [52], generally tends to greatly underestimate the PLRT.
To examine this point, and to better understand the true potentials and/or limitations of the
BG-based device-rolling technique for soil plasticity determination, this study investigated
the validity of the PLBG parameter by quantifying and critically examining its statistical
level of agreement with the standard PLRT. The following conclusions can be drawn from
this study:

• Following a comprehensive statistical analysis performed on a large and diverse
database of 60 PLRT–PLBG test pairs, it was demonstrated that, under identical test-
ing conditions, the BG-based and RT methods produce essentially similar PL values
(i.e., PLRT ≈ PLBG). The 95% lower and upper agreement limits between PLBG and
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PLRT were obtained as −5.03% and +4.51%, respectively; implying that 95% of the
differences between the two PL measurement methods lie between these two small
water content limits, both of which can be deemed “statistically insignificant” when
compared to the inductively-defined reference limit of ±8% (i.e., the highest pos-
sible difference/variation in the PLRT based on its repeatability, as reported in the
research literature).

• Further, the likelihoods of underestimating (i.e., PLBG < PLRT) and overestimating
(i.e., PLBG > PLRT) the PLRT were obtained as 50% and 40%, respectively; thereby,
debunking the notion presented by some researchers that the BG method generally
tends to greatly underestimate the PLRT. It was also demonstrated that the degree of
underestimation or overestimation does not systematically increase or decrease with
changes in fundamental soil properties (i.e., plasticity level class, clay and silt contents,
and soil mineralogy); suggesting that the differences between PLBG and PLRT are most
likely random in nature.

• Finally, making use of the BS soil plasticity-chart framework, an attempt, for the
first time, was made to examine the validity of the PLBG parameter in the context
of fine-grained soil classification. Compared to PLRT, the likelihood of achieving
consistent soil classifications employing the PLBG (in conjunction with LLPC and/or
LLFC) was shown to be 98%, with the classification discrepancies (only two cases out of
84 examined) being soil materials that plot relatively close to the A-Line. This implies
that the PLBG parameter, as determined using the ASTM D4318/AASHTO T90 rolling
device method, can be used with confidence for routine soil classification purposes.
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Abbreviations

AASHTO American Association of State Highway and Transportation Officials
ASTM American Society for Testing and Materials
BA Bland–Altman (analysis/plot)
BG Bobrowski and Griekspoor (method/device)
BS British Standard
CE Clay with extremely high plasticity
CH Clay with high plasticity
CI Clay with intermediate plasticity
CL Clay with low plasticity
CV Clay with very high plasticity
FC Fall-cone (method)
ME Silt with extremely high plasticity
MH Silt with high plasticity
MI Silt with intermediate plasticity
ML Silt with low plasticity
MV Silt with very high plasticity
PC Percussion-cup (method)
RT Rolling-thread (method)
USCS Unified Soil Classification System



Geosciences 2021, 11, 247 13 of 15

Notations

AFC Soil activity index (=PIFC-RT/f clay)
APC Soil activity index (=PIPC-RT/f clay)
d Cone penetration depth (FC test) [mm]
DBA Plastic limit difference, defined as DBA = PLBG − PLRT [%]
DA Actual vertical distance from the A-Line [%]
f clay Clay content [%]
f silt Silt content [%]
LAL Lower (water content) agreement limit [%]
LB Lower (PLBG-to-PLRT variation) boundary
LLFC Fall-cone liquid limit [%]
LLPC Percussion-cup liquid limit [%]
MBA Plastic limit average, defined as MBA = (PLBG + PLRT)/2 [%]
MAPE Mean absolute percentage error [%]
n Index of summation
N Number of tests/observations
Nb Number of blows (PC test)
NRMSE Normalized root-mean-squared error [%]
PIFC-BG Plasticity index (= LLFC − PLBG) [%]
PIFC-RT Plasticity index (= LLFC − PLRT) [%]
PIPC-BG Plasticity index (= LLPC − PLBG) [%]
PIPC-RT Plasticity index (= LLPC − PLRT) [%]
PLBG Device-rolling plastic limit [%]
PLRT Thread-rolling (by hand) plastic limit [%]
PLRT(max) Maximum of PLRT data [%]
PLRT(min) Minimum of PLRT data [%]
R2 Coefficient of determination
RMSE Root-mean-squared error [% water content]
UAL Upper (water content) agreement limit [%]
UB Upper (PLBG-to-PLRT variation) boundary
w Gravimetric water content [%]
µD Arithmetic mean of DBA (=PLBG − PLRT) data [%]
σD Standard deviation of DBA (=PLBG − PLRT) data [%]
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